
Meethal et al. AdvancedModeling and Simulation
in Engineering Sciences (2023) 10:6
https://doi.org/10.1186/s40323-023-00243-1

Advanced Modeling and Simulation
in Engineering Sciences

RESEARCH ART ICLE Open Access

Finite element method-enhanced neural
network for forward and inverse problems
Rishith E. Meethal1,2* , Anoop Kodakkal2* , Mohamed Khalil1, Aditya Ghantasala2, Birgit Obst1,
Kai-Uwe Bletzinger2 and Roland Wüchner3

*Correspondence:
rishith.ellath_meethal@siemens.com;
anoop.kodakkal@tum.de
1Technology, Siemens AG,
Munich, Germany
2Chair of Structural Analysis,
Technical University of Munich,
Munich, Germany
3Institute of Structural Analysis,
Technische Universität
Braunschweig, Braunschweig,
Germany

Abstract

We introduce a novel hybrid methodology that combines classical finite element
methods (FEM) with neural networks to create a well-performing and generalizable
surrogate model for forward and inverse problems. The residual from finite element
methods and custom loss functions from neural networks are merged to form the
algorithm. The Finite Element Method-enhanced Neural Network hybrid model
(FEM-NN hybrid) is data-efficient and physics-conforming. The proposed methodology
can be used for surrogate models in real-time simulation, uncertainty quantification,
and optimization in the case of forward problems. It can be used to update models for
inverse problems. The method is demonstrated with examples and the accuracy of the
results and performance is compared to the conventional way of network training and
the classical finite element method. An application of the forward-solving algorithm is
demonstrated for the uncertainty quantification of wind effects on a high-rise
buildings. The inverse algorithm is demonstrated in the speed-dependent bearing
coefficient identification of fluid bearings. Hybrid methodology of this kind will serve as
a paradigm shift in the simulation methods currently used.

Keywords: Hybrid models, Informed machine learning, FEM-based neural network,
Self-supervised learning

Introduction
Developments in the field of Artificial Intelligence (AI) [1] have lead to substantial
improvements in everyday life. Advances in the sub-fields of AI such as data science,
machine learning, deep learning, neural networks are contributing to diverse research
and application fields. These include computer vision [2], speech and language process-
ing [3], drug discovery [4,5], genomics [6], computer games [7], animation [8], robotics
[9], and many more. Deep learning has boosted the development of computer vision by
contributing extensively to image classification [10], object detection [11], and semantic
segmentation [12]. Similarly, AI has also made a large number of contributions to com-
puter games [13–15]. An important direction in this field is game physics, where smoke
and fluid flows for computer graphics are simulated with the help of neural networks.
Jonathan et al. [16] proposed a data-driven solution to the inviscid-Euler equations that

© The Author(s) 2023.Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third partymaterial in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

0123456789().,–: volV

http://crossmark.crossref.org/dialog/?doi=10.1186/s40323-023-00243-1&domain=pdf
https://orcid.org/0000-0002-1906-8975
https://orcid.org/0000-0002-3398-972X
https://orcid.org/0000-0003-1420-6440
https://orcid.org/0000-0002-5411-9715
http://creativecommons.org/licenses/by/4.0/

Meethal et al. AdvancedModeling and Simulation in Engineering Sciences (2023) 10:6 Page 2 of 23

is faster than traditional methods used in computer graphics animations. Similar to the
developments in game physics, different AI methods have found their application in solv-
ing Partial Differential Equations (PDE) for physical problems.
Neural networks [17] are employed to performphysical systems simulations aswell [18–

20]. One of the initial work was on designing simple beams using the perceptron (basic
unit of a neural network). Recently neural networks are used to perform simulations of
complex systems as well. Thuerey et al. [19] used U-net architecture to model the flow
around airfoils. Their study resulted in surrogate models that can predict velocity and
pressure fields around an unseen airfoil profile with relative error less than 3%. Tobias et
al. [20] showed that graph networks can be used to learn mesh-based simulations. The
method is demonstratedondifferent typesof physical systems suchasfluids and structural.
Different types of neural networks such as LSTM, CNN have found their applications
in performing physical simulations. Guo et al. [21] used convolutional neural networks
(CNNs) for the steady flow approximations. Zhang et al. [22] applied a multiLSTM neural
network for mapping the excitation force to the response of the system.
Generally, conventional approaches use input and output data to create neural network-

based surrogate models approximating the mapping function between them. Such surro-
gate models, once trained, can be used for performing faster simulation. They are useful
when large number of simulation runs with different input parameters are required for
applications such as optimization or uncertainty quantification. However, this approach
has two significant shortcomings. Thefirst is the high computational cost of creating train-
ing data. This is because the simulation results required to make a surrogate model are
generated by running a large number of numerical simulations. Running a large number
of simulations requires extensive computational power and simulation time. The second
problem is that the training algorithm does not consider underlying physics. It results
in neural networks that are loosely informed about the underlying physics. A loosely
informed surrogate does not extrapolate well if the training data does not cover all of the
required range. However, it is crucial for a numerical simulation that the surrogate model
created follows the underlying physics described by the PDE.
To address the issues mentioned above, more recent developments exploit the prior

information about the data by incorporating it into the learning process. Laura et al. [23]
provide a structured overviewof various approaches to integrate different prior knowledge
into the training process. They consider source of knowledge, its representation, and its
integration into the machine learning pipeline to introduce a taxonomy that serves as
a classification for informed machine learning frameworks. They describe how different
knowledge representations such as logic rules, algebraic equations, or simulation results
can be used in machine learning pipeline. For example, logic rules are widely used in
linguistics [24,25]. For example, a rule stating a state transition in a sentence can occur
after a punctuation helps the model to identify and label each part in a sentence easily in
a semi-supervised learning setup. Another example for the use of prior knowledge is the
use of Newtonian mechanics to improve the object detection and tracking in videos [26].
When it comes to physical simulations, there are numerous works which integrated

prior-knowledge into the learning algorithm. Themost appreciated work in this direction
is the physics-informed neural network (PINN). The PINNs proposed in [27] have shown
how existing knowledge regarding the physics of the data can be used to constrain the
neural network to follow the physics. This is accomplished by embedding the physics in

