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Abstract

A non-intrusive reduced-order model based on convolutional autoencoders is
proposed as a data-driven tool to build an efficient nonlinear reduced-order model for
stochastic spatiotemporal large-scale flow problems. The objective is to perform
accurate and rapid uncertainty analyses of the flow outputs of interest for which the
input parameters are deemed uncertain. The data are constituted from a set of
high-fidelity snapshots, collected using an inhouse high-fidelity flow solver, which
correspond to a sample of the uncertain input parameters. The method uses a
1D-convolutional autoencoder to reduce the spatial dimension of the unstructured
meshes used by the flow solver. Another convolutional autoencoder is used for the
time compression. The encoded latent vectors, generated from the two compression
levels, are then mapped to the input parameters using a regression-based multilayer
perceptron. The proposed model allows for rapid predictions for unseen parameter
values, allowing the output statistical moments to be computed efficiently. The
accuracy of the proposed approach is compared to that of the linear reduced-order
technique based on an artificial neural network through two benchmark tests (the
one-dimensional Burgers and Stoker’s solutions) and a hypothetical dam break flow
problem, with an unstructured mesh and over a complex bathymetry river. The
numerical results show that the proposed methods present strong predictive
capabilities to accurately approximate the statistical moments of the outputs. In
particular, the predicted statistical moments are oscillations-free, unlike those obtained
with the traditional proper orthogonal decomposition method. The proposed
reduction framework is simple to implement and can be applied to other parametric
and time-dependent problems governed by partial differential equations, which are
commonly encountered in many engineering and science problems.

Keywords: Uncertainty propagation, Reduced-order modeling, Deep learning,
Convolutional autoencoders

Introduction
Computational science has made great gains in efficiency due to the increases in high-
performance computational resources and the emergence of novel methods, with signifi-
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cant achievements in scientific and industrial areas.Most of the computationalmechanics
problems are described by time-dependent and parameterized nonlinear partial differen-
tial equations. Their discretization over fine spatial meshes and for a high number of time
steps leads to the so-called high-fidelity solutions, whose evaluation renders the com-
putational techniques prohibitively expensive when dealing with multi-resolutions, as in
optimization and uncertainty quantification [1,2]. Reduced-order modeling (ROM) [3]
has gained interest as a powerful methodology to reduce the cumbersome computational
effort involved in high-fidelity solutions, while ensuring acceptable accuracy, particularly
for situations that require real-time predictions.
One of the approaches most commonly adopted in reduced-order modeling is proper

orthogonal decomposition (POD) [4,5], which allows an approximation of the outputs
using a linear combination of a limited number of basis functions [6,7]. Many non-
intrusive techniques have been proposed to compute the coefficients of a POD linear
approximation using the data-driven concept without any modification of the govern-
ing equations [8–10]. Some of these methods are based on the stochastic framework
and account for the variability stemming from the parametric domain by expressing the
modal coefficients as a function of the stochastic basis functions, as in the polynomial
chaos expansion method (POD-PCE) [11,12] and the B-splines Bézier-element method
(POD-BSBEM) [13]. Recent studies have explored the combination of the PODbasis func-
tion with artificial neural networks (ANN) to construct an efficient regression framework
for linear reduced-order modeling for time-dependent problems by learning the mapping
between the time-parameter inputs and the modal coefficients of the POD basis function
[14–16]. Despite the wide adoption of linear reduced-order modeling in approximating
the outputs for parametric and time-dependent problems, they still encounter difficulties
in accurately capturing the dynamics of some complex physical problems (i.e., those with
strong hyperbolic behavior or shock propagation waves) without considerably increasing
the number of reduced basis functions and thus compromising the low dimensionality
aspect [17,18].
To overcome the limitations of the techniques based on linear dimensionality reduc-

tion [19], recent methods based on nonlinear manifolds have gained interest in the field
of dimensionality reduction. Some of these approaches are based on the recently devel-
oped algorithms of deep learning technology that are effective in learning sophisticated
abstract features [20–23]. The autoencoder-based method (AE), a special type of neural
network (NN) with two parts, the encoder and the decoder, trained jointly, has been suc-
cessfully introduced as a nonlinear dimensionality reduction framework with an effective
nonlinear relationship between variables [24,25]. Some limitations concerning classical
autoencoders based on dense layers have been reported in the literature, due to the dras-
tic increase in the number of trainable parameters when the dimension of the input
dataset becomes large [19,26]. Convolutional autoencoders (CAEs) have emerged as an
alternative to AEs in nonlinear compression manifolds. Their structure comprises several
operations such as convolution-deconvolution, pooling-upsampling, and amultilayer per-
ceptron layer (MLP) [27,28]. CAEs offer the possibility of sharing coefficients and local
patch connections, allowing a significant reduction in the number of trainable parameters.
It is also possible to impose conditions on the latent space as proposed in the β-variational
autoencoder-CNN architecture [29] where the latent vectors are ranked based on their
contribution to the construction and learned to be nearly non-orthogonal.
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Tomake full use of temporal information,many sequencenetworks, including the recur-
rent neural network (RNN) [30] and its variants (e.g. LSTMs, GRUs, TCN, Transformer
etc.) have beenwidely used. The idea behind recurrent neural networks (RNNs) is to apply
the weight sharing operations at each time instant by involving the current state (previous
history) as well as the value of the current input. In this way, a network can scale well
(and rapidly) to sequences of different lengths. The key idea behind the popular recurrent
network, long-short term memory, (LSTM) [31] is the so-called cell state, which helps
to overcome the problems associated with the vanishing/exploding phenomena that are
caused by the long-term dependencies within the network. Some configurations combine
CAEs with LSTMs or TCNs [19,32–35] to provide a tool for time predictions over the
latent space.
This paper proposes a non-intrusive reduced order modeling (NIROM) framework

