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Abstract

We are interested in the modelling of saturated thermo-hydro-mechanical (THM)
problems that describe the behaviour of a soil in which a weakly compressible fluid
evolves. It is used for the evaluation of the THM impact of high-level activity radioactive
waste exothermicity within a deep geological disposal facility. We shall present the
definition of a block preconditioner with nested Krylov solvers for the fully coupled
THM equations. Numerical results reflect the good performance of the proposed
preconditioners that show to be weakly scalable until more than 2000 cores and more
than 1 billion degrees of freedom. Thanks to their performance and robustness, a real
waste storage problem on a scale, to our knowledge, unprecedented in the field, can
be addressed.
Keywords: Multiphysics, Preconditioning, Finite element, High performance
computing

Introduction
Context

Thedetailedmodeling of undergroundphenomena is ofmajor interest in several industrial
fields ranging from oil and gas to nuclear waste storage and civil engineering [1–3]. This
is particularly the case for coupled phenomena where several physics come into play
and can make it difficult to understand their respective influences. Nuclear waste storage
is an illustrative example of a thermo-hydro-mechanics (THM) coupled problem [4].
Nuclear wastes generate heat that increases the fluid and soil temperature, thus changing
not only the volume of each phase due to thermal expansion but also the values of the
material parameters which are functions of temperature. The numerical simulation of
these problems results in the solution of a coupled system of nonlinear partial differential
equations (PDE). Due to implicit time discretization, often preferred for its unconditional
stability, the solutionof large ill-conditioned linear systems turnsout tobe theheaviest task
in termsof computational burden.Thedesignof scalableparallel solvers is thus anessential
topic to benefit from the massive computational power of computer architectures. This
is the concern of the present work.
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Previous work

The modeling of underground phenomena has been initiated by the pioneering work
of Terzaghi in his theory of one-dimensional consolidation [5]. The theory was then
expanded by Biot, who used the coupling of Darcy’s and Hooke’s laws together with
the Terzaghi’s principle [6]. Then, he also included the effect of temperature by using
the new concept of “virtual dissipation” [7]. Finally Coussy showed that a general theory
of thermomechanics of saturated porous media could be established based on standard
thermodynamics principles [8]. We shall follow this well-established framework to model
the thermomecanical behavior of a deformable porous media, saturated with an almost
incompressible single-phased fluid. It results in a system of three balance equations for
the linear momentum, themass of fluid and the energy of the medium, where the physical
phenomenons in play are conduction and convection.
When considering the numerical solution of a coupled system of PDE, sequential or

monolithic approaches can be used. For the sequential method, also called staggered or
operator-splitting method, each balance equation is solved once at a time, thus requiring
anupdate strategy inorder to transfer the valuesof eachfield fromabalance equation to the
other. Thanks to an appropriate convergence criterion, the solution of the coupled system
is recovered. Themain interest of such approaches relies in the use of existing verified and
robust simulators, dedicated to a particular problem, with the final goal to reduce coding
efforts. However, they obviously require a special coupling algorithm, whose numerical
stability and accuracy can be problemsome [9,10] and sometimes also the use of a coupling
software, which can penalize the reduction of the programming burden [11]. For the
monolithic method, all balance equations are solved simultaneously, requiring processing
within the samecomputer software. In addition to thedevelopmentof a dedicated software
application, monolithic approaches require that the inf-sup condition is met [12], in order
to avoid spurious oscillations in the pressure field. This topic benefited special attention
in the literature and several strategies were proposed to circumvent the problem. The
latest works consider three-field formulations for the Biot’s part (aka HM) of the global
problem,with different choices of the extra-field (solid pressure [13,14] orDarcy’s velocity
[15,16]) in order to alleviate the non-physical pressure oscillations at the interface between
materials with different permeabilities. In the sequel, a monolithic approach is considered
and, as mentioned earlier, an efficient and robust solver is essential for the performance
of the method.
When systems are of small to medium size, direct solvers are well suited mainly because

of their excellent robustness. However, when systems become larger (> 107 Degree of
Freedom (DoF)), time and memory consumption of direct solvers, which grows substan-
tially faster than the number of unknowns, gets unfeasible and the use of iterativemethods
become mandatory from a performance point of view. This topic enjoys intense research
formore than twodecades,mainly in thefield ofHMproblems, focused either onmultigrid
methods or on block preconditioners for Krylov methods.
In the multigrid framework, the choice of the smoother is a key point to ensure the

convergence and the performance of the method. Several strategies have proposed such
as Vanka-type smoothers for three-field non-linear poroelasticity, Uzawa-type smoothers
obtained by splitting the discrete operators or also parameter dependent smoothers based
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on a fixed-stress scheme [17–19]. An efficient distributive smoother for staggered grids is
proposed and analyzed in [20,21].
Block preconditioners are a natural solution for linear systems involving unknowns of

different kinds. This is obviously the case for saddle point problems, of which the Stokes
problem is a canonical example and has motivated intense research (see [22] for extensive
bibliography). Based on block factorizations, diagonal or triangular preconditioners have
been proposed. Algebraic multigrid (AMG), incomplete factorization and approximate
inverses are often used for preconditioning the displacement block [16,23]. The design
of a preconditioner for the pressure block implies the approximation of the Schur com-
plement, whose exact evaluation is computationally impossible even for moderate size
problems due to its dense nature. When the media is fully saturated by the fluid, several
approximations are proposed based onAMG,massmatrices and incomplete factorization
[23–25]. When phase change in the fluid are to be considered, the Constrained Pressure
Residual (CPR) method is often considered as the preconditioner of choice for real-life
problems in the oil reservoir community [26–30]. It must be noticed that all block precon-
ditioners do not rely on block factorization. Recent works based on the choice of physical
parameter based norms have been proposed [13,31]. They turn to be block diagonal or tri-
angular preconditioners that show great independence from thematerial parameters, thus
motivating the name of parameter-robust preconditioners. Other approaches are based
on particular matrix decompositions which enjoy nice convergence properties when used
as preconditioners [32].

Present work

We consider a porous deformable solid material saturated with an almost incompressible
fluid with non-isothermal effects. Although thematerial is considered elastic and the fluid
obeys Darcy’s law, the energy balance equation is nonlinear and drives ourselves to the
use of the Newton’s method.We use a monolithic solution approach and focus on the use
of block preconditioned Krylov methods in order to solve the linearized system, whose
unknowns are the displacement, the pressure and the temperature of the continuum. In
the present work, we consider a two field, displacement and pressure, formulation with
respective quadratic and linear interpolations. It has indeed shown to be stable on several
severe tests [24]. The temperature field has linear interpolation and this choice will be
discussed in the sequel.

Outline

We start by presenting the general framework of the THM system in some detail in order
to show how the couplings with temperature through diffusion and convection mecha-
nisms are handled. After writing the weak formulation, time and space discretizations are
presented followed by the linearization of the residual. The block preconditioning strat-
egy is discussed and its robustness with respect to the number of DoF and to the physical
parameters are assessed on a test case. The weak and strong scaling are also evaluated and
compared the performance of a commonly used block factorization preconditioner. The
solution of a large industrial problem by the proposed framework is discussed. The paper
ends with conclusions and outlooks.
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Table 1 Parameters

Symbol Definition Unit

A Forth order Hooke’s tensor Pa

ε Strain tensor –

E Young’s modulus Pa
ν Poisson’s ratio –

K0 Drained bulk modulus of the continuum Pa
Kl Bulk modulus of the fluid Pa
Ks Bulk modulus of the solid matrix Pa
Kint Intrinsic permeability m2

ϕ Porosity –

μl Fluid dynamic viscosity Pa s
hf Specific enthalpy of the fluid J kg−1

hf 0 Initial specific enthalpy of the fluid J kg−1

patm Atmospheric pressure Pa
Cs Specific heat of the solid J kg−1 K−1

Cf Specific heat of the fluid J kg−1 K−1

Cp
f Specific heat of the fluid with constant pressure J kg−1 K−1

C0
ε Specific heat of the medium to constant deformation J K−1 m−3

C0
σ Specific heat of the medium to constant constraint J K−1 m−3

ρs Solid density kgm−3

ρf Fluid density kgm−3

ρm Medium density kgm−3

λH Hydraulic conductivity Pa−1m2 s−1

λT Thermal conductivity Wm−1K
T0 Temperature of reference K
αs Dilation coefficient of the solid K−1

αl Dilation coefficient of the fluid K−1

αm Homogenized dilation coefficient of the medium K−1

The THM equations
Due to the large quantity of parameters, all symbols and units used in the article are listed
in Table 1.