Meethal et al. AdvancedModeling and Simulation in Engineering Sciences (2023) 10:6 Page 3 of 23

the form of the partial differential equation into the loss function of the neural network
using automatic differentiation [28]. By employing the measured or availble data, the
same approach is extended for inverse problems as well. The resulting models showed
promising results for a diverse collection of problems in computational science. Some of
the notable examples are CFD [29], heat transfer [30] and power systems [31]. PINNs are
also shown to be successful in dealing with integro-differential equations [32], fractional
PDEs [33] and stochastic PDEs [34].
However, it is stated in [27] itself that the method does not replace classical numerical

methods in terms of the robustness and computational efficiency required in practice.
For examples, the training time required for the model is much higher compared to the
classical numericalmethods. Karniadakis et al. in [35] explains that PINNs are particularly
effective in solving ill-posed and inverse problems, whereas for forward, well-posed prob-
lems that do not require any data assimilation the existing numerical grid-based solvers
currently outperform PINNs.Wang et al. [36] shows that fully connected neural networks
fail to learn solutions containing high-frequencies and multi-scale features. They showed
that alongwith the “spectral bias”, the PINNs also exhibit a discrepancy in the convergence
rate among the different loss components contributing to the total training error. Krish-
napriyan et al. in [37] also shows that PINNs works well with relatively trivial problems,
but fail to learn the physics for even slightly more complex problems. They demonstrate
that the soft regularization used in PINNs make the problem more ill-conditioned. They
introduce curriculum learning and sequence-to-sequence to learning to address this issue.
However, none of those address the ill-conditioned problem statement resulting from the
soft-regularization used by PINNs.
In this contribution, we introduce a data-efficient and physics-conforming hybrid

methodology for generating numerically accurate surrogate models. It falls in the cat-
egory of informed machine learning [23], where expert knowledge in the form of differ-
ential equations is used in the hypothesis set and learning algorithm of neural networks.
In contrast to the state-of-the-art PINNs, we use the discretized form of the well-posed
problem statement for the learning purpose. The methodology involves training the neu-
ral network with FEM-based custom loss function and deploying it with the FEM. The
use of FEM matrices after the application of boundary conditions makes the problem
well-posed. This also results in physics-conforming training. Using the prediction along
with the FEMmakes the prediction error quantifiable. The introduced novel algorithm is
expanded for solving the inverse problems as well.
The rest of the paper is structured as follows: “Algorithm” section explains the algorithm

used behind the novel hybrid model. Algorithms for both forward and inverse problems
are explained in detail here. The novelty achieved in terms of data efficiency and physics
conformity is compared with conventional neural network-based surrogate models for
simulation. The proposed model is demonstrated with examples in “Results and discus-
sion” section. The results are compared with FEM-based simulation and conventional
neural networks. Applications of these methods for uncertainty quantification of wind
load on high-rise building and parameter identification of fluid bearing are discussed in
“Applications” section. “Conclusion and outlook” section concludes the discussion and
proposes different future steps.

Meethal et al. AdvancedModeling and Simulation in Engineering Sciences (2023) 10:6 Page 4 of 23

Algorithm
Finite element method

A numerical approximation of the continuous solution field u of any partial differential
equation (PDE) givenbyEq. (1) on a givendomain� canbeperformedby variousmethods.
Some of the widely used techniques include finite element method [38], finite volume
method [39], particle methods [40], and finite cell method [41]. In this contribution, we
restrict the discussion to Galerkin-based finite element methods.

L(u) = 0 on � (1)

u = ud on �D (2)
∂u
∂x

= g on �N (3)

Consider the PDE in Eq. (1) defined on a domain� together with the boundary conditions
given by Eqs. 2 and 3. Here, ud and g are the Dirichlet and Neumann boundary conditions
on the respective boundaries. A finite element formulation of Eq. (1) on a discretization of
the domain withm elements and n nodes, together with boundary conditions, will result
in the system of equations shown by Eq. (4). We assume all the necessary conditions on
the test and trial spaces [38] are fulfilled.

⎛
⎜⎜⎜⎜⎝

k1,1 k1,2 · · · k1,n
k2,1 k2,2 · · · k2,n
...

...
. . .