for parametrized and time-dependent flow problems. The main objective is to perform
accurate and rapid uncertainty analyses of the outputs of fluid dynamic flows for which
the input parameters are deemed uncertain. This data-driven approach relies on the
attractive features of convolutional autoencoders (CAEs) to reduce the dimensionality
of high-fidelity solutions collected from numerical solvers with large-scale meshes. The
method, referred to as NIROM-CAEs, is based on two compression levels provided by
1D-autoencoders. The first 1D-encoder reduces the spatial dimension by encoding the
input dataset along the spatial dimension to generate a latent space. A second 1D-encoder
convolves the latent space along the temporal dimension to output the final spatiotem-
poral encoded latent vector, which is mapped to the input parameters values through a
multilayer perceptron (MLP). Therefore, for a new set of unseen parameters, the online
predictive stage allows a rapid and accurate reconstruction of the original spatiotempo-
ral dynamics through the trained 1D decoders. The proposed time prediction method is
simple to implement and does not suffer from the vanishing or the exploding phenomena
caused by long-term dependencies. The framework is applied to a stochastic treatment of
two benchmark cases with univariate meshes, and to a hypothetical dam break flow over a
natural river with complex bathymetry and two-dimensional unstructuredmeshes, which
may present a challenging task for convolution autoencoders. By arranging the data into a
vector according to the nodes’ numbering, a simple 1D-convolutinal autoencoder reveals
sufficiently accurate results for the space compression step. The proposedmethod is com-
pared with the more traditional approaches based on proper orthogonal decomposition.
For solutions with strong gradients, the present method does not suffer from oscillations
in the predicted statistical moments, unlike the POD-based methods. Therefore, the pro-
posed framework offers interesting features in non-linear reductionmodeling for physical
problems with a high degree of complexity in their dynamics.
The paper is organized as follows: “Methodology” presents the fundamental frame-

work of the proposed NIROM-CAEs, with detailed steps of the offline and online stages.
Numerical test cases for assessing the performance and accuracy of the proposed method
are provided in “Results and discussion”, followed by a summary and concluding remarks
in “Conclusion”.
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Methodology
This section describes the fundamental framework of the proposed non-intrusive reduced
model based on 1D convolutional autoencoders for space and time dimensions. The
method belongs to the data-driven approaches, where high-fidelity solutions to large-
scale and time-dependent physical problems are obtained from numerical solvers and
gathered for both time and parameter sequences to construct snapshot matrices.

Convolutional autoencoders (CAEs)

Convolutional autoencoders (CAEs) have gained interest as powerful nonlinear reduced-
order modeling techniques with remarkable performances in the image recognition field.
Convolutional layers have been introduced to overcome some of the limitations that clas-
sical autoencoders (AEs) based on dense layers may face when treating time-dependent
problems with high dimensional inputs [19]. These layers are characterized by two prop-
erties: local connections and shared weights, thus allowing a feature map of the input and
a limitation of the number of trainable parameters. Convolutional autoencoders have two
distinct symmetrical parts: the first part, called the encoder (Fenc), reduces the dimension
of the input matrix by mapping with a latent space through a combination of succes-
sive convolutional, pooling, and fully connected layers; and the second part, the decoder
(Fdec), a combination of dense, upsampling, and convolutional layers, which maps the
latent reduced-dimension vector to a larger-dimensional reconstruction of the input. A
schematic representation of a 1D convolutional autoencoder architecture is presented in
Fig. 1. It should be emphasized that the same structure of the 1D CAE is adopted in this
study for the encoding and decoding processes for both space and time dimensions. Thus,
the presentation of the framework of the proposed approach will concern mainly the 1D
convolutional autoencoders.
A convolution layer represents a feature map where each unit in the layer is locally

connected to a selected part of the previous layer via a kernel (filter) and an activation
function. This operation allows the most dominant features from the input data to be
extracted by applying a filter that moves with the vertical stride in the case of 1D convo-
lution, as shown in Fig. 2. In this figure, a schematic representation of the 1D-convolution
operation for a given layer n is detailed for both space and time directions. Amathematical
formulation of a typical 1D-convolutional operation denoted by the symbol (∗), shown in
Figs. 1 and 2, can be expressed as follows [27,36]:

h�
i = σ

(
H�−1 ∗ f�i + b�

i

)
, (1)

where h�
i ∈ R

D�×1 denotes the ith feature of the �th layer, σ is a nonlinear activation
function, H�−1 =

[
h�−1
1 , h�−1

2 , . . . , h�−1
Nf�−1

]
stands for the convolution layer � − 1, f�i is

the kernel of the layer �, and b�
i the bias parameter, with i ∈ (1, Nf� ) and � ∈ (1, n). The

number of feature column vectors in each layerNf� corresponds to the number of kernels
represented by different colors in Fig. 2, and the total number of layers n defines the depth
of the convolution neural network (CNN). In addition to the convolutional operations,
pooling layers (in this case, amax-pooling) are also integrated after each convolution layer
to reduce the dimension of the convolved features by a fixed factor defined as a kernel size
of the max-pooling layer, thus allowing the most dominant features of the local domain
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Fig. 1 Schematic representation of 1D convolutional autoencoder architecture. The same structure of the
1D-CAE is adopted in the encoding and decoding processes for both the space and time dimensions

to be maintained [37]. The output features resulting from a max-pooling operation are
illustrated in the encoder part of Fig. 1 for the nth layer, and denoted by pni with i ∈ (1, Nfn ).

Non-intrusive reduced order model based convolutional autoencoders (NIROM-CAEs)

As mentioned above, the proposed approach combines convolutional autoencoders with
the reduced order modeling concept and concerns the parametrized time-dependent
problems with large-scale computational domains. The framework of the non-linear sur-
rogate model is mainly based on a succession of two compression levels through 1D
convolutions. The first level concerns the space dimension while the second deals with
the compression of the time dimension of the latent space obtained from the former
spatial compression.

Dataset construction

The model proposed in this work belongs to the data-driven approaches where the input
dataset, known as a snapshot matrix, is constructed through a collection of high-fidelity
solutions from the numerical solver

{u(ηs, tj) ∈ R
Nx×1; j = 1, . . . , Nt ; s = 1, . . . , Ns

}
,

where ηs represents the sth value of the random parameter η within its generated sample
set with a size ofNs, following an appropriate probability density function �(η). tj denotes
the jth time step within the temporal domain t ∈ T = [0, T ] decomposed into Nt time
steps. The high fidelity solutions are collected from the numerical solver as a column
vector u ∈ R

Nx×1, whereNx is the total number of themeshing nodes that cover the com-
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putational domain. The snapshot matrix, obtained by gathering these solution vectors,
can be expressed as a 3D global matrix:

U = [
U1 | . . . | Us | . . . | UNs

] ∈ R
Ns×Nx×Nt , (2)

where Us ∈ R
Nx×Nt is a 2D solutions matrix corresponding to the parameter value ηs over

all the time steps, expressed as:

Us = [u(ηs, t1) | . . . | u(ηs, tNt )
] ∈ R

Nx×Nt . (3)

It should be noted that the global snapshot matrix given by Eq. (2) is divided during the
learning process into two sets: a training set (80%) and a validation set (20%) for the space
and time autoencoders.