General framework

An isotropic saturatedmono-phased porousmedium is considered in the context of small
perturbations. According to Biot’s theory, it is modeled as a linear elastic solid skeleton
with pores containing a freely moving fluid. Due to the presence of the pores, an essential
characteristics of themedium is the porosity, named ϕ in the sequel. It is the ratio between
the volume of the void and the total volume of the medium. The latter is considered on
a macroscopic scale within the framework of continuum mechanics and we therefore
assume that the representative elementary volume includes a sufficient volume of grains
and void space to verify this assumption. The above volumes are expressed in the current
configuration so that ϕ is often referred to as the Eulerian porosity.
Another essential parameter of the medium is the Biot’s coefficient b. It is the ratio of

the volume of fluid gained or lost in a specimen under load to the change in volume of
that specimen, when the pore pressure remains constant [33]. Given the solid matrix bulk
modulus Ks and the bulk modulus of the drained medium K0, it expresses as b = 1 − K0

Ks
.

We shall suppose that the solid matrix does not undergo significant volume changes,
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which is the case for the soft soils we consider here; it results in b = 1, that will be used in
the sequel.
Besides the aforementioned bulkmoduli, themedium is also characterized from amate-

rial point of view by the following parameters:

• the hydraulic permeability λH . It measures the medium’s ability to transmit a given
fluid. It is the ratio between the intrinsic permeability named Kint and the fluid vis-
cosity μl .

• the thermal conductivity named λT . Itmeasures themedium’s ability to conduct heat.
• the specific enthalpy of the water hf represents the enthalpy of the fluid per unitmass.

It is the sum of the specific internal energy of the fluid and the product of the pressure
and the specific volume.

These parameters, some of which appear explicitly therein, are ofmajor importance in the
balance equations. They are three in number since the medium is saturated and mono-
phased: the linear momentum, the mass of fluid and the energy of the medium.

Balance equations

We introduce the three balance equations of the problem that constitutes the thermo-
hydromechanical model of the ground. This model follows the work of Coussy [8].

• The linear momentum equation:

− div(σ ) = f e

– σ denotes the total Cauchy stress tensor
– f e denotes the total external forces

• The water mass conservation:

ṁf + div(ψ) = 0

– mf denotes the fluid mass of the continuum
– ψ is the fluid mass flux

• The energy conservation:

hf ṁf + Q̇′ + div(hf ψ) + div(q) = �

– hf denotes the specific fluid enthalpy
– q denotes the heat flux
– � denotes the source/sink of heat
– Q′ denotes the heat in the medium that is not convected, the heat input that

doesn’t come from an outside source.

Let us now detail the above balance equation in order to reveal the couplings between the
phenomena involved.



Ordonez et al. AdvancedModeling and Simulation in Engineering Sciences          (2023) 10:10 Page 6 of 31

The balance of linearmomentum

The mechanics equilibrium equations is applied on the total stress σ

− div(σ ) = f e (1)

where f e denotes the total volume external forces. Biot’s definition of effective stress
σ ′ = σ +pIwith the tension positive-sign convention is used in this article (we recall that
b = 1 in the previous equation). After including it in Eq. (1), we get:

− div(σ ′) + ∇p = f e (2)

We shall now use the expression of the constitutive equation while taking into account
the thermal expansion of the medium εth, which is a function of T :

σ ′ = A :
(
ε(u) − εth(T )

)

= A :
(
ε(u) − αs(T − T0)I

)

= A : ε(u) − 3Ksαs(T − T0)I (3)

A is the fourth order Hooke’s tensor (which is a function of E and ν), Ks = E
3(1−2ν) is

the bulk modulus of the solid matrix, αs is the thermal expansion coefficient and T0 is the
reference temperature (temperature at equilibrium).
If we inject the constitutive law into Eq. (2), we obtain the expression,where all couplings

become explicit:

− div(A : ε(u)) + ∇p + 3Ksαs∇T = f e (4)

The conservation of watermass

The water mass conservation equation is

ṁf + div(ψ) = 0 (5)

We shall now inject in the above equation several hypothesis on the fluid behaviour.
First, we call the domain’s initial porosity ϕ0 and the fluid’s initial density ρ0

f . Then the
total fluid mass expresses with respect to this initial state:

mf = (1 + div(u))ρf ϕ − ρ0
f ϕ

0

The time derivative of the fluid mass is then given by:

ṁf = ρf ϕ div(u̇) + (1 + div(u))ϕρ̇f + ρf (1 + div(u))ϕ̇

= ρf ϕ div(u̇) + ϕρ̇f + ρf ϕ̇ (6)

where we used div(u) << 1 since we make the assumption of small displacements. Next,
we use the definition of the time derivative of the fluid’s density [8]:

ρ̇f = ρf

(
1
Kl

ṗ − 3αl Ṫ
)

(7)

We now turn our attention to the evolution of the porosity. By using the definition of the
Eulerian porosity ϕ related to the Lagrangian porosity by φ = (1+ div(u))ϕ, its expression
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φ = div(u)+ (1−ϕ) p
Ks

+ 3(1−ϕ)αsT in the THM context [34] and the incompressibility
of the solid matrix, we have:

ϕ̇ = (1 − ϕ)( div(u̇) − 3αsṪ + ṗ
Ks

)

= (1 − ϕ)
(
div(u̇) − 3αsṪ

)
(8)

The fluid mass supply is then

ṁf = ρf (ϕ div(u̇) + ϕ

Kl
ṗ − 3αlϕṪ + (1 − ϕ)( div(u̇) − 3αsṪ ))

= ρf ( div(u̇) + ϕ

Kl
ṗ − 3αmṪ )

where 3αm = (3αlϕ + 3(1 − ϕ)αs).
Finally, we take into consideration Darcy’s law where the effect of gravity is neglected in

coherence with the targeted application (the theory does not need this assumption which
is just a short simplification)

ψ = −ρf λH∇p

The final water mass conservation Eq. (5) is then

ρf ( div(u̇) + ϕ

Kl
ṗ − 3αmṪ ) − div(ρf λH∇p) = 0 (9)

The energy conservation

The energy conservation equation is

hf ṁf + div(hf ψ) + div(q) + Q̇′ = � (10)

� denotes the total sources of heat and it equals the four terms on the left-hand side: the
heat coming from the fluid enthalpy, the energy convected by the fluid, the heat flux and
the non-convective heat. We shall start by detailing the latter.
The non-convective heat Q′ is the thermal input received by the system excluding the

enthalpy contributionof the fluid. It is the sumof three termsof heat input due respectively
to the deformation of the solid matrix, to the fluid compression and to temperature
variation. It is a non-linear term whose expression is:

Q̇′ = 3K0αs div(u̇)T − 3αl ṗT + C0
ε Ṫ

By developing the specific heat of the medium to constant deformation, we get C0
ε =

C0
σ − 9TK0α2

s [35, p78].

Q̇′ = (3K0αs div(u̇) − 3αl ṗ − 9K0α
2
s Ṫ )T + C0

σ Ṫ

By replacing Q̇′, ṁf , ψ and using the fact that the heat diffusion follows Fourier’s law
q = −λT∇T , Eq. (10) becomes

ρf hf
(
div(u̇) + ϕ

Kl
ṗ − 3αmṪ

)
− div(ρf hf λH∇p)

+ (3K0αs div(u̇) − 3αl ṗ − 9K0α
2
s Ṫ )T + C0

σ Ṫ − div(λT∇T ) = �
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The final system

After detailing each balance equation in order to reveal the detailed coupling between the
phenomena involved, the final system is obtained.
Let  be a d dimensional domain, 1 ≤ d ≤ 3, and tf the final time of the simulation.