...
kn,1 kn,2 · · · kn,n

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
K (uh)

⎛
⎜⎜⎜⎜⎝

u1
u2
...
un

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
uh

=

⎛
⎜⎜⎜⎜⎝

F1
F2
...
Fn

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
F

(4)

In Eq. (4), K (uh) is the non-linear left hand side matrix, also called the stiffness matrix. uh

is the discrete solution field, and F is the right hand side vector. The residual of the system
of equations in Eq. (4) can be written as

r(uh) = K (uh)uh − F (5)

To obtain the solution uh, a Newton–Raphson iteration technique can be employed using
the linearization of r(uh) and its tangent matrix. This requires the solution of a linear
system of equations in every iteration. These iterations are carried out until the residual
norm ‖r‖n meets the tolerance requirements. For a detailed discussion of the methodol-
ogy, readers are referred to [42]. For this residual-based formulation, in case of a linear
operator L, it takes only one iteration to converge. For a large number of elements and
nodes, among different steps of the finite elementmethodology, themost computationally
demanding step is the solution of the linear system of equations. In an application where
computational efficiency is critical, like real time simulations [43] and digital twins [44],
it is imperative that this step be avoided. Techniques suitable for such applications, like
model order reduction [45,46], construct a surrogate model of Eq. (4) to reduce this cost
significantly. Techniques involving neural-networks can completely avoid this cost, but
will require a significant amount of training and test data, which is typically generated by
simulating the underlying finite element problem. In “Finite element method-enhanced
neural network for forward problems” section, we discuss an algorithm that combines
residual information from a numerical method to train a neural network for linear PDEs.

Meethal et al. AdvancedModeling and Simulation in Engineering Sciences (2023) 10:6 Page 5 of 23

In this case the residual r(uh) becomes

r(uh) = Kuh − F (6)

Neural network and custom loss

Consider a neural networkmapping from input variables x = [x1, x2, ...xm] of domainX to
output variables y = [y1, y2, ...yn] of domain Y . Input variables are given to the input layer
of theneural network so as to obtain output variables from theoutput layer.The input layer
is connected to the output layer by L number of layers in between, called hidden layers.
Each hidden layer receives input from the previous layer and outputs ol = [ol1, o

l
2, . . . , o

l
k].

The wl ∈ R
nl×nl+1 matrix represents the weights between layer l and l + 1 and the vector

bl of size nl represents the bias vector from layer l. Here, nl represents the number of
neurons in each layer of the neural network.
The output from any layer is transformed as below before sending it to the next layer.

zl = wlol−1 + bl (7)

The nonlinear activation function σ (.) is applied to each component of the transformed
vector zl before sending it as an input to the next layer.

ol = σ (zl) (8)

Following this sequence for all the layers, the output of the entire neural network can
be written as

y(θ) = σ L(zL......σ 2(z2.σ 1(z1(x)))) (9)

where y is the output vector for the given input vector x, and θ = {wl, bl}Ll=1 is the set of
trainable parameters of the network.
The network is trained by treating it as a minimization problem. The objective function

for minimization is a function of y and yt , called the loss function in the neural network
community. Here, y is the predicted value from the neural network and yt is the actual
value which is either measured, or simulated.
The calculated loss δ is reduced by updating the trainable parameters in the process

called backpropagation [17]. In backpropagation, the gradient of δwith respect to trainable
parameters is calculated, and the trainable parameters are updated as follows,

wl = wl − η
∂δ

∂wl (10)

The derivatives of δ with respect to the trainable parameters are calculated using the
chain rule. The parameter η is called learning rate and is chosen by the user.

∂δ

∂wl = ∂δ

∂y
∂y
∂wl

∂δ

∂bl
= ∂δ

∂y
∂y
∂bl

(11)

In Eq. (11), the derivative of output y with respect to trainable parameters ∂y
∂wl and

∂y
∂bl

is calculated by considering the network’s architecture and activation functions. Imple-
mentations for the calculation of the aforementioned derivatives are readily available in
machine learning libraries like, TensorFlow [47], PyTorch [48], etc. But the first part of
Eq. (11) depends on the chosen loss function. One of the common loss functions for min-
imization among neural network communities is the mean square error (MSE) between

Meethal et al. AdvancedModeling and Simulation in Engineering Sciences (2023) 10:6 Page 6 of 23

the true value for yt and the predicted value for y. The true value is taken from the training
data and the prediction is the network output. The loss function δ(y, yt) is given by

δMSE = 1
m

∑m

i=i
(yi − yti)

2 (12)

For δMSE , the first part of Eq. (11) is the derivative of δMSE with respect to the output of
the neural network y given by,

∂δ

∂y
= 2

1
m

∑m

i=i
(yi − yti) (13)

But there are large variety of neural networks that use different other loss functions.
Some statistical applications uses loss functions such as the mean absolute percentage
error (MAPE) for training.

δMAPE = 1
m

∑m

i=i

∣∣∣∣∣
(yi − yti)

yti

∣∣∣∣∣ (14)

In this case the first part of the Eq. (11), ∂δ
∂y , will have a different functionwhen compared

with that used for MSE in Eq. (13).

Finite element method-enhanced neural network for forward problems

The proposed algorithm combines FEM and a neural network to produce a surrogate
model, which we call the FEM enhanced neural network hybrid model. The method is
explainedwith thehelp of theflowchart given inFig. 1.The surrogate canbeused topredict
simulation results for parametric PDEs of the form L(u, λ) = 0. The parameter λ for the
PDE can be initial conditions, boundary conditions, material properties or geometrical
properties. The model undergoes a training process before it is used as a surrogate model
for simulation. During the training process, the variables for simulation are taken as input
parameters. This include the parameters λ of the PDE, neural network parameters θ and
constants for running the simulation C . The input parameters are processed by both the
neural network and the FEM library. The neural network outputs u after the forward
pass through the chosen network architecture. The output of the network is the discrete
solution field vector u given as,

U =

⎛
⎜⎜⎜⎜⎝

u1
u2
...
un

⎞
⎟⎟⎟⎟⎠

(15)

In the meantime, the FEM library takes the input variables and calculates the stiffness
matrix K and the force vector F as explained in “Finite element method” Section.
The residual r is calculated using the prediction U from the neural network and K and

F from FEM. Loss for the neural network prediction is defined as Euclidean norm of the
residual vector r.