Spatial compression

The spatial compression represents the first compression level of the proposed technique;
its goal is to reduce the dimension of the input dataset along the spatial dimension from
Nx to Lx with Lx � Nx. Each snapshot matrix Us ∈ R

Nx×Nt , as given by Eq. (3), has its
relation to the parameter value ηs reshaped by considering its transpose UT

s ∈ R
Nt×Nx on

which the space encoder Fxenc is applied along the spatial dimension as follows:

Vxs = Fxenc

(
UT
s

)
∈ R

Nt×Lx , (4)

where Vxs ∈ R
Nt×Lx represents the encoded latent space corresponding to the param-

eter value ηs, with s = 1, . . . , Ns. It should be emphasized that for implementation
purposes in the TensorFlow library [38], the dimension of the input dataset has been
extended to a 3D tensor of a shape (Nt, Nx, 1) through the use of a reshape operator:
R : RNt×Nx �→ R

Nt×Nx×1 [26], where the third dimension stands for the number of chan-
nels, which is equal to one in this case. A schematic representation of the 1D convolution
operation performed on the first convolution layer by the space encoder is depicted in
Fig. 2a, where Nf1 1D-filters, whose width corresponds to the number of channels, con-
volve a local patch of the input dataset along the spatial dimension, represented by the
vertical arrow, to generate the features of the convolved layer h1i , i = 1, . . . , Nf1 . As shown
in Fig. 2a, each filter is distinguished by the same color as its corresponding column fea-
tures generated when it convolves along the spatial direction. The detailed structures of
the space autoencoders adopted for different test cases are reported in Tables 2 and 4.

Temporal compression

Once the spatial dimension is encoded, a second compression level is performed on the
obtained latent space Vxs ∈ R

Nt×Lx along the temporal dimension to reduce its size from
Nt to a given Lt through a 1D time encoderFtenc that has the same structure as that shown
in Fig. 1. The encoding process can be mathematically expressed as follows:

Vts ∈ R
Lt = Ftenc

(
Vxs

)
, (5)

where Vts ∈ R
Lt is the encoded latent vector corresponding to the single parameter

value ηs. The convolution operation of the first layer 1D-time encoder, expressed by
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Fig. 2 Schematic representation of the 1D-convolutional operation along the spatial and temporal dimensions.
For interpretation of the references to color in this figure, the reader is referred to the web version of this article

Eq. (1), is presented in Fig. 2b, whereNf1 filters convolve local patches of the input dataset
Vxs ∈ R

Nt×Lx along the temporal dimension (Nt ). Lx denotes the number of channels of
the input dataset, which corresponds to the width of each filter. The detailed structures
of the time autoencoders applied to the test cases addressed in this study are reported in
Tables 3 and 5, along with information about the number of convolution layers, kernel
sizes, and activation functions.

Regression basedmultilayer perceptron (MLP)

The third level of the proposed approach concerns the encoded latent vector Vts ∈ R
Lt ,

obtained through two compression levels of the input dataset Us ∈ R
Nx×Nt , which is

mapped to the input parameter ηs via a multilayer perceptron (MLP) regression. This
regression,which links the input parameter to the final latent vector, composed ofmultiple
stacked fully-connected layers, can be expressed as follows [32]:

Vts = �MLP (ηs) . (6)

The detailed architecture of the MLP used in this work for the addressed test cases is
presented in Table 6. The mathematical framework presented in subsections through
represents the main steps of the offline stage of the proposed NIROM-CAEs technique.
It is worth mentioning that the proposed model was built and trained using the open-

source deep learning library TensorFlow [38] using the Adam optimizer with its default
parameters. To accelerate the convergence and optimize the training processes, the data
used during the training process of the offline stage are all normalized with the same
min-max scaling [32,39]:

ũs = us − min(uj)
max(uj) − min(uj)

− 0.5 ; j = 1, . . . , Nt ; s = 1, . . . , Ns, (7)
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Fig. 3 Flowchart illustrating the offline training and online predictive stages of the NIROM-CAEs model. The red
arrow indicates the encoding direction (for interpretation of the references to color in this figure, the reader is
referred to the web version of this article)

with ũs ∈ [−0.5, 0.5]. The inverse transformation must also be applied to the predicted
data matrix during the online stage to recover the original scaling.

Online surrogate prediction

Once the three models are trained during the offline stage described above, the online
surrogate prediction becomes straightforward. A new set of the random parameters is
generated following its probability distribution function η̂ = {̂η1, . . . , η̂Ns′ }, and for each
unseen value η̂s, the encoded Spatiotemporal latent vector V̂ts is predicted through the
MLPregressionmodel: V̂ts ∈ R

Lt = �MLP (̂ηs).This predicted latent space is thendecoded
through the time decoder Ftdec to approximate the latent spatial space: V̂xs ∈ R

Nt×Lx =
Ftdec

(
V̂ts

)
. Finally, the obtained latent space is decoded using the space decoder Fxdec to

generate the predicted input dataset: Ûs ∈ R
Nt×Nx×1 = Fxdec

(
V̂xs

)
, which is transformed

to its final shape through the inverse reshape operatorR−1 : RNt×Nx×1 �→ R
Nt×Nx . Thus,

the predicted snapshot matrix corresponding to the single value parameter η̂s throughout
the online stage can be expressed as follows:

Ûs = Fxdec
(
Ftdec (�MLP (̂ηs))

)
. (8)

The statistical moments can be estimated via the constructed surrogate model of the
stochastic output response û as follows:

μû = E [̂u] =
∫

�

û�(̂η)dη̂, (9)

and

σ 2
û = E

[̂
u2

] − μ2
û =

[∫

�

(̂u)2 �(̂η)dη̂

]
− μ2

û (10)