The THMmodel describes the evolution of 3 primal unknowns: the vector displacement
field, u(x, t), the fluid pressure field, p(x, t), the temperature field T (x, t).
The coupled system consists of, ∀x ∈  and ∀t > 0 ∈ [0, tf ]:

− div(A : ε(u)) + ∇p + 3Ksαs∇T = f e in  × (0, tf )

− div(ρf λH∇p) + ρf ( div(u̇) + ϕ

Kl
ṗ − αm3Ṫ ) = 0 in  × (0, tf )

− div(λT∇T ) − div(ρf hf λH∇p)

+ρf hf ( div(u̇) + ϕ

Kl
ṗ − αm3Ṫ )

+(3K0αs div(u̇) − 3αmṗ − 9K0α
2
s ṪT ) + C0

σ Ṫ = � in  × (0, tf )

The boundary of  is denoted ∂ and six different partitions are needed to define the
boundary conditions. For each primal unknown, we may define Dirichlet and Neumann
boundary conditions, say the displacement u and the stress σ , the pressure P and the fluid
flux q, the temperature T and the thermal flux � .
We thus have, respectively, the boundary conditions on the displacement unknowns,

on the pressure unknowns and on the temperature unknowns such as:

∂ = ∂u ∪ ∂t with ∂u ∩ ∂t = ∅
∂ = ∂p ∪ ∂q with ∂p ∩ ∂q = ∅

∂ = ∂T ∪ ∂� with ∂T ∩ ∂� = ∅

The boundary and initial conditions are given by:

σ (u) · n = te on ∂t × (0, tf )

−λH∇p · n = qe on ∂q × (0, tf )

−λT∇T · n = �e on ∂� × (0, tf )

u = ue on ∂u × (0, tf )

p = pe on ∂p × (0, tf )

T = Te on ∂T × (0, tf )

u(x, 0) = u0(x) in 

p(x, 0) = p0(x) in 

T (x, 0) = T0(x) in 

where n is the outward normal.
Furthermore, the material parameters’ definitions are given in Table 1.
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Linearization and discretization
The next step to solve the non-linear time-dependent THM system is to do the time and
space discretization, as well as the linearization.

Variational formulation

We define the Sobolev spaces

U () = {u ∈ (H1())d, u = ue on ∂u},
P() = {p ∈ H1(), p = pe on ∂p},
T () = {T ∈ H1(), T = Te on ∂T },

By considering the appropriate Sobolev spaces defined above and by integration by parts,
we have the following weak form:
Find (u, p, T ) ∈ U () × P() × T () such as for all (v, q,W ) ∈ U () × P() × T (),

we have
∫



(
−A : ε(u) : ε(v) + p div(v) + 3KsαsT div(v)

)
dx =

∫



f e v dx +
∫

∂t
te v ds

∫



ρf (−λH ∇p∇q + div(u̇) q + ϕ

Kl
ṗ q − αm3 Ṫ q)dx =

∫

∂q
ρf qe q ds (11)

∫



(−λT∇T ∇W + C0
σ Ṫ W

+ ρf hf (−λH ∇p∇W + div(u̇)W + ϕ

Kl
ṗW − αm3 Ṫ W )

+(T3K0αs div(u̇)W − 3αm ṗW − 9K0α
2
s Ṫ W

)
dx =

∫



�W dx +
∫

∂�

�e W ds

Time discretization

To solve the THM time-dependent problem, we chose an implicit Euler method to dis-
cretize the problem in time and solve a static problem at each time step.
We use the notations un(x) := u(x, tn), pn(x) := p(x, tn) and Tn(x) := T (x, tn) which

denote the displacement field, the pressure field and the temperature field at tn = n�t,
where �t is a given time increment.
To apply Euler’s implicit method, ∂tu (equivalently for ṗ and Ṫ ) is replaced by:

u̇(x, tn+1) = u(x, tn+1) − u(x, tn)
tn+1 − tn

= un+1(x) − un(x)
�t

(12)

The THM semi-discrete weak formulation becomes
∫



(A : ε(un+1) : ε(v) − div(v) pn+1 − 3Ksαs div(v)Tn+1)dx

=
∫



f e v dx +
∫

∂t
te v ds

∫



ρf div(un+1) q + ϕ

Kl
pn+1 q − αm3Tn+1 q + �tλH ∇pn+1 ∇qdx

=
∫

∂q
ρf qe q ds +

∫



ρf

(
div(un) q + ϕ

Kl
pn q − αm3Tn q

)
dx
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∫



−�tλT ∇Tn+1 ∇W + C0
σ Tn+1W

+ ρf hf (−�tλH ∇pn+1 ∇W + div(un+1)W + ϕ

Kl
pn+1W − αm3Tn+1W )

+ Tn+1
(
3K0αs div(un+1)W − 3αm pn+1W − 9K0α

2
s Tn+1W

)
dx

= �t
∫



�W dx +
∫

∂�

�e W d

+
∫



C0
σ TnW + ρf hf

(
div(un)W + ϕ

Kl
pn W − αm3TnW

)

+ Tn
(
3K0αs div(un)W − 3αm pn W − 9K0α

2
s T

n W
)
dx

Linearization and Newton’s method

The system is linearized using Newton’s method and requires the partial derivatives of
each equation residual with respect to un+1, pn+1 and Tn+1.
Let’s introduce the residual notation for the displacement

Ru :=
∫



(A : ε(un+1) : ε(v) − div(v) pn+1 − 3Ksαs div(v)Tn+1)dx

−
∫



f e v dx +
∫

∂t
te v ds

where Ru is a function of ((un+1, pn+1, Tn+1), (un, pn, Tn), v). The same is done for the
pressure residual Rp and the temperature residual RT .
Newton’s method requires to find a correction (δu, δp, δT ) solution of

J

⎡
⎢⎣

δu
δp
δT

⎤
⎥⎦ =

⎡
⎢⎢⎣

∂Ru
∂u

∂Ru
∂p

∂Ru
∂T

∂Rp
∂u

∂Rp
∂p

∂Rp
∂T

∂RT
∂u

∂RT
∂p

∂RT
∂T

⎤
⎥⎥⎦

⎡
⎢⎣

δu
δp
δT

⎤
⎥⎦ = −

⎡
⎢⎣
Ru
Rp
RT

⎤
⎥⎦ (13)

where J is the residual’s Jacobian.
The solution is then updated,

un+1
k = un+1

k−1 + δu (14)

pn+1
k = pn+1

k−1 + δp (15)

Tn+1
k = Tn+1

k−1 + δT (16)

until the stopping criterion is reached
‖rk‖
‖r0‖ < 10−6 where δ =

⎡
⎢⎣

δu
δp
δT

⎤
⎥⎦ and rk =

⎡
⎢⎣
Ru
Rp
RT

⎤
⎥⎦ at

the kth iteration.
In order to solve the system (13), we need to find J by linearizing the three residuals.
Since the first two equations of the system are linear, the first two equations of the

linearized system are

∂Ru

∂un+1 δu + ∂Ru

∂pn+1 δp + ∂Ru

∂Tn+1 δT

=
∫



(
A : ε(δu) : ε(v) − div(v) δp − 3Ksαs div(v) δT

)
dx (17)
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∂Rp
∂un+1 δu + ∂Rp

∂pn+1 δp + ∂Rp
∂Tn+1 δT

=
∫



ρf ( div(δu) q + ϕ

Kl
δp q − αm3 δT q + �tλH ∇δp ∇q)dx (18)

We linearize each term of the third equation using ∂hf
∂p = (1−3αlT )

ρf
and ∂hf

∂T = Cp
f [35,36].