δ = ||r||2 (16)

where r is given by

r = KU − F

Meethal et al. AdvancedModeling and Simulation in Engineering Sciences (2023) 10:6 Page 7 of 23

Fig. 1 FEM-neural network training

=

⎛
⎜⎜⎜⎜⎝

k1,1 k1,2 · · · k1,n
k2,1 k2,2 · · · k2,n
...

...
. . .

...
kn,1 kn,2 · · · kn,n

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

u1
u2
...
un

⎞
⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎝

F1
F2
...
Fn

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

k1,1u1 + k1,2u2 + .. + k1,nun − F1
k2,1u1 + k2,2u2 + .. + k2,nun − F2

...
kn,1u1 + kn,2u2 + .. + kn,nun − Fn

⎞
⎟⎟⎟⎟⎠

(17)

This gives loss δ as,

δ = ‖r‖2
=

√
(k1,1u1 + k1,2u2.. + k1,nun − F1)2.. + (kn,1u1 + kn,2u2.. + kn,nun − Fn)2

=
√∑n

j=1

∑n

i=1
(Kj,iui − Fj)2

(18)

As explained in “Neural network and custom loss” section, the learnable parameters
are updated using backpropagation to minimize the loss. Backpropagation calculates the
gradients of the loss with respect to the learnable parameters. Since we use a loss function
specific to FEM, we need to calculate the second part of the Eq. (11), ∂δ

∂y , for the custom
loss used here. In the case of a hybrid model, the output y of the neural network is the
predicted discrete solution field u.

y =

⎛
⎜⎜⎜⎜⎝

u1
u2
...
un

⎞
⎟⎟⎟⎟⎠

Meethal et al. AdvancedModeling and Simulation in Engineering Sciences (2023) 10:6 Page 8 of 23

The gradient has to be calculated with respect to eachmember of the output. ∂δ
∂y becomes,

⎛
⎜⎜⎜⎜⎝

∂δ
∂u1
∂δ
∂u2
...

∂δ
∂un

⎞
⎟⎟⎟⎟⎠

= 1
2δ

2

⎛
⎜⎜⎝
k1,1u1 + k1,2u2 + .. + k1,nun − F1

...
kn,1u1 + kn,2u2 + .. + kn,nun − Fn

⎞
⎟⎟⎠

T
⎛
⎜⎜⎜⎜⎝

k1,1 k1,2 · · · k1,n
k2,1 k2,2 · · · k2,n
...

...
. . .

...
kn,1 kn,2 · · · kn,n

⎞
⎟⎟⎟⎟⎠

which gives

∂δ

∂y
= rTK

δ
(19)

where rT is the transpose of the residual vector r and K is the stiffness matrix. With
the implementation of the above in the machine learning frameworks, we can train the
network against the residual of the differential equation. The second part of the Eq. (11)
is readily available in all the neural network frameworks. The parameters of the neural
network are updated using the Eq. (11). The process is repeated until the residual r sat-
isfies the desired accuracy level. The procedure for training and prediction is detailed in
Algorithm 1.

Algorithm 1 FEM-NN training and prediction for forward problems
1: procedure TRAIN
2: Read simulation parameters
3: Initialize neural network
4: Initialize weights and biases
5: Let L be the number of layers in the neural network
6: Initialize FEM Package
7: Compute the system matrices K and F
8: while not Stop Criterion do
9: U ← Neural network prediction

10: Compute the residual r = KU − F
11: Compute the loss as the Euclidean norm of the residual vector δ = ||r||2
12: Compute the derivative ∂δ

∂u = rT×K
δ

13: for all l ∈ {1, . . . , L} do
14: Compute the derivative of neural network parameters using chain rule ∂δ

∂wl
=

∂δ
∂u

∂u
∂wl

15: Update trainable parameters (weights and biases) wl = wl − η ∂δ
∂wl

16: end for
17: end while
18: end procedure

19: procedure PREDICT
20: Initialize FEM Package
21: Compute the system matrices K and F
22: Predict U using the trained neural network
23: Compute the Residual r = KU − F
24: return U and r
25: end procedure

Once trained, the neural network can be deployed using a similar hybrid approach.
During the deployment of the network (Fig. 2, the input variables pass through both the

Meethal et al. AdvancedModeling and Simulation in Engineering Sciences (2023) 10:6 Page 9 of 23

Fig. 2 FEM-neural network deployment

neural network and the FEM framework. The trained neural network predicts the output
U . In a conventional way of deployment of networks, the prediction accuracy is not
measurable. But here the output is used along with the stiffness matrix K and force vector
F from FEM to calculate the residual r in Eq. (6). The residual r is a measure on how
much the output deviates from the actual solution of the governing equation. Hence, the
accuracy of prediction of FEM-neural network is measurable.