The fundamental framework of the proposed NIROM-CAEs approach is summarized
in the flowchart presented in Fig. 3, which presents the most relevant steps of the offline
training and online predictive stages.
The predictive abilities of the proposed NIROM-CAEs are assessed in comparison with

the Latin Hypercube Sampling approach (LHS), whose results are considered as reference
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solutions. Another method based on a proper orthogonal decomposition concept com-
bined with an artificial neural network (POD-ANN) is retained as a linear non-intrusive
reduced order modeling technique for comparison purposes. A detailed presentation of
the development and implementation steps of POD-ANN is beyond the scope of this
paper, and the reader is encouraged to consult the corresponding references [14–16] for a
deeper insight into the modeling procedure. It is worth mentioning that the architecture
choice andhyperparameters selectionwere performed after a series of preliminary settings
and a trial-and-error approach by combining, among others, the number of convolution
layers, the number of filters, the kernel sizes, the activation functions, and the number of
epochs. Indeed, several computations have been performed to select the appropriate 1D-
spatial autoencoder structures for both spatial and temporal dimensions, and a tradeoff
was made between the accuracy, the targeted compression levels, and the computational
cost. A detailed description of the architectures and hyperparameters settings for each
test case is presented in Tables 2, 3, 4 and 5.

Results and discussion
This section presents the application of the proposed non-intrusive reduced order model
to two well-known 1D benchmark test cases (Burgers’ and Stoker’s analytical problems)
and to a hypothetical failure of a real dam case. The results are depicted to showcase
the accuracy and efficiency of the proposed approach in approximating the statistical
moments for time-dependent problems.

One-dimensional Burgers equation test case

The first test case concerns the one-dimensional viscous Burgers’ equation for nonlinear
convection-diffusion, expressed in its dimensionless form with the corresponding initial
and Dirichlet boundary conditions as follows [40,41]:

∂u
∂t

+ u
∂u
∂x

= 1
Re

∂2u
∂x2

, x ∈ [0, 1] , t ∈ [0, 1] , (11)

with: u(x, 0) = x
1+exp

(
Re
16 (4x2−1)

) and u(0, t) = u(1, t) = 0. An analytical solution for the

velocity field is given by [33]:

u(x, t) =
x

t+1

1 +
√

t+1
t0 exp(Re x2

4t+4 )
, (12)

with t0 = exp(Re8 ). In this test case, the Reynolds number is considered as a random
variable which follows a uniform distribution within its variability range Reμ=1000, σ=200 ∈
U [654, 1 346]. The sample used in this test case has a size Ns = 200, randomly divided
into two sets: one for training (80%) and one for validation (20%). For each selected
value in the generated random parametric sets, the analytical solution given by Eq. (12) is
evaluated over a discretized spatial domain with Nx = 1000 nodes for all the Nt = 104
time-steps to construct the training and validation high-fidelity snapshot matrices that
are used to train the 1D spatial-CAE (Fx) of the NIROM-CAEs approach, as described
above.
The detailed architectures of the spatial encoder (Fxenc ) and the spatial decoder (Fxdec ),

which consist of 1 033 773 trainable parameters, are given in Table 2. The spatial encoder
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Fig. 4 Contour plots of the mean and standard deviation of the Burgers’ analytical solution obtained from 5000
LHS realizations with uniform distribution Reμ=1000, σ=200 ∈ U [654, 1346]. The two horizontal dashed white lines
indicate the times for which the results in Fig. 5 are presented. (For interpretation of the references to color in this
figure, the reader is referred to the web version of this article.)

allows the compression of the spatial dimension fromNx = 1000 nodes to a reduced-order
latent space of dimension Lx = 50 through a succession of 1D convolutional and max-
pooling layers with associated nonlinear activation functions. The generated spatial latent
space of dimensionNt = 104× Lx = 50 serves as input to the 1D-time autoencoder (Ft ),
which reduces the temporal dimension fromNt = 104 to Lt = 10. The detailed structures
of both the encoder (Ftenc ) and the decoder (Ftdec ), with 177 494 trainable parameters, are
shown in Table 3. The spatiotemporal latent space thereby obtained is then mapped with
the input parameters using a multi-layer perceptron whose structure is given in Table
6 and which consists of 34 570 trainable parameters. The CAE-space, CAE-time, and
the MLP were trained for 500, 1000 and 3000 epochs, respectively, and the decay of the
training and validation losses during the training phase is depicted in Fig. 18.
The most relevant results for this test case obtained by the proposed NIROM-CAEs

model are presented in terms of the statistical moments and relative L2-error profiles,
and compared with those from the POD-ANN and the LHS solutions. In Fig. 4, the 2D
contours of themean and standard deviation from the LHSmethodwith 5000 realizations,
considered as a reference solution, are presented in the space-time plane, where the
discontinuity in the velocity field (Fig. 4a) and the variability surrounding its propagation
with time (Fig. 4b) may present a challenging test case for the proposed reduced order
modeling approach. The two horizontal dashed lines represent the time location forwhich
the mean and the standard deviation profiles are displayed along with the spatial domain.
Figure 5 reports the comparisonof themeanand standarddeviationprofiles as a function

of the x-coordinate at different time-steps (t ≈ 0.1 and 0.9) obtained with NIROM-CAEs
(with Lx = 50 and Lt = 10) and POD-ANN (with εs = εt = 10−10, which generates a
latent space of dimension LPOD = 77 modes), with those from the reference LHS solu-
tions (with Ns = 5 000 realizations). These results show that the proposed non-intrusive
surrogatemodel (NIROM-CAEs) predicts profiles of themean (left column) and standard
deviation (right column) that are in close agreement with those from the LHS reference
solution. Conversely, an oscillatory behavior can be showcased in the statistical moments’
curves obtained with the POD-ANN technique with their pronounced deviations from
the LHS solution curves. It should be emphasized that the predicted statistical moments
from the NIRON-CAEs approach during the predictive online phase were obtained with
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Fig. 5 Comparison of the mean (left) and standard deviation (right) of the Burgers analytical solutions obtained
with the POD-ANN and NIROM-CAEs approaches with those of the LHS reference solution (5000 realizations) at
different times: t ≈ 0.1 (a, b) and t ≈ 0.9 (c, d)

new values of the random input parameter that differ from those used in the offline train-
ing phase. As evidenced by the results displayed in Fig. 5, the surrogate NIROM-CAEs
technique allows a better approximation of the output quantities of interest due to the
nonlinearities that effectively capture the dynamics of the viscous advection shock in
contrast with the linear-based POD approach.
To further investigate the performance of the proposed approach, the time trajectory of

the spatial relative L2-errors of themean and standard deviation of the predicted solutions
obtained by NIROM-CAEs are compared with those from the POD-ANN model. The
relative errors are computed for the LHS reference solutions with 5 000 realizations over
the whole set of computational nodes and for each time step. Its mathematical expression
is defined as follows:

ErrSurrL2 ,�(t) =
√√√√

∑Ne
i=1 (�i,Surr(t) − �i,LHS(t))2∑Ne

i=1(�i,LHS(t))2
, (13)

where � denotes either the mean or the standard deviation, and Surr stands for NIROM-
CAEs or POD-ANN. The comparison of the mean and standard deviation error profiles
highlights the predictive abilities of the NIROM-CAEs model, which presents lower error
values compared to those from the POD-ANN approach as shown in Fig. 6. These plots
confirm the capacity of the proposed nonlinear reduced-order model to accurately esti-
mate the statistics of the outputs, even for challenging time-dependent physical problems
such as the advective viscous shock Burgers’equation.
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Fig. 6 Variation of the L2-relative error of the mean (left) and standard deviation (right) as a function of time
obtained with the POD-ANN (blue) and NIROM-CAEs (red). Errors are evaluated in reference to the LHS reference
solution obtained with 5000 realizations

Fig. 7 Schematic representation of the initial condition of the Stoker’s analytical solution of a 1D dam break over
a wet flat bottom

One dimensional dam break test case

The second test case concerns Stoker’s analytical solution [42], which describes the prop-
agation and rarefaction wave resulting from a one-dimensional dam break over a wet flat
frictionless bottom. The dynamic state is initiated by unequal water levels of both the
upstream and downstream sides located in the middle of the studied domain of 100 m, as
shown in Fig. 7. The mathematical expressions for the water level and the velocity of the
parametrized Stoker’s analytical solution fields are given as follows [43,44]:

h(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hup

4
9g (

√
g hup − x

2t )
2

c2m
g

hds

, u(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 m/s if x ≤ xA(t)

2
3 (

x
t + √

g hup) if xA(t) ≤ x ≤ xB(t)

2(
√
g hup − cm) if xB(t) ≤ x ≤ xC (t)

0 m/s if xC (t) ≤ x,
(14)

where x denotes the axial position, xA(t) = x0 − t
√
g hup, xB(t) = x0 + t(

√
g hup − 3cm)

and xC = x0 + t 2c
2
m(

√
g hup−cm)

c2m−g hds
, and where cm = √

ghm denotes the selected solution of
−8ghdsc2m(g hup − c2m)2 + (c2m + g hds)(c2m − g hds)2 = 0.
The upstream water level (hup) is considered as an input random variable whose values

are uniformly sampled within its plausible variability range hup ∈ U [8, 11], whereas the
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Fig. 8 Contour plots of the mean (left column) and standard (right column) deviation of the Stoker’s analytical
solution of the water level (upper row) and the velocity (bottom row) obtained from the LHS solution with 5000
realizations. The two horizontal dashed lines represent the times for which the results in Figs. 9 and 10 are
presented

downstream water depth is kept constant at a deterministic value hds = 1 m. For each
selected value in the generated sample set of the upstream water level, the analytical
solution, given by Eq. (14), is evaluated over the Nx = 1 000 nodes that contain the
computational domain x ∈ [0, 100]m for all the Nt = 104 time-steps of the temporal
domain t ∈ [1, 4] s. The obtained solution vectors are then concatenated to construct the
so-called high-fidelity snapshot matrix that trains the proposed non-intrusive reduced-
order model (NIROM-CAEs) during the offline training phase.
Stoker’s problem is considered among themost challenging benchmark test cases due to

its strong hyperbolic behavior and the discontinuity accompanying the propagation of the
front wave resulting from the initial breaking. The performance of the proposed NIROM-
CAEs is assessed over this test case by comparing the obtained statistical moments to
those from the LHS reference solution, whose contours for the water level and velocity
fields are depicted in the spatiotemporal plane as shown in Fig. 8, where the longitudinal
and transversal axes represent the spatial and temporal dimensions, respectively. The two
horizontal lines show the time locations, t ≈ 1 and t ≈ 3.5 s, for which the evolution of the
mean and standard deviation profiles over the channel length, respectively, are compared
with the LHS and POD-ANN results.
Similar to the former numerical test case, the spatial and temporal autoencoders struc-

tures are composed of three 1D-convolutional layers with 32, 64 and 128 channels each,
thereby reducing the spatial dimension fromNx = 1 000 to Lx = 50, and then to Lt = 10,
representing the reduced latent space. The obtained spatiotemporal latent space is then
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Fig. 9 Distribution of the mean (left) and standard deviation (right) of the water level along the channel length
at different time steps (t ≈ 1 and t ≈ 3.5 s). The results obtained from the POD-ANN and NIROM-CAEs
techniques are compared with those from the LHS reference solution

linked with the input parameter vector via MLP mapping. The detailed architectures of
the proposed NIROM-CAEs model with its CAE-space, CAE-time, andMLP are summa-
rized in Tables 2, 3 and 6, respectively. The convergence history of the spatial, temporal
CAEs and the MLP during the training phase are depicted in Fig. 19 with the number of
epochs of 500, 1000, and 3000, respectively.
The results obtained by the proposed NIROM-CAEs model (presented in terms of the

variation of the mean and standard deviation profiles as a function of the x-coordinate at
different times (t ≈ 1, 3.5 s) are compared with those from the LHS reference solution
(obtained with 5 000 realizations), as shown in Figs. 9 and 10. In addition to the LHS
solution, the POD-ANN model is considered another solution with which to assess the
predictive ability of the nonlinear NIROM-CAEs. The structure of the neural network
introduced in the POD-ANN is constituted by three hidden layers, each of which contains
50 neurons. A sample set of Ns = 300 values of the upstream water level is randomly
generated in its plausible variability range to build the snapshot matrices for both models
by collecting the corresponding high-fidelity solutions, of which 80% is used for training
and the remaining 20% for validation.
The comparison of themean and standard deviation profiles of thewater level presented