∂RT
∂un+1 δu =

∫



(ρf hf div(δu)W + Tn+1
k−1 3K0αs div(δu)W )dx

∂RT
∂pn+1 δp =

∫



(1 − 3αlTn+1
k−1 )δp

(
− �tλH ∇pn+1

k−1 ∇W + div(un+1
k−1)W

+ ϕ

Kl
pn+1
k−1 W − αm3Tn+1

k−1 W
)

+ ρf hf
(

−�tλH ∇δp ∇W + ϕ

Kl
δp W

)
− Tn+1

k−1 3αm δp Wdx

∂RT
∂Tn+1 δT =

∫



−�tλT ∇δT ∇W + C0
σ δT W

+ ρf C
p
f δT

(
− �tλH ∇pn+1

k−1 ∇W + div(un+1
k−1)W

+ ϕ

Kl
pn+1
k−1 W − αm3Tn+1

k−1 W
)

− ρf hf (αm3 δT W ) + δT

(
3K0αs div(un+1

k−1)W

− 3αm pn+1
k−1 W − 18K0α

2
s T

n+1
k−1 W )

)
dx

Space discretization

The finite element method is used for space discretization and Taylor-Hood P2-P1-P1
finite elements are considered. This translates into using continuous piecewise quadratic
polynomials to approximate the displacement and continuous piecewise linear polyno-
mials to approximate the pressure and the temperature. In [37], these elements where
studied for poroelasticity and having the polynomial interpolation for the displacement
be one degree higher than for the pressure, equilibrates the convergence rate of all terms
in the energy norm. Furthermore the convergence is robust with respect to the mesh size.
Asmentioned in the introduction, this choice has also shown to be stable on several severe
tests [24].
The choice of the P1 interpolation of the temperature relies on the fact that this field

is directly used in (3) for the evaluation of the thermal expansion of the medium. Since
the latter is substracted to the mechanical strain computed as the symmetric gradient of
the displacement, this choice ensures consistency of the interpolations and avoid non-
physical artefacts in the case where the temperature is interpolated with the same shape
functions as the displacement, as pointed out in [38, p.104].
LetUh() be the discrete Sobolev subspace of U () of dimensionNu with h > 0 being a

parameter that refers to the mesh size. The same formulation is used for Ph() and Th().
Let {φvj }Nu

j=1 be a basis for the finite element space Uh(), then for all vh ∈ Uh() we
have
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vh =
Nu∑
j=1

vh φvj .

Let {φqj }Np
j=1 be a basis for the finite element space Ph(), then for all qh ∈ Uh() we have

qh =
Np∑
j=1

qh φqj .

Let {φwj }NT
j=1 be a basis for the finite element space Th(). Then for all Wh ∈ Th() we

have

Wh =
NT∑
j=1

Wh φwj .

The discrete problem is: find (δuh , δph , δTh ) ∈ Uh() × Ph() × Th() such that for all
(vh, qh,Wh) ∈ Uh() × Ph() × Th() holds

J

⎡
⎢⎣

δuh
δph
δTh

⎤
⎥⎦ = −

⎡
⎢⎣
Ruh
Rph
RTh

⎤
⎥⎦ (19)

where the matrix blocks are detailed in Appendix A.

Preconditioning
Iterative solvers often suffer frombad conditioning of the linear systemmatrix and require
preconditioning to achieve satisfactory performance in terms of iteration count and sim-
ulation time. This is especially true for THM problems, that are in general ill-conditioned
due to the properties of each physical component which are included via parameters into
the linear system and the right-hand side. In this section, we first discuss this issue and
define a preconditioner tailored for our application.

Multiphysics preconditioners for THM

As explained in the derivation above, the linear system to be solved is of the structure

⎡
⎢⎣
Juu Jup JuT
Jpu Jpp JpT
JTu JTp JTT

⎤
⎥⎦

⎡
⎢⎣

δuh
δph
δTh

⎤
⎥⎦ = −

⎡
⎢⎣
Ruh
Rph
RTh

⎤
⎥⎦ . (20)

As it is often the case for monolithic coupled formulations [23], this system is ill-
conditioned. Furthermore, there are significant differences in the order of magnitudes
of each parameter (see Table 3 in the sequel for illustrative values) which translates into
different orders of magnitudes between the 2-norms of each physics-based block in the
matrix in (20)
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S :=
⎡
⎢⎣

‖Juu‖2 ‖Jup‖2 ‖JuT‖2
‖Jpu‖2 ‖Jpp‖2 ‖JpT‖2
‖JTu‖2 ‖JTp‖2 ‖JTT‖2

⎤
⎥⎦ ≈

⎡
⎢⎣
1. e+13 1. e+01 1. e+06
1. e+04 1. e−08 1. e−02
1. e+08 1. e−03 1. e+05

⎤
⎥⎦ .

(21)

We have a maximal scaling difference of 1021 between the displacement and pressure
blocks. Solving this system naively could lead to cancellation effects in the solution. Prior
scaling or preconditioning of the matrix are thus compulsory.

Matrix scaling

Let us first look into matrix scaling and follow the algorithm given in [39]. The main
features of this algorithm are that the scaled matrix becomes diagonally dominant and
the scaling becomes block-symmetric. For these kinds of matrices, iterative solvers often
convergemore easily. The scaling algorithm takes the 3×3matrix S in (21) and computes
the following block-diagonal matrices

Dr =
⎡
⎢⎣
10−7 INu 0 0

0 10−2 INp 0
0 0 10−4 INT

⎤
⎥⎦ ,Dl =

⎡
⎢⎣
10−8 INu 0 0

0 104 INp 0
0 0 10−2 INT ,

⎤
⎥⎦

where INu , INp , INT are the identity matrices of size Nu,Np, NT . The THM system is then
scaled using Dr and Dl by

Jsc = Dr J Dlxs = bs

with xs = D−1
l x and bs = D−1

r b The entries in the scaled system are now of the following
magnitudes

⎡
⎢⎣

‖Jscuu‖2 ‖Jscup‖2 ‖JscuT‖2
‖Jscpu‖2 ‖Jscpp‖2 ‖JscpT‖2
‖JscTu‖2 ‖JscTp‖2 ‖JscTT‖2

⎤
⎥⎦ ≈

⎡
⎢⎣
1. e−01 1. e−01 1. e−03
1. e−01 1. e−01 1. e−02
1. e−03 1. e−02 1. e−01

⎤
⎥⎦ .

Definition of block preconditioners

Note that the matrices J and Jsc are non-symmetric. We thus need an iterative solver for
non-symmetric systems and choose the flexible GMRES (FGMRES)method [40].We will
next define a preconditioner that can be applied to the scaled or unscaled system. The idea
behind preconditioning is to construct a matrix P that is a good enough approximation
of J but that is easily invertible. In our computations, the preconditioner is applied from
the right, which means that we solve the system

JP−1y = r,

with y = Px. The solution x of the system remains the same but if P is a good approxima-
tion of J, then JP−1 becomes ’closer’ to the identity and the iterative method will converge
faster than for the unpreconditioned system.
The linear system in (20) is of block structure, where each diagonal block corresponds to

one of the three physical models. It thus seems natural to choose a block preconditioner,
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as it has been for example decribed in the reference [41]. The simplest preconditioner is
probably the block Jacobi preconditioner given by

PJac =
⎡
⎢⎣
Juu 0 0
0 Jpp 0
0 0 JTT

⎤
⎥⎦ .

The application of a standard Jacobi preconditioner is simple, as it is trivial to invert a
diagonal matrix. For the block Jacobi preconditioner we need the inverses of the three
separate individual physics blocks, i.e. J−1

uu , J−1
pp and J−1

TT . This is costly and thus we search
for a good approximation of each block, that can be more easily inverted. Before we
discuss this further, we introduce our second and third choice for a preconditioner. These
are the lower and upper block Gauss-Seidel preconditioners, denoted by PLGS and PUGS ,
respectively, given by

PLGS =
⎡
⎢⎣
Juu 0 0
Jpu Jpp 0
JTu JTp JTT

⎤
⎥⎦ , PUGS =

⎡
⎢⎣
Juu Jup JuT
0 Jpp JpT
0 0 JTT

⎤
⎥⎦

Even though these preconditioners use the rectangular lower (or upper) triangular blocks
of the system, when applying their inverse we still only need to compute the inverses of
the three diagonal blocks J−1

uu , J−1
pp and J−1

TT . Let I be the identity matrix of appropriate size
for each block. For ease of notation, we do not add the size in the index. The inverse of
the lower Gauss-Seidel preconditioner is given by