Finite element method-enhanced neural network for inverse problems

Inverse problems appear in many different applications of science and industry. Forward
problems estimate the results for a defined cause, whereas inverse problems typically esti-
mate the cause for the observed results. It is possible to use forward-solving software for
inverse analysis as well. In such cases, the inverse problem is formulated as a parame-
ter identification problem, where the unknown parameters of the forward problem are
calculated by minimizing a suitable cost function. The estimation of unknown param-
eters results in correcting or updating the mathematical model used. Such a corrected
or updated model can be used for different applications like simulation and prediction,
optimization, system monitoring, fault detection, etc. This makes inverse problems vital
in engineering. The algorithm introduced in “Finite element method-enhanced neural
network for forward problems” section is extended for inverse problems as well.
In the case of inverse problems for Eq. (17), the primary variable u is known whereas

forces F or stiffness matrix K can have unknown parts. As there are different kinds of
inverse problems, we consider one category where a stiffness matrix has unknown parts
for the rest of the paper. Such a problem can be described using the following equation(

Kk Kku
Kuk Ku

) (
Uk
Uu

)
=

(
Fk
Fu

)
(20)

Meethal et al. AdvancedModeling and Simulation in Engineering Sciences (2023) 10:6 Page 10 of 23

whereKk is the knownpart andKu the unknownpart of the systemmatrix.Kku andKuk are
the cross coupling terms of the known and unknown parts of the systemmatrix. Similarly,
Uu are the responses corresponding to unknown andUk are the responses corresponding
to the known parts of the system matrix. The loss for the neural network prediction is
defined as the Euclidean norm of the residual vector r.

δ = ||r||2 (21)

where r is given by

r = KU − f

=
(
Kk Kku
Kuk Ku

) (
Uk
Uu

)
−

(
Fk
Fu

)

=
(
KkUk + KkuUu − Fk
KukUk + KuUu − Fu

)
(22)

This gives loss δ as,

δ = ||r||2 =
√
(KkUk + KkuUu − Fk)2 + (KukUk + KuUu − Fu)2 (23)

Similar to the calculation performed for forward problems, we need to calculate the
derivative of the residual with respect to neural network prediction to perform the back-
propagation. In the case of Eq. (23) it is ∂δ

∂Ku

∂δ

∂Ku
= 1

δ
(KukUk + KuUu − Fu)Uu (24)

Equation 24 and the second part of the Eq. (11) are used to update the neural network
parameters for training the neural network to identify the unknown part of the matrix.
The procedure for training and predicting for an inverse problem is detailed in Algo-

rithm 2. One example for such an inverse problems is the stiffness identification of fluid
bearings in a rotor-dynamic system demonstrated in “Fluid bearing stiffness identifica-
tion” section.

Comparison between FEM-enhanced neural network and conventional neural networks for

simulation

In this section, the discussed novel FEM-NN hybrid model for simulation and the con-
ventional way of making neural network-based surrogates for simulation are compared.
Conventionally, a large number of simulations are run to produce the input and output

data required for training the neural network. Hence, the training is a supervised training
requiring a large amount of data. There are two main problems associated with this
approach when it comes to the numerical simulation of physical phenomena. First, such
models are constructedwithout considering thephysics or thedifferential equationbehind
the problem. During the training phase, the network treats the input and output of the
simulation as pure data. The equations governing the simulation or the physics behind
the problem are not considered. The second problem is that a large number of samples
are required to train the network. Since neural network training requires a large number
of input–output pairs, we need to run a large number of simulations. Running such
a large number of simulations is computationally expensive, especially when it comes
to multiphysics simulations. In a nutshell, the shortcomings associated with traditional
neural network surrogates are as follows.

Meethal et al. AdvancedModeling and Simulation in Engineering Sciences (2023) 10:6 Page 11 of 23

Algorithm 2 FEM-NN training for inverse problems
1: procedure TRAIN
2: Read simulation parameters
3: Initialize neural network
4: Initialize weights and biases
5: Initialize FEM Package
6: Let L be the number of layers in the neural network
7: while not Stop Criterion do
8: Compute the system matrices Kk , Kku, Kuk , Fk , Fu, Uk and Uu
9: Ku ← Neural network prediction

10: Compute the residual r = KU − F
11: Compute the loss as the Euclidean norm of the residual vector δ = ||r||2
12: Compute the derivative ∂δ

∂Ku
= 1

δ
(KukUk + KuUu − Fu)Uu

13: for all l ∈ {1, . . . , L} do
14: Compute the derivative using chain rule ∂δ

∂wl
= ∂δ

∂Ku
∂Ku
∂wl

15: Update trainable parameters (weights and biases) wl = wl − η ∂δ
∂wl

16: end for
17: end while
18: end procedure

19: procedure PREDICT
20: Initialize FEM Package
21: Predict Ku
22: Use the predicted Ku for forward simulation or other analysis
23: end procedure

• Neural network treat inputs and outputs as pure numbers and not as physical quan-
tities.

• Training is done against the output data, not against the governing PDE describing
the physics.

• Prediction can go wrong in an untrained scenario and the error of prediction is not
measurable.

• A large number of computationally expensive simulations are required to create data.

The proposed FEM-NN solves the problems associated with conventional surrogates.
The proposed algorithm uses the custom loss function defined in Eq. (18). The custom
loss is based on the discretized version of the PDE, hence it follows the physics. Since the
loss is based on the predictions from the neural network and matrices from FEM, it does
not need target values or precalculated simulation results. Hence, the computationally
expensive simulations need not be run. Though there are methods like PINNs, they fail
to converge to the actual solution for multiple reasons. One of the main reasons is the
multiobjective treatment of boundary conditions and PDE. This problem is overcome by
using the introduced FEM-NN method.