in Fig. 9 shows that both the POD-ANN andNIROM-CAEsmodels accurately predict the
distribution of the mean over the whole channel for the two simulation times, as a good
agreement with the reference LHS profiles can be observed. However, the POD-ANNpre-
dictions for the standard deviation exhibit spurious oscillations in the area surrounding
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Fig. 10 Distribution of the mean (left) and standard deviation (right) of the velocity along the channel length at
different time steps (t ≈ 1 and t ≈ 3.5 s). The results obtained from the POD-ANN and NIROM-CAEs techniques
are compared with those from the LHS reference solution

the front shock wave, where significant deviations appear in comparison with the profiles
from the LHS solution. In contrast, the predicted profiles from the proposed NIROM-
CAEs show an excellent agreement with those from the high fidelity LHS solutions, even
in the area where the discontinuity occurs. The same trend can be observed in the velocity
statistical moments’ profiles, as shown in Fig. 10, conversely to the approximated outputs
from the POD-ANN, which are characterized by an oscillatory behavior. It can be con-
cluded that, for this test case, the use of convolutional neural network autoencoders with
nonlinear activation functions provides a powerful nonlinear compression model with
high predictive abilities in capturing the dynamics of the outputs in contrast with the
linear compression model based on the traditional POD approach.
To better illustrate the potential of nonlinear model reduction approaches to efficiently

predict the statistical moments of the output responses of high-complexity problems, an
evaluation of the relative L2 error is performed for both the water level and velocity fields,
as shown in Fig. 11. The mean and the standard deviation errors are calculated for each
time step by evaluating the differences between the predicted statistical from the LHS
reference over the entire calculation domain, as formulated in Eq. (13). The evolution of
the relative errors as a function of time shows that the NIROM-CAEs approach presents
a better approximation of the output responses, with errors on the order of 10−7 for the
mean and 10−4 for the standard deviation, unlike the linear POD-ANN technique which
presents higher error values that can reach up to two orders ofmagnitude in the case of the
standard deviation for both velocity and water level. This quantitative analysis shows that
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Fig. 11 Comparison of the relative L2-error profiles of the mean (left) and standard deviation (right) of the water
level (first row) and velocity (second row) as a function of time, obtained with the POD-ANN and NIROM-CAEs.
Errors are evaluated with respect to the 5000-realization LHS reference solution

the introduction of non-linearities contributes to a better approximation of the statistical
moments, allowing the construction of efficient spatiotemporal compression models for
time-dependent complex problems.

Application to a hypothetical dam-break in a river

The proposed approach is applied to a third test case to evaluate its ability to perform an
efficient uncertainty propagation analysis on a spatial domain with complex bathymetry.
The test concerns a reach of theMilles-Iles River (province of Québec, Canada) including
a dam as shown in Fig. 12. The data relating to the bathymetry and the roughness coeffi-
cient were provided by theCommuneautéMétropolitaine deMontréal (CMM) frommea-
surements and observations. The sub-domain of study is composed of an unstructured
triangular mesh with 16 763 elements and Ne = 10 200 nodes, over which high-fidelity
solutions of the quantities of interest are collected from an in-house multi-GPU finite
volume solver for shallow water equations [45]. A detailed description of the physical
domain of this test case was addressed in [13].
A fictitious breaching process was initialized on both parts of a hypothetical dam with

unequal water levels, located as indicated by a line in Fig. 12b. The downstream part of
the dam is considered as dry whereas the free surface of the upstream part is considered
as a random input parameter whose values are uniformly generated within its plausible
variability range ηup ∈ U [29, 32] m. The snapshot matrix is obtained by running the
numerical solver for each value of the upstream free surface, selected randomly from
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Fig. 12 Sketch of the reach of the Mille Iles river with a close-up view of the studied zone. The cross-section line
and the gauging points indicate locations where results are represented as a function of the longitudinal
direction and time, respectively

the generated sample set, for the whole Nt = 100 simulation time steps that constitute
the temporal domain (t ∈ [0, 50] s). For each parameter-time combination, a so-called
high-fidelity solution is stored in a vector of dimension Nx = 10 200, representing the
free surface values at each node of the computational domain. The concatenation of these
solution vectors thus allows the construction of the snapshot matrix.
The spatial compression is performed by the proposed NIROM-CAEs using a space-

autoencoder composed of two 1D-convolutional layers, one with 32 and the other one
with 64 channels, followed by a max-pooling and dense layers, thereby reducing the
initial spatial dimension from Nx = 10 200 nodes to Lx = 50, representing the latent
dimension. A second time-autoencoder is then applied to the generated spatial latent
space to reduce the temporal dimension from Nt = 100, representing the number of
time-steps, to Lt = 10. The time-autoencoder has a succession of three 1D-convolutional
max-pooling layers followed by a dense layer that links the channels to the temporal latent
space. The obtained latent space is then linked to the input parameter through anMLP of
three layers, each with a width of 128 neurons, to map the values of the input parameter
to the final latent space. A detailed description of the architectures of the space and time
autoencoders and the MLP are presented in Tables 4, 5, and 6. The numbers of trainable
parameters are 6 915 197, 153 230 and 34 570, respectively. The convergence histories of
the space and time CAEs and the MLP during the training phase, performed on a Tesla
P100 GPU with 32 GB of memory, are depicted in Fig. 20 with the number of epochs of
200, 1000 and 2000, respectively.
The results stemming from this test case are presented mainly in terms of the variation

of the mean and standard deviation profiles of the water surface level over the studied
computational sub-domain. The results obtained with the proposed NIROM-CAEs are
compared with those from the LHS solutions, both obtained by running the determin-
istic numerical solver using a sample set of Ns = 2000 points of the uncertain initial
upstream water level. The predictive model of the POD-ANN approach is based on a
neural network composed of three hidden layers, each with of 50 neurons, that map the
reduced-basis coefficient to the input parameter. Figures 13 and 14 present the variation
of the mean and the standard deviation profiles, respectively, as a function of the lon-
gitudinal coordinate along the cross-section line, as shown in Fig. 12b. The comparison
of the predicted mean profile of the water level at different simulation times shows that
the NIROM-CAEs’predictions are in good agreement with the profiles from the LHS
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Fig. 13 The mean profiles of the water level over the cross-section line at various time-steps, obtained with the
POD-ANN and NIROM-CAEs and compared with those from the LHS reference solution (with 2000 realizations). a:
t ≈ 5 s, b: t ≈ 15 s, c: t ≈ 30 s and (d): t ≈ 45 s