P−1
LGS =

⎡
⎢⎣
I 0 0
0 I 0
0 0 J−1

TT

⎤
⎥⎦

⎡
⎢⎣

I 0 0
0 I 0

−JTu −JTp I

⎤
⎥⎦

⎡
⎢⎣
I 0 0
0 J−1

pp 0
0 0 I

⎤
⎥⎦

⎡
⎢⎣

I 0 0
−Jpu I 0
0 0 I

⎤
⎥⎦

⎡
⎢⎣
J−1
uu 0 0
0 I 0
0 0 I

⎤
⎥⎦

and the inverse of PUGS is given by

P−1
UGS =

⎡
⎢⎣
J−1
uu 0 0
0 I 0
0 0 I

⎤
⎥⎦

⎡
⎢⎣
I −Jup −JuT
0 I 0
0 0 I

⎤
⎥⎦

⎡
⎢⎣
I 0 0
0 J−1

pp 0
0 0 I

⎤
⎥⎦

⎡
⎢⎣
I 0 0
0 I −JpT
0 0 I

⎤
⎥⎦

⎡
⎢⎣
I 0 0
0 I 0
0 0 J−1

TT

⎤
⎥⎦

As mentioned above, for each one of these three preconditioners, we need, in theory, the
inverse matrices of the diagonal blocks. In practice, these inverses are never explicitly
computed, as this is too costly. Incomplete factorisations of the original matrices are
for example well suited but lack scalability. Furthermore, it is not necessary to have an
explicit or precomputed representation of the preconditioner. In iterativemethods like for
example Conjugate Gradient or FGMRES, it is indeed enough to apply the preconditioner
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in form of matrix–vector products. It is for example possible to completely replace a
particular inverse approximation by a linear process. In our later numerical experiments,
we will use one V-cycle of an algebraic multigrid solver (AMG) as preconditioner for
each one of the three diagonal block matrices [42]. Furthermore, the preconditioner
can be replaced by another iterative method, for example GMRES itself, but then the
preconditioner becomes non-linear. In this case, we need flexible versions of the iterative
solvers, as FGMRES, that allow a variable preconditioner at each iteration. A nested
approach can also be used, where the preconditioner is implemented in form of some
iterations of an iterative solver that is preconditioned itself (see [43] for extreme-scale
applications of nested Krylov methods). In any case, the choice of each approximation
will ultimately come down to the specific characteristics of the block to invert. In the
following experiments, we use a nested preconditioning approach, where we apply the
block-preconditioners PJac,PLGS,PUGS by using some iterations of the FGMRES method
preconditioned by one V-cycle of AMG for each block Juu, Jpp, JTT . This provides the
possibility to control the quality of the inverse for each block by defining a stopping
tolerance or a fixed number of FGMRES iterations. In this strategy, we have an interplay
between the number of outer iterations of FGMRES on the block system with the number
of inner FGMRES iterations applied to each diagonal block. A stricter tolerance for the
inner FGMRES solvers might lead to a smaller number of outer FGMRES iterations and
vice-versa. This choice is guided by the numerical experiments described in the following,
where the trade-off between performance and robustness was a primary goal.
The choice of an AMG preconditioner for each inner FGMRES iteration can be

explained as follows. The diagonal blocks of the discretized system (see Sect. “Time dis-
cretization”) involve elliptic and non-degenerate parabolic operators, for which V-cycle
multigrid preconditioners are especially suited [13,41]. Note that in our particular case,
we could as well use the GMRES method, since one V-cycle is a constant linear precondi-
tioner and thus does not require a flexible version. This would come with a small memory
gain.

Numerical experiments for scaling issues

In this section, we present numerical results for the above defined nested solvers for
the scaled and unscaled linear system. The tolerance of the outer FGMRES solver is set
to ε = 10−6. This rather large tolerance is used since the linear system is the linearized
problem in aNewtonfixed point iteration. TheNewton iterations are required to converge
at a tolerance of εN = 10−6, so that a stricter tolerance ε would bemore costly than useful.
For the nested preconditioner, we use FGMRES precondioned by one V-cycle of AMG.
We have found empirically that using a fixed number of 10 iterations for the displacement
block, and 3 iterations for the pressure and temperature blocks gives a good compromise
between the cost of inner and outer iterations with respect to the global computation
time. We use the algebraic multigrid solver BoomerAMG from the hypre library through
PETSc with its default parameters [44].
Since an analytic solution is not available for the test problem,we solve the scaled system

as precise as possible by using the sparse direct solver MUMPS [45] and use this solution
as reference solution. Before computing the errors, the solution xs of the scaled system is
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brought back to the original scaling x using the formula x = Dlxs. We use the following
notations for the different solution strategies:

xs0: direct solution of the scaled system,
xs: Iterative solver solution of the scaled system,
x: Iterative solver solution of the initial system.

The relative error with respect to the reference solution Dlxs0 is computed for each
physical unknown. With obvious notation, the three errors are computed as follows:

• for x

erru = ‖Dlxs0u−xu‖2
‖Dlxs0u‖2 errp = ‖Dlxs0p−xp‖2

‖Dlxs0p‖2 errT = ‖Dlxs0T−xT ‖2
‖Dlxs0T ‖2

• for xs

erru = ‖Dlxs0u−Dlxsu‖2
‖Dlxs0u‖2 errp = ‖Dlxs0p−Dlxsp‖2

‖Dlxsp‖2 errT = ‖Dlxs0T−DlxsT ‖2
‖DlxsT ‖2

We present the simulation time, the number of outer FGMRES iterations and the above
defined errors for each one of the three preconditioner PJac,PLGS,PUGS in Table 2. Com-
paring the effect of the scaling on the solution, there is no clear winner. Indeed, the errors
for each unknown are less variable across the preconditioners for the scaled system. In case
of the PUGS , scaling is even compulsory. Here, solving the unscaled system does not lead
to satisfactory results in the displacement and pressure variables. This can be explained
by the difference in order of magnitudes in the entries of the matrix blocks and the order
in which these are applied in the solution process. In terms of iteration count, FGMRES
shows mesh independent convergence for PLGS and we expect this behavior also for the
Jacobi preconditioner once the problem size is further increased. In general, FGMRES
needs fewer iterations to reduce the residual below the required tolerance for the scaled
system. This leads however to higher errors in (almost) each variable when the matrix
is preconditioned by PJac and PLGS . The lower iteration count thus does not necessarily
present an advantage when interested in the actual error and not the residual.
This numerical experiment suggests that the use of PJac and PLGS as preconditioners on

the unscaled system results in a precise and robust solution strategy. The latter is therefore
used in the robustness and scalability studies in the following.

Solver performance
The robustness and efficiency of the proposed solver are crucial for industrial applications.
We thus present an illustrative test case, challenging the preconditioner’s robustness by
varying some parameters. The parallel efficiency is also evaluated by weak and strong
scalability tests. The method is implemented in code_aster, the massively parallel open
source general purpose finite element analysis software developed at EDF R&D [46].

Model problem

The test case needs to be simple enough so that themesh can be easily refined but complex
enough to resemble the industrial problem in consideration.
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Table 2 Error analysis

Size Errors using the scaled system: xs

Time it erru errp errT

PJ 429 1.40e−01 15 3.71e−05 2.96e−04 6.44e−09

2437 4.69e−01 15 3.78e−05 2.55e−04 9.82e−09

117,637 4.55e+01 15 1.34e−04 1.39e−04 7.01e−08

PLGS 429 1.13e−01 9 7.41e−06 3.47e−04 1.08e−09

2437 3.53e−01 10 1.64e−05 2.19e−04 1.83e−08

117,637 2.95e+01 10 2.31e−04 1.40e−04 1.83e−08

PUGS 429 1.17e−01 9 1.49e−05 8.85e−05 1.46e−10

2437 4.28e−01 13 1.51e−06 8.24e−06 1.57e−09

117,637 3.24e+01 12 4.26e−06 3.40e−05 6.29e−09

Size Errors using the initial system: x

Time it erru errp errT

PJ 429 1.66e−01 18 1.19e−03 1.44e−03 1.13e−07

2437 1.02e+00 34 6.24e−05 4.74e−05 3.79e−08

117,637 1.15e+02 40 4.36e−05 1.25e-05 9.01e−08

PLGS 429 1.40e−01 12 5.81e−07 2.20e−06 1.36e−10

2437 5.39e−01 14 3.49e−06 7.14e−07 4.01e−10

117 ,37 4.21e+01 14 1.93e−06 4.53e−07 2.59e−10

PUGS 429 1.07e−01 3 8.67e−01 1.08e+00 1.70e−05

2437 3.29e−01 8 1.78e−01 1.79e−01 6.06e−07

117,637 2.45e+01 8 3.39e−01 2.95e−01 6.85e−07

Fig. 1 Test case

For this purpose, a 3D rectangular sample is modelled as seen in Fig. 1, with a 0.1m
length following x, a 0.1m height following y and 0.05m large following z. The tetrahedral
mesh was generated using Gmsh 4.4.1.
The displacement was set to 0 on the bottom surface (y = 0), a mechanical pressure of