• The network is trained against the equation, hence the physics is preserved.
• The computational cost of simulation is less as the training does not require target

values
• The prediction comes with the residual of the linear system in Eq. (6). This makes the

prediction accuracy measurable.

Meethal et al. AdvancedModeling and Simulation in Engineering Sciences (2023) 10:6 Page 12 of 23

(a) (b)

Fig. 3 Comparison of FEM-NN and PINN along the training epochs

• Single loss term taking care of boundary conditions and conservation laws

Comparison between FEM-enhanced neural network and PINN

This section compares the introduced FEM-NNand the state-of-the-art PINNs to demon-
strate the advantages of the introduced method.
As mentioned in “Introduction” section, one major limitation of the PINNs is that it

makes the problemmore ill-conditioned.Whereas the introduced algorithm directly uses
the matrices after the application of boundary conditions and hence preserves the well-
condition. Consider a one dimensional Poisson equation given below

∂2u
∂x2

= 2 (25)

u(x = −1) = −2, T (x = 1) = −2

Two networks, one with PINN and other with FEM-NN, were trained to solve the
Equation system 25. First network is deep copied to make the second one so that both are
initialized with same random weights and biases. The Fig. 3 shows the prediction from
both models for two cases. In the first case, the prediction after training for 1900 epochs
is considered. In can be observed that the FEM-NN has already converged to the actual
solution, but PINN still needs to. This shows that the FEM-NN able to learn the exact
physics along with boundary conditions quicker than PINNs. However, it should be noted
that PINN also converge to the exact solution after 2500 epochs.

Results and discussion
Steady-state convection diffusion problem

This sectiondiscusses the applicationof FEM-enhancedneural networkon theonedimen-
sional, convection-diffusion equation. The equation describes physical phenomena where
particles, energy, or other physical quantities are transferred inside a physical system due
to two processes; convection and diffusion. In this example, we consider the temperature
as the physical quantity.
A one-dimensional convection diffusion equation for temperature takes the form

∂T
∂t

+ u
∂T
∂x

= k
∂2T
∂x2

+ S , (26)

T (x = 0) = T1, T (x = 1) = T2

where T is the temperature, u the convection velocity, k the thermal diffusion coefficient
and S(x) the heat source. The term ∂T

∂t = 0 for steady-state problems. The 2nd order

Meethal et al. AdvancedModeling and Simulation in Engineering Sciences (2023) 10:6 Page 13 of 23

(a) (b)

(c) (d)

Fig. 4 Distribution of temperature along x-axis for the steady state convection diffusion example for cases a
T1 = 100, T2 = 20, k = 10, u = 20, S = 100, b T1 = 25, T2 = 35, k = 10, u = 3, S = 1, c
T1 = 65, T2 = 178, k = 6, u = 11 and d T1 = 0, T2 = 200, k = 10, u = 30

ODE is supported by two boundary conditions (BCs) provided at the two ends of the 1D
domain, given as T1 and T2. We are concerned with the temperature distribution along
the x-axis for the given boundary conditions, velocity, diffusion coefficient and source.
Themodel is trained using boundary conditionsT1 and T2, source S, thermal diffusivity

k and convection velocity u as the input parameters to obtain the nodal temperature
values as output. The parameters for the neural network T (x) are learned by minimizing
the FEM-based loss. A standard Adam optimizer [49] is applied tominimize the following
loss function,

δ = 1
N

∑N

i=i
||KiTi − Fi||22 (27)

whereK is the stiffnessmatrix for the given input,F the force vector andT the output from
the neural network and N is the total number of samples used for training. Equation 27
guarantees that the model learns and preserves the underlying physics rather than mere
data.
The output of the model for different values of u, k and S under the boundary condi-

tions T1 and T2 is shown in Fig. 4. The figure also includes the standard FEM result for
comparison. It can be observed that the model learns the physics, and predictions match
the results obtained using FEM. Figure 4 has four sub-figures, which show the prediction
for different combinations of k , u and S. In every combination of k , u, S, T1 and T2,
the network was able to predict a temperature distribution that closely matches the FEM
result. The average absolute error between FEM results and FEM-NN results are 0.616,
0.022, 0.352, and 0.642 degrees for Figs. 4a, b, c and d respectively.
Figure 4a and b have a constant heat source on every node. Figure 4c and d have different

values for the heat source on each node. They also use random values for other parameters

Meethal et al. AdvancedModeling and Simulation in Engineering Sciences (2023) 10:6 Page 14 of 23

Fig. 5 Comparison of error of prediction between FEM-NN and conventional neural network

too. The parameters used are, T1 = 65, T2 = 178, S = [5, 2, 3, 4, 5, 1], u = 11, k = 6 for
Fig. 4c. Similarly, the parameters for the Fig. 4d are T1 = 0, T2 = 200, S = [5, 2, 3, 4, 5, 1],
k = 1, and u = 1. It can be observed that the model generalizes quite well in predicting
the distribution of temperature.
This algorithm described in “Finite element method-enhanced neural network for for-

ward problems” section does not use target values since it uses the matrix and vector
from FEM for loss calculation. Hence, it does not fall under supervised learning and can
be regarded as a semi-supervised learning approach. A comparison of the accuracy of
prediction for FEM-NN and conventional neural networks is presented in Fig. 5. The
accuracy is demonstrated using the mean squared error between the prediction and the
actual solution of 50,000 samples. The actual solution of 50, 000 samples is created using
a standard FEM code. It can be observed that the error is less than or similar to that of
the conventional neural network, whereas the time taken for conventional neural network
training, including data creation, is 3.4 times more than the introduced FEM-NN.