reference solutions. The POD-ANN model also presents satisfactory predictions for the
mean. The shock wave propagation is visible as the water level over the cross-section
line increases with time. Figure 13a through 13d show the hatched area that represents
the bathymetry of the terrain. Despite the accurate results obtained by the POD-ANN
approach for the mean profiles of the water level, its standard deviation predictions over
the cross-section line reveal spurious oscillations, as shown in Fig. 14a through 14d. In
contrast, the predictions from the NIROM-CAE approach show good agreement with the
reference solution for all the presented simulation times. This further illustrates the good
abilities of the proposed nonlinear reduced-order approach in approximating the outputs
of high-dimensional time-dependent problems.
In addition to the results presented above, four gauging points were chosen to depict

the evolution of statistical moments as a function of time. These gauging points, whose
approximate positions on the cross-section line are shown in Fig. 12b, were selected to
show the ability of the proposed nonlinear technique to capture the temporal dynamics.
In Figs. 15 and 16, the time variations of the mean and standard deviation are presented
at the four selected gauging points. The results from NIROM-CAEs, POD-ANN, and the
LHS solution can be compared. These plots show the increase in thewater level frompoint
1 (close to the dam location) to point 4 (far from the dam), which allows an estimation
of the arrival time of the flooding wave. Slight deviations can be observed in the mean
profiles from the POD-ANN at almost all the gauging points, while the profiles from
NIROM-CAEs present a good match with the reference solution, as shown in Fig. 15a
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Fig. 14 Comparison of the standard deviation profiles of the water level over the cross-section line at various
time-steps; the POD-ANN and NIROM-CAEs profiles vs those from the LHS reference solution (with 2000
realizations). a: t ≈ 5 s, b: t ≈ 15 s, c: t ≈ 30 s and (d): t ≈ 45 s

through 15d. This tendency is further confirmed by the standard deviation profiles, where
excellent superimposition can be observed between the profiles from the NIROM-CAEs
and those from the LHS solution at all four gauging points. Conversely, the predictions
from the linear POD-ANN technique present remarkable deviations with poor accuracy
in the approximations of the standard deviation profiles of the water level at all gauging
points, as indicated in Fig. 16a through 16d.
For a better insight into the accuracy of both reduced-order model approaches, namely

POD-ANN and NIROM-CAEs, a quantitative evaluation is performed by computing the
relative L2-error over the whole computational domain (with the LHS reference sampling
solution obtained with Ns = 2000 points). Thus, the relative error of the mean and
standard deviation is represented as a function of time, as shown in Fig. 17. These plots
show that the proposed NIROM-CAEs have much lower values of the relative error for
both the mean and the standard deviation. The effect of the training set sample size
(Ns) on the maximum relative error over time is reported in Table 1. Three values of
the sample size Ns = 30, 90 and 300 were tested, and for each value, the maximum L2-
error was computed over time for both the mean and the standard deviation. It is clear
that as the sample size increases, the relative error of the NIROM-CAEs decreases faster
than that of the POD-ANN, particularly for the standard deviation, where a difference
in the error values can reach almost two orders of magnitude. This quantitative analysis
supports the above-mentioned observations concerning the predictive abilities of the
proposed NIROM-CAEs. Another meaningful result from Table 1 is the dimension of
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Fig. 15 Evolution of the mean profiles of the water level as a function of time at four gauging points. The profiles
obtained with the NIROM-CAEs are compared to those from the POD-ANN technique and the LHS reference
solution (with 2 000 realizations). a: Point 1, b: Point 2, c: Point 3 and d: Point 4

the generated latent space, which is considerably reduced for the NIROM-CAEs, on the
order of Lx = 50 and Lt = 10, independently of the sample size, conversely to the POD-
ANN, whose dimension of the reduced basis increases from LPOD = 800 for Ns = 30 to
reach LPOD = 3337 for Ns = 300, which may present a challenging task for the available
computational capacities.

Conclusion
This paper presents a non-intrusive reduced-ordermodel based on convolutional autoen-
coders (NIROM-CAEs) for parameter-varying and time-dependent fluid problems. The
model is fully data-driven and exploits the nonlinear framework provided by the convolu-
tional autoencoders to tackle physical problems presenting a high degree of complexity.
The construction of the offline training stage of the proposed approach consists of two suc-
cessive compression levels along the spatial and temporal dimensions. The first encoder
(a space encoder) performs compression along the spatial dimension of the input snap-
shot matrix to generate the encoded low-dimensional latent space. A second encoder
(a time encoder), whose structure is similar to that of the former, applies convolutional
operations along the temporal dimension of the encoded space to generate a second spa-
tiotemporal latent vector with much lower dimensions. The encoded latent space thus
obtained is used as the output data for a multilayer perceptron (MLP), deployed at the
bottom level to train the mapping with the inputs from the parametric space. Once the
offline training stage is constructed, the online predictive stage consists of the genera-
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Fig. 16 Evolution of the standard deviation profiles of the water level as a function of time at four gauging
points. The profiles obtained with the NIROM-CAEs are compared to those from the POD-ANN technique and the
LHS reference solution (with 2000 realizations). a: Point 1, b: Point 2, c: Point 3 and d: Point 4