5 MPa was applied on the top surface (y = 0.1) and a temperature of 80◦C was imposed
on the whole surface of the sample. No other boundary condition is applied. Regarding
the hydraulics, the experiment is conducted under undrained condition. With respect to
the initial conditions, the sample is supposed to be initially in a state of zero force.
Depending on the assessment under consideration, the sample consists of a singlemate-

rial or of 2 different materials. For the robustness experiments, it consists of clay only,
while for the scalability experiments, it consists of clay and concrete. The 2 different
subdomains are illustrated in Fig. 1. We emphasize that the order of magnitude of the
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Table 3 The test case parameters

Symbol Value Unit

μl 10−3 Pa s
Kl 2.109 Pa
Cs 1000 J kg−1 K−1

Cf 4180 J kg−1 K−1

Cp
f 4180 J kg−1 K−1

ρf 1000 kgm−3

λT 1.6 Wm−1 K
T0 273 K
patm 105 Pa
αs 10−5 K−1

αl 10−4 K−1

hf 0
patm
ρf

J kg−1

Ks E
3(1−2ν) Pa

K0 Ks Pa
λH Kint/μl Pa−1 m2 s−1

C0
σ Csρs(1 − ϕ) + Clρf ϕ J K−1 m−3

ρs (ρm − ϕρf )/(1 − ϕ) kgm−3

αm ϕαl + (1 − ϕ)αs K−1

Clay

Symbol Value Unit

E 6.109 Pa
ν 0.3 –

ρm 2410 kgm−3

Kint 4.10−21 m2

ϕ 0.18 –

Concrete

Symbol Value Unit

E 15.109 Pa
ν 0.2 –

ρm 2500 kgm−3

Kint 10−11 m2

ϕ 0.2 –

material parameters are of great importance in the industrial applications. The values of
the material parameters, displayed in Table 3, are representative of a typical industrial
problem of geological waste disposal [4].
The tests were solved with code_aster using the THM framework presented in the

section above, corresponding to an isotropic saturated single-phased THMmedium using
P2-P1-P1 finite elements.

Robustness

The robustness of the preconditioners is evaluated by varying the values of the Young’s
modulus E, the intrinsic permeability kint and the thermal conductivity λT . These param-
eters are chosen since they appear respectively in each balance equation and have a major
influence therein. The tests are done using the test case of Fig. 1 with both Zones 1 and 2
made of clay, using the material parameters in Table 3.
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Table 4 Block Jacobi Parameter Robustness

PJ

Parameters DoF

E kint λT 10 000 60 000 200 000

1.0e+09 4.0e−15 4.0e−01 6 (3) 6 (2) 6 (4)

2.3e+00 5 (3) 5 (2) 4 (2)

4.0e−18 4.0e−01 8 (3) 8 (3) 9 (3)

2.3e+00 8 (3) 7 (3) 8 (3)

4.0e−21 4.0e−01 48 (3) 46 (3) 50 (3)

2.3e+00 70 (3) 44 (3) 40 (3)

2.5e+10 4.0e−15 4.0e−01 6 (2) 6 (2) 7 (3)

2.3e+00 6 (2) 6 (2) 4 (2)

4.0e−18 4.0e−01 7 (2) 6 (2) 8 (2)

2.3e+00 6 (2) 6 (2) 7 (2)

4.0e−21 4.0e−01 12 (2) 12 (2) 11 (2)

2.3e+00 11 (2) 11 (2) 11 (2)

5.0e+10 4.0e−15 4.0e−01 6 (2) 6 (2) 7 (3)

2.3e+00 6 (2) 6 (2) 5 (2)

4.0e−18 4.0e−01 6 (2) 6 (2) 8 (2)

2.3e+00 6 (2) 6 (2) 6 (2)

4.0e−21 4.0e−01 10 (2) 11 (2) 10 (2)

2.3e+00 10 (2) 9 (2) 9 (2)

Table 5 Block Gauss-Seidel Parameter Robustness

PLGS

Parameters DoF

E kint λT 10 000 60 000 200 000

1.0e+09 4.0e−15 4.0e−01 4 (3) 5 (2) 5 (4)

2.3e+00 4 (3) 4 (2) 3 (2)

4.0e−18 4.0e−01 6 (3) 5 (3) 6 (3)

2.3e+00 5 (3) 5 (3) 6 (3)

4.0e−21 4.0e-01 21 (3) 22 (3) 20 (3)

2.3e+00 18 (3) 20 (3) 18 (3)

2.5e+10 4.0e−15 4.0e−01 5 (2) 6 (2) 5 (3)

2.3e+00 5 (2) 5 (2) 4 (2)

4.0e−18 4.0e−01 5 (2) 6 (2) 6 (2)

2.3e+00 5 (2) 5 (2) 6 (2)

4.0e−21 4.0e−01 8 (2) 8 (2) 8 (2)

2.3e+00 7 (2) 7 (2) 7 (2)

5.0e+10 4.0e−15 4.0e−01 5 (2) 5 (2) 5 (3)

2.3e+00 5 (2) 5 (2) 4 (2)

4.0e−18 4.0e−01 5 (2) 5 (2) 7 (2)

2.3e+00 5 (2) 5 (2) 7 (2)

4.0e−21 4.0e−01 7 (2) 7 (2) 7 (2)

2.3e+00 6 (2) 7 (2) 6 (2)

The results are compiled in Table 4 for PJ and Table 5 for PLGS . The maximum number
of outer FGMRES iterations during the Newton iterations are displayed first, followed by
the total number of Newton iterations in parentheses. The very large range of variation of
the mesh size and of each parameter (up to six orders of magnitude) is emphasized.
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Fig. 2 Eigenvalue distribution for the “best” and “worst” cases

In order to analyse the results in Tables 4 and 5, we propose first a row-wise reading
then a column-wise reading.
The row-wise reading provides information on the influence of the mesh size, with the

material parameters being fixed. An excellent independence with respect to the mesh size
is observed. The outer number of FGMRES iterations remains constant even though the
size of the system is multiplied by 20, except for PJ with the set of parameters (E=1.e+9,
kint=4.e−21, λT=2.3) where the number of iterations varies from 70 to 44 but seems to
stabilize by reaching 40 in the biggest mesh.
The column-wise reading provides information on the influence of thematerial parame-

ters, with themesh size being fixed. Amoderate variation of the outer number of FGMRES
iterations is observed, that remains mostly under 12 except for the “worst” set of parame-
ters (E=1.e+09, kint=4.e−21), where it reaches up to 70 iterations for PJ and 22 for PLGS .
This particular result tends to show a better robustness of the block Gauss-Seidel variant
compared to the Jacobi variant, which is further analyzed in the next section. In spite
of this, both preconditioners appear to be very robust as they achieve convergence at
each run and the increase in Krylov iterations remains moderate compared to the large
variations in material parameters.
Finally, we highlight the excellent robustness with respect to the Newton iterations,

which remain between 2 and 4 for every run.

Spectral analysis

In the previous section, a better robustness of the lower block Gauss-Seidel variant PLGS
compared to the Jacobi variant PJ was observed. In order to further analyze this, let us
denote by:

• “best” case, the set of parameters (E = 5. e+10 Pa, kint = 4. e−15 m2, λT = 0.4
Wm−1.K)

• “worst” case, the set of parameters (E = 1. e+9 Pa, kint = 4. e−21 m2, λT = 2.3
Wm−1.K)

In the “best” case, the proposed Krylov method and preconditioners converge in 6 itera-
tions while in the “worst” case, 70 iterations are needed.
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Fig. 3 Eigenvalue distribution

Let us begin by commenting the spectrum of the initial system, displayed in Fig. 2. In
both cases, apart from some differences in the magnitude of the extreme values, the real
parts of the eigenvalues are organised in four blocks:

• few percents are negative, lying around −103

• few percents lie around zero
• few percents lie around one
• most of the values lie around 105 and 108 (roughly speaking 80%)

In fact, the main difference is found around the origin. As can be seen from the zoom
around theorigin inFig. 2, the “worst” case exhibit a clear cluster of almost zero eigenvalues
while they are much more scattered in the “best” case.
We shall now evaluate the effect of both preconditioners on the spectrumof the Jacobian

matrix. The eigenvalues of both the initial (i.e. not preconditioned) and the preconditioned
system are displayed in Fig. 3.
Once a preconditioner is applied, the real part of all eigenvalues is clustered around 1.