23-member truss

In this example, we consider a 23-member, simply-supported truss structure example
taken from [50]. A truss is governed by the equation

d
dx

[
AE

du(x)
dx

]
= 0 (28)

Where, A, E are the cross sectional area and modulus of elasticity of the material and u
the displacement. The equilibirum of forces is given by

AE
du(x)
dx

= T (29)

Here T is the axial force on the truss. A system like Fig. 6 is solved by assembling the dis-
cretized form of eachmember to form the complete system of equations. The geometrical
dimensions of the truss structure are given in Fig. 6. Young’s modulus of the horizontal
bars is given by E1 and for vertical bars by E2. The horizontal bars have a cross-sectional
area of A1 and vertical bars have A2. The truss is loaded by vertical forces P1 − P6. All of
these 10 variables are taken as an input for the neural network to predict the 39 nodal dis-
placements for the 13 nodes of the truss. The mean and standard deviation of the training
sample for each variable used as input is given in Table 1.
The vertical displacement of the nodes using an FEM-NN surrogate model is plotted

in Fig. 7. The example shown took the inputs E1 = 2.1 × 1011, E2 = 2.32 × 1011, A1 =

Meethal et al. AdvancedModeling and Simulation in Engineering Sciences (2023) 10:6 Page 15 of 23

Fig. 6 23-member truss with load

Table 1 Input parameters for the 23-bar truss problem

Input variable Distribution Mean Standard deviation

Horizontal cross-section area Ah(m2) Normal 1.0 × 10−3 1.0 × 10−4

Vertical cross-section area Av (m2) Normal 2.0 × 10−3 2.0 × 10−4

Horizontal Young’s modulus Eh(Pa) Normal 2.1 × 1011 2.1 × 1010

Vertical Young’s modulus Ev (Pa) Normal 2.1 × 1011 2.1 × 1010

Vertical forces P1 − P6(N) Normal −5.0 × 105 5.0 × 104

Fig. 7 Vertical deflection of the truss at lower horizontal section

9.2 × 10−4, A2 = 1.89 × 10−3, P1 = −5.2 × 104, P2 = −5.2 × 104, P3 = −5.4 × 104,
P4 = −3.6 × 104, P5 = −6.5 × 104 and P6 = −4.4 × 104. The displacement is compared
with a reference solution calculated using standard FEM. It can be observed that the
surrogate model predicts the displacements accurately. The mean error in prediction is
as low as 1e−4.

Applications
Uncertainty quantification of vibration due to wind load on high-rise building

It is important to identify, characterize and calculate the uncertainties for the results
of analyses of complex systems. Uncertainty analyses are mandatory in many regulatory
standards and guidelines. Oberkampf et al. [51] state that “realistic, modeling and simu-
lation of complex systems must include the non-deterministic features of the system and
environment”.
A sampling-based uncertainty analysis with Monte Carlo approaches is widely used

in the characterization and quantification of uncertainty [52]. Monte Carlo-based uncer-
tainty analyses can nowbe found in virtually all engineering fields [53]. These analyses lead

Meethal et al. AdvancedModeling and Simulation in Engineering Sciences (2023) 10:6 Page 16 of 23

Fig. 8 Wind load on a high-rise building

to final results expressed as a complementary cumulative distribution function (CDF). A
large number of simulations, each with different input values sampled from their respec-
tive distributions, are run for a Monte Carlo-based uncertainty analysis. The results from
simulations are used to obtain probability distributions of targeted outcomes. Hence, the
Monte Carlo is inherently computationally expensive. Two methods are mainly used to
reduce the number of simulation runs. The first is improving the efficiency of the sampling
strategy while attaining the desired accuracy with a minimum number of simulation runs.
The second is stopping the analysis once suitably accurate results have been achieved.
But it is also possible to use surrogate models with less computational time instead of the
original simulation model. A trained neural network can be used as a surrogate model. In
this way, the overall cost of aMonte Carlo uncertainty analysis can be reduced. Onemajor
drawback of using surrogate models is their reduced accuracy. Since conventional neural
networks behave like a black box, we can not quantify the accuracy of the prediction.
FEM-NN can be used as an alternative to overcome such challenges. The integral nature

of using FEM and a neural network with residual-based training enables us to obtain the
residual of each prediction. In this way, some of the predictions which are not accurate
enough can be solved further using any of the conventional iterative methods, using the
prediction from FEMNN as the initial value. Wind load on a high-rise building is used to
demonstrate the use of FEM-NN for uncertainty quantification analysis.
The wind load on high-rise buildings is studied during the design of buildings as it can

cause structural damage to the buildings. The uncertainty in wind climate and uncertain
terrain also affect the long term performance of the structure. Hence, the uncertainty in
these parameters and its effects has to be studied. The effect of uncertainty in thewind load
on the horizontal displacement at the top of the building is studied in this example. The
CAARC (Commonwealth Advisory Aeronautical Council) [54] building geometry is used
for the study. It is one of the main models used for calibrating experimental techniques
in wind tunnels for studying building aerodynamics. Since its introduction by Wardlaw
et al. in [55], the CAARC model has been extensively used in wind tunnel experiments.
The popularity resulted in large number of papers using numerical simulation based wind
analysis on CAARC model [54,56,57].