Fig. 17 Comparison of the relative L2-error of the mean and standard deviation of the water level as a function
of time based on the POD-ANN technique and the proposed NIROM-CAEs approach. Errors are computed with
respect to the reference LHS solution (with Ns = 2000 realizations)

tion of a new set of unseen points in the design space to provide the trained MLP at the
bottom level. The resulting spatiotemporal latent vectors are then decoded through suc-
cessive 1D decoders to predict solutions describing the high-dimensional spatiotemporal
dynamics of the output quantities of interest. The proposed reduced-order model allows
for rapid and accurate predictions of the statistical moments of the output distributions,
thus enabling uncertainty propagation analyses.
The performance and accuracy of the proposed reduced-order model (NIROM-CAEs)

are demonstrated on three nonlinear examples parametrized by a random variable with
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Table 1 Effect of the sample size Ns on the maximum relative error in the L2-norm for the mean and
standard deviation obtained from the NIROM-CAEs (Lx = 50, Lt = 10) and POD-ANN
(εs = εt = 10−8) approaches. Errors are computed with respect to the LHS reference solution (with
Ns = 2000 realizations)

Ns LPOD Errmax
L2 , Mean

Errmax
L2 , Std

POD-ANN NIROM-CAEs POD-ANN NIROM-CAEs

30 860 8.2855E−07 2.1896E−06 0.024537 0.010349

90 2112 6.0781E−07 9.0018E−07 0.013303 0.005838

300 3387 9.1037E−07 1.9986E−07 0.016687 7.4981E−04

an appropriate variability range. The two first test cases concern the Burgers and Stoker’s
solutions, known as challenging test cases presenting a high hyperbolic behavior or a
discontinuity accompanying the shock wave. The numerical results show that the model
offers accurate approximations of the statistical moments in comparison to those of the
reference solutions from the Latin Hypercube Sampling approach (LHS) method, unlike
the linear POD-ANNmodelwhich shows some limitations in reproducing the dynamics of
the outputs where an oscillatory behavior is observed in the predicted profiles. The results
also reveal the low relative error of the proposed NIROM-CAEs, further highlighting its
abilities. The model is then applied to a third case to analyze uncertainty propagation
in a dam break flow over a real terrain. The NIROM-CAEs proved that its accuracy in
the reconstruction of the mean and the standard deviation profiles, where good con-
cordances with those from the LHS reference solutions were observed. The predictions
from the POD-ANN show spurious oscillations, particularly for the temporal evolution
at gauging points. Thus, the proposed non-intrusive reduced-order model based on con-
volutional autoencoders presents a powerful tool for nonlinear dimensionality reduction
for parameter-varying, time-dependent, and large-scale problems characterized by strong
hyperbolic behavior or even with the presence of a discontinuity. The model offers the
construction of accurate surrogate predictions at a low cost.

A Training convergence history andmodels’ configurations
See Tables 2, 3, 4, 5, 6 and Figs. 18, 19, 20.
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Table 2 CAE-space architecture for Burger’s and Stoker’s test cases

Layer Nb of filters Kernel size Activation function Output shape

Encoder-space

Input – – – 1000 × 1

Conv-pool 32 3–2 PReLU 500 × 32

Conv-pool 64 3–2 PReLU 250 × 64

Conv-pool 128 3–5 PReLU 50 × 128

Flatten – – – 6400

Dense – – PReLU 60

Dense (output) - - PReLU Lx = 50

Decoder-space

Input – – – Lx = 50

Dense – – PReLU 60

Dense – – PReLU 6400

Reshape – – – 50 × 128

Conv-Upsamp 128 3–5 PReLU 250 × 128

Conv-Upsamp 64 3–2 PReLU 500 × 64

Conv-Upsamp 32 3–2 PReLU 1000 × 32

Conv (output) 1 3 PReLU 1000 × 1

Table 3 CAE-time architecture for Burger’s and Stoker’s test cases

Layer Nb of filters Kernel size Activation function Output shape

Encoder-time

Input – – – 104 × Lx
Conv-pool 32 3–2 PReLU 52 × 32

Conv-pool 64 3–2 PReLU 26 × 64

Conv-pool 128 3–2 PReLU 13 × 128

Flatten – – – 1 664

Dense (output) – – PReLU Lt = 10

Decoder-time

Input – – – Lt = 10

Dense – – PReLU 1664

Reshape – – – 13 × 128

Conv-Upsamp 128 3–2 PReLU 26 × 128

Conv-Upsamp 64 3–2 PReLU 52 × 64

Conv-Upsamp 32 3–2 PReLU 104 × 32

Conv (output) 1 3 PReLU 104 × Lx
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Table4 CAE-space architecture for hypothetical dam break of Miles-Iles river

Layer Nb of filters Kernel size Activation function Output shape

Encoder-space

Input – – – 10, 200 × 1

Conv-pool 32 3–5 PReLU 2040 × 32

Conv-pool 64 3–5 PReLU 408 × 64

Flatten – – – 26112

Dense - – PReLU 120

Dense (output) – – PReLU Lx = 50

Decoder-space

Input – – – Lx = 50

Dense – – PReLU 120

Dense – – PReLU 26 112

Reshape – – – 408 × 64

Conv-Upsamp 64 3–5 PReLU 2040 × 64

Conv-Upsamp 32 3–5 PReLU 10200 × 32

Conv (output) 1 3 PReLU 10200 × 1

Table5 CAE-time architecture for hypothetical dam break of Miles-Iles river

Layer Nb of filters Kernel size Activation function Output shape

Encoder-time

Input – – – 100 × Lx
Conv-pool 32 3–2 PReLU 50 × 32

Conv-pool 64 3–2 PReLU 25 × 64

Conv-pool 128 3–5 PReLU 5 × 128

Flatten – – – 640

Dense (output) – – PReLU Lt = 10

Decoder-time

Input – – – Lt = 10

Dense – – PReLU 640

Reshape – – – 5 × 128

Conv-Upsamp 128 3–5 PReLU 25 × 128

Conv-Upsamp 64 3–2 PReLU 50 × 64

Conv-Upsamp 32 3–2 PReLU 100 × 32

Conv (output) 1 3 PReLU 100 × Lx

Table6 MLP architecture for Burgers, Stoker’s test cases and hypothetical dam break

Layer Activation function Output shape

MLP

Input ReLU 1

Dense ReLU 128

Dense ReLU 128

Dense ReLU 128

Dense (output) Linear Lt = 10
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Fig. 18 Evolution of the training and validation losses of CAEs and MLP for the Burgers equation test case

Fig. 19 Evolution of the training and validation losses of CAEs and MLP for the Stoker’s analytical solution test
case

Fig. 20 Evolution of the training and validation losses of CAEs and MLP for the hypothetical dam break of the
Mille-Iles river
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