PJ completely clusters the real part of the eigenvalues to 1 but distributes the imaginary
part to of the eigenvalues between−1 and 1 in the “best” case and between−4 and 4 in the
“worst” case. In any case, the eigenvalues belong to three different clusters, that appear to
be more scattered in the “worst” case.
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Fig. 4 Weak scalability

PLGS generates almost real eigenvalues, with a tight cluster around 1 for the “best” case
and between 1 and 100 in the “worst” case.
The difference in clustering the eigenvalues (three blocks for PJ and a single one for

PLGS) might explain the better results of the latter.

Parallel scalability

A good scalability of the proposed preconditioner is essential to keep the resolution time
reasonable when switching to bigger systems. Weak and strong scalability tests are con-
sidered using the bi-material case from Fig. 1 with Zone 1 made of clay and Zone 2 made
of concrete. Realistic parameter values were chosen from Table 3. Both of the scalability
tests are run on EDF’s cluster Cronos. It consists in 1272 nodes, equipped with 2 Xeon
Platinum 8260 24C 2.4 GHz processors with 24 cores each.
A weak scalability test consists in setting a fixed number of degrees of freedom (DoF) by

processor and increasing the size of the problem by increasing the number of processes. In
other words, we set the size of a sub-domain and make the problem bigger by increasing
the total number of sub-domains. Our goal is to investigate if the solution algorithm
needs the same resolution time whether we solve N DoF on 1 process or 1000 × N DoF
on 1000 processes. In case of perfect weak scalability, the time should remain constant
when increasing the number of processes.
As can be seen in Fig. 4, the number of DoF per process is fixed to 50,000 (blue line),

200,000 (orange line) and 500,000 (green line) and the test case is run from 40 processes
to 2500 processes. The ratio between the solution time to the 40 processes time is pre-
sented. For small numbers of DoF per process, it remains between 1. and 2.5 for PLGS
and between 1. and 2.2 for PJ . Whereas for 500,000 DoF per process, it remains between
1. and 1.9 for PLGS and between 1. and 1.7 for PJ . This sub-optimal behavior for small
sub-domains is often due to latency of the cluster’s network.When sub-domains are large
and there is more work per process, the computation dominates the cost associated with
communication. Even though PJ scales slightly better, the resolution time is higher than
with PLGS due to higher number of iterations that range between 8 and 16 for PJ and 7
and 11 for PLGS . We highlight that using PLGS for 500,000 DoF per processor (green line),
the size of the linear system ranges from 20 million with a solving time of 465 s to more
than 1.2 billion DoF with a solving time of 891 s. The size of the problem is multiplied
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Fig. 5 Strong scalability

by 60 whereas the solving time only increases by 1.9. This is a very good scalability result
since the test case is rather complex especially due to the variation of material parameters
between clay and concrete.
Let us switch to the strong scalability test, which consists in fixing the size of the problem

and increasing the number of processors. The goal is to solve the system faster by adding
resources. For example, if we solve a system of a given size using N processes wh,n using
N × M processes the solving time should be divided by M. In case of perfect strong
scalability, the solving time decreases proportionally to the increase of the number of
processes.
The strong scalability tests are presented in Fig. 5. The size of the problem is fixed to 4

millions DoF (red line), 43 millions DoF (blue line) and 100 millions DoF(green line). The
number of processes were increased from 80 to 2400. The dashed line represents the ideal
strong scalability. The speedup with respect to the number of processes is presented. For
all cases, when increasing the processes from 80 to 320 with 4 million DoF, the strong
scalability remains satisfactory with an efficiency of 76% for PJ and of 73% for PLGS . Then
the efficiency starts declining until it reaches 2 400 process and is at 20% for PJ and for
PLGS . For the 100 million DoF case, from 320 to 600 processes the efficiency for PJ is 90%
and for PLGS 79%.When increasing the processes to 2400, the efficiency for PJ is 53% and
for PLGS 46%. Similarly to the weak scalability, the difference in efficiency between each
problem is often due to latency of the cluster’s network, since at 4 millions DoF there
is less work per process. PJ scales slightly better than PLGS but the latter remains faster
for all the tested cases. Given the complexity of the test case and the fact that we started
at 80 processes in order to be able to solve size-wise representative problems, the strong
scalability of the proposed preconditioners is satisfactory.

Performance comparison with a Schur complement preconditioner

Definition of the alternative preconditioner

We now provide some comparisons with a commonly used preconditioning strategy. Let
us consider a matrix with the following 2x2 block structure:

A =
[
A00 A01
A10 A11

]
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Fig. 6 Weak and strong scalability ofPSchur

It has a LU factorization:

A =
[
A00 0
A10 S

] [
I A−1

00 A01
0 I

]

where S = A11 − A10A−1
00 A01 is called the Schur complement. From similarity consider-

ations, it is shown that

P =
[
A00 0
A10 S

]

is an optimal preconditioner of A since P−1A has a single eigenvalue of value 1. Unfortu-
nately, as mentioned in the introduction, the exact evaluation of the Schur complement is
computationally impossible due to its dense nature and approximations have to be used.
The approximation S ≈ Ŝ = A11 −A10diag(A00)−1A01 is frequently used in the field of

porous media [24,47] as well as in other domains [48,49].
In the sequel, we propose to evaluate the preconditioner:

PSchur =
⎡
⎢⎣
Juu 0 0
Jpu Ŝ 0
JTu JTp JTT

⎤
⎥⎦ where Ŝ = Jpp − Jpudiag(Juu)−1Jup

The choice of using the Schur complement approach for the unknowns u and p comes
from [24], because of the strong coupling that exists between these degrees of freedom.
The same choice was made in [50] for the case of an incompressible flow with thermal
convection. In the latter, the authors deal with the temperature block according to a lower
Gauss-Seidel strategy (as used above). They point out that this approachworks remarkably
well in practice.

Performance comparison

The same scalability tests are conducted on the Schur complement preconditioner PSchur .
The results are shown in Fig. 6. Regarding the weak scalability, it is clear that PSchur
performs worse than PLGS . For small numbers of DoF per process, the weak scalability
remains between 1. and 4.2 for PSchur whereas it remains between 1. and 2.5 for PLGS .
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For the first three cases of 500 000 DoF per processor, it remains between 1. and 1.7 for
PLGS and between 1. and 2.2 for PSchur . The fourth point is in dashed line and must be
regarded with caution. Indeed, with PSchur , the nonlinear solver failed to converge on the
case that reaches 1.2 billion DoF. We have been obliged to use a lower tolerance for the
outer Krylov method to recover the nonlinear convergence, thus implying an increase in
the solution time with respect to the previous points.
If we focus on the third point of the green curve, the problem of 680 million DoF is

solved on 1400 processes. The solution time using PLGS is of 809 s and of 1080s using
PSchur with an increase of 33%.
For the strong scalability, in all cases, when increasing the processes from 80 to 320

with 4 million DoF, the strong scalability remains satisfactory with an efficiency of 62%
for PSchur and of 73% for PLGS . Then the efficiency starts decreasing when 2 400 processes
are used where it drops to 10% for PSchur and 20% for PLGS . For the 100 million DoF
case, from 320 to 600 processes, the efficiency for PSchur is 82% and 79% for PLGS . When
increasing to 2400 processes, the efficiency for PSchur is 35% and 46% for PLGS .
Finally, in all weak and strong scalability tests, the outer FGMRES iterations for PSchur

range from 27 to 72. For PLGS they remain between 7 and 10. We conclude that PLGS
shows a better robustness, has a better scalability and is faster than PSchur for problems
bigger than 2 million DoF.

Illustrative numerical results
Industrial problem

In this section, we apply the proposed model and the associated preconditioner to the
long-term evolution of the rock surrounding a deep geological repository for radioactive
waste. The problem is based on a repository for high-level, long-lived radioactive waste in
the Callovo-Oxfordian clay and is fully presented in [4]. The goal of the simulation is to
model the excavation of the disposal and the placement of the packaged wastemodeled by
a representative thermal flow: indeed, due to the remaining radioactivity, heat is emitted
and its influence on the surrounding media needs to be evaluated.
The geometry and the associated dimensions of the repository are shown in Fig. 8. It

consists of a main access gallery from which multiple storage cells branch off, into which
packaged waste are placed. The repository is located at a depth of −560m. Dimensions
taken into account are realistic but do not correspond to a real and precise architecture.
Given the the symmetry of the site, the geometry of the model consists of a section of

18m of the main gallery that crosses a single storage cell, as shown in Fig. 9. The domain
is confined by a layer of argillite and we apply symmetry conditions on the lateral and
upper parts of the domain. The material parameters of the clay and of the concrete are
given in Table 3. The measured initial pore pressure at this depth is p0 = 5.6 MPa and
it varies linearly with depth according to p(z) = ρf · g · (z − 560) + 5.6e6. Similarly, the
initial stress state is σxx = −12.4 MPa, σyy = −16.1 MPa, σzz = −12.4 MPa and it varies
linearly with z to the surface. The initial temperature varies linearly with respect to z from
25◦C at z = −560 m to 22.7◦C at z = −483.75 m. The initial porosity is 0.18 throughout
the argillite.
Themethodology tomodel the excavation follows the classicalConvergence-Confinement

method [51] (also called CV-CF). It begins with an initial state with no galleries, where the
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Fig. 7 Applied temperature on the wall of the cell

domain is only submitted to gravity. In a first step, a quasi-instantaneous excavation of
the gallery and cell is considered; that is to say that the pore pressure and total radial stress
at the galleries walls become zero in one second. In a second step, the concrete lining is
introduced. In a third and final step, the radioactivity causes heat to be emitted around
the cell in the course of time, and we therefore apply a representative temperature at the
cell wall, according to the curve in Fig. 7. Fixed radial displacements are maintained at the
cell wall. At the wall between the concrete lining and the gallery, the total radial stress is
set to zero. The simulation is run until 40 years after the waste has been placed in the cell.
We turn now our attention to the solution of the simulation. The evolution of pressure

over time is shown in Fig. 10. A rapid and significant increase of the hydraulic pressure is
observed in the vicinity of the cell. This is due to the differential expansion caused by the
thermal load since the thermal dilation of the water is bigger than that of the solid. After
reaching a maximum, the pressure decreases steadily due to the diffusion of water and
the decrease in temperature. Figure 11 shows that the main gallery undergoes a vertical
collapse of about 1.3 cm as a result of its excavation, which is clearly present from the
first year. Subsequently, due to the significant thermal expansion and the increase in fluid
pressure, the upper part of the domain undergoes a strong upward shift. This leads to a
complex and highly three-dimensional stress state as can be seen in Fig. 12. The zoom on
the crossing of the gallery and the cell shows an intense traction zone where the signed
Von Mises stress reaches 10 MPa. This is due to the fact that this section of the cell does
not contain any waste. The complexity of the stress distribution fully justifies the fineness
of the mesh.

Solver performance

The geometry and the mesh have been generated using the Salomé Platform 9.8 [52]. Due
to the required precision of the analysis, a very fine mesh in the vicinity the cell-gallery
crossing is used, with 104,873,938 nodes and 77,190,165 tetrahedral elements. It results
in a problem with 341,292,114 DoF. The domain has been divided in 2560 subdomains so
that the simulation is run on 64 nodes of the Cronos cluster, each one running 40 MPI
processes.
From a practical point of view, the 4 phases of the method consist in 4 non-linear

simulations, each one being the initial state of the following. The last one deals with the
effect of the waste on 40 years. The size of the time step follows the variation of the heat
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Fig. 8 Dimensions of the storage facility (courtesy from [4])

Fig. 9 Geometry of the site and zoom on the cell and concrete lining (courtesy from [4])

induced by the waste, shorter at the beginning when it varies strongly (say the order of 1
day) and longer when it stabilizes (say the order of 1 month).
The non-linear convergence is easily reached in 2 or 3Newton’s iterations per time-step,

exhibiting quadratic convergence. Each linear solve requires less than 9 outer iterations
and takes roughly 30 s. Given the total number of 130 Newton’s iterations, the simulation
is achieved in 3800 s. If the Schur preconditioner is used, the total solution time reaches
4700 s, increasing by 24%. We emphasize that the use of the proposed preconditioner
allows for a simulation whose size is incomparable to other simulations in the specific
field of radioactive waste disposal [4,53,54].

Conclusion and outlook
This paper deals with the assessment of the robustness and the weak and strong scalabil-
ity of a preconditioner dedicated to coupled THM problems, which relies on the block
structure of the Jacobian of the linearized system. A block Jacobi and a block Gauss-
Seidel variants are investigated, sharing the same tailored sub-solvers (Krylov methods
preconditioned by AMG preconditioners).
Coupled systems often exhibit very bad scaling due to the presence of parameters of dif-

ferent orders of magnitude. It can be addressed by the use of a dedicated scaling algorithm
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Fig. 10 Pressure distribution after 1 and 10 years

Fig. 11 Vertical displacement distribution after 1 and 10 years

that efficiently re-balances the Jacobian. It is nevertheless not mandatory in our case since
it is shown that the proposed block preconditioners can handle naturally the unbalance
of the different blocks. For the case of the block Gauss-Seidel variant, special attention
is needed to eliminate the unknowns in a well-chosen order. Finally, both variants show
excellent mesh size independence, good robustness with respect to parameters variation
and good scalability on a simple yet representative test case.
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Fig. 12 Signed VonMises stress and zoom after 10 years

Though established in the linear regime, these results are very valuablewhen considering
to move to nonlinear constitutive laws. This point is being investigated and encouraging
results have already been obtained.

Appendix A
The matrix blocks of the Jacobian matrix are given by:

(Juu) = ∫


−A : ε(φvi ) : ε(φvj ) dx, ∀i, j = 1, Nu

(Jup) = ∫


φqj div(φvi ) dx, ∀i = 1, Nu, ∀j = 1, Np
(JuT ) = ∫


3Ksαs φwj div(φvi ) dx, ∀i = 1, Nu, ∀j = 1, NT

(Jpu) = ∫


ρf φqi div(φvj ) dx, ∀i = 1, Np, ∀j = 1, Nu
(Jpp) = ∫


ϕ
Kl

ρf φqiφqj − ρf λH �t∇φqi∇φqj dx, ∀i, j = 1, Np

(JpT ) = ∫


−ρf αm3φqiφwj dx, ∀i = 1, Np, ∀j = 1, NT
(JTu) = ∫


ρf hf φvj div(φwi )

+Tn+1
kh

3K0αs φvj div(φwi ) dx, ∀i = 1, NT ,∀j = 1, Nu

(JTp) = ∫

(1 − 3αlTn+1

kh
)φqj

−�tλH ∇pn+1
kh

∇φwi + div(un+1
kh

)φwi

+ ϕ
Kl

pn+1
kh

φwi − αm3Tn+1
kh

,φwi

+ρf hf − �tλH ∇φqj ∇φwi

+ ϕ
Kl

φqj φwi − Tn+1
kh

3αm φqj φwi dx, ∀i = 1, NT ,∀j = 1, Np

(JTT ) = ∫


−�tλT ∇φwi∇φwj + C0
σ φwiφwj

+ρf C
p
f φwi − �tλH ∇pn+1

kh
∇φwj + div(un+1

kh
)φwj

+ ϕ
Kl

pn+1
kh

φwj − αm3Tn+1
kh

φwj

−ρf hf αm3φwiφwj

+φwi3K0αs div(un+1
kh

)φwj − 3αm pn+1
kh

φwj

−18K0α2
s T

n+1
kh

φwj dx, ∀i, j = 1, NT
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