Meethal et al. AdvancedModeling and Simulation in Engineering Sciences (2023) 10:6 Page 17 of 23

Table 2 Details of the building—geometry and structural

Parameters Values

Height (H) 180 m

Width (W) 45 m

Length (D) 30 m

Frequency (f) 0.2 Hz

Density (ρ) 160 kg/m3

Damping ratio (ζ) 0.01

Table 3 Details of uncertain wind parameters

Uncertain parameters Distribution Values

Mean wind velocity u(zref) Weibull Mean = 40 m/s

Shape parameter = 2

Roughness length, z0 Uniform [0.1, 0.7]

The parameters of the building height (H), width (B) and length (D), air density ρ,
natural frequency of the building (f) and damping coefficient (ζ) are shown in Fig. 8 and
given in Table 2. The high-rise building is modeled using the Euler-Bernoulli beammodel
as described by the following equations

∂2

∂x2

(
EI

∂2uz(x)
∂x2

)
= f (z) (30)

∂2

∂x2

(
EI

∂2uy(x)
∂x2

)
= f (y) (31)

where uy and uz represents the deflection of the building and f represents the applied load.
E represents the Young’smodulus and I is the secondmoment of area. The corresponding
surrogate model is created using FEM-NN. The wind profile and surface roughness are
used as an input to themodel. Themean and standard deviation of the training sample for
each variable used as an input is given in Table 3. Awind-load on the building is calculated
using themean wind velocity u(zref) and roughness length z0. The static wind load at each
height of the building is calculated as

Fd(x) = ρV (x)2ACd
2

(32)

where, ρ is the air density, V (x) is the velocity at height x, A is the reference area and cd
is the coefficient of drag for the cross section.
The trained model is used for quantifying the uncertainty associated with the effects of

wind load on a high-rise building. The trained model is used to run a large number of
simulations to perform the uncertainty quantification using the Monte Carlo method.
Uncertainty in calculating the top displacement of the building is plotted for different

cases in Fig. 9. Figure 9a shows the probability distribution of the top displacement of the
building. Figure 9b shows the cumulative distribution function. Both figures also contain
the results obtained using FEM-based simulations. It can be observed that the FEM-
NN is able to reproduce the results obtained using FEM with reasonable accuracy. In
this case, the input parameters were taken from the same distribution as that used for
training. Figure 9c and d are the results of an analysis with different distribution of input
parameters than that used for training. The statistical quantities of the analysis for both
the cases are given in Table 4. The FEM-NN was able to produce accurate results in this

Meethal et al. AdvancedModeling and Simulation in Engineering Sciences (2023) 10:6 Page 18 of 23

(a) (b)

(c) (d)

Fig. 9 PDF and CDF in trained region in a and b and untrained region in c and d

Table 4 Statistical quantities of Monte-Carlo analysis

Trained region Untrained region

Mean Standard deviation Skewness Kurtosis Mean Standard deviation Skewness Kurtosis

FEM 0.183 0.199 2.679 12.278 1.016 0.470 0.667 0.717

FEM-NN 0.181 0.197 2.706 12.555 1.004 0.468 0.693 0.790

Fig. 10 Cost for Monte Carlo simulations in seconds

case too. Hence, the FEM-NN can replace the conventionally expensive FEM model for
analyses such as Monte Carlo uncertainty quantification.
The cost of running a Monte Carlo based uncertainty quantification using FEM and

FEM-NN is plotted against different numbers of samples in Fig. 10. It can be seen that the
FEM-NN based analysis reduces the cost significantly. However, it should be noted that
the training time or hyperparameter tuning time of the neural network is not taken into
account for this.

Meethal et al. AdvancedModeling and Simulation in Engineering Sciences (2023) 10:6 Page 19 of 23

Fig. 11 Schematic diagram of a flexible rotor-bearings system supported on bearings

Fluid bearing stiffness identification

Rotor dynamic systems are of engineering interest because of their use in a wide range of
applications such as power plants, engines, etc. The accurate prediction of their dynamic
behavior is vital for uninterrupted operation and safety. The estimation of bearing coef-
ficients has been a primary barrier for predicting or simulating the dynamic behavior of
such systems. For example, the dynamic coefficients of fluid bearings vary with the rotat-
ing speed of the machine. Fluid bearings are bearings in which the load is supported by a
thin layer of fluid. In hydrostatic bearings, the fluid is pressurized using an external pump,
whereas, in hydrodynamic bearings, the fluid is pressurized by the speed of the rotating
shaft/journal. A detailed review of different parameter identification methods for rotor
dynamic systems can be found in [58].
The introduced FEM-NN can be used as an alternative to the different methods that

exist to identify bearing parameters. In this example, the stiffness coefficients of fluid
bearings for the rotor dynamic system are modeled as a neural network taking rotational
speed as input.

Kb = f (ω) (33)

whereKb represents the dynamic stiffness coefficients of the fluid bearing andω represents
the rotational speed of the shaft. The function f represents the neural network mapping
rotational speed to stiffness coefficients. The complete system of equations describing
the motion of a rotor-dynamic system in frequency domain can be described using the
Eq. (34)

[−ω2M + jω(Gω + C) + K
]
q = F (34)

whereM, G, C and K are mass, gyroscopic, damping and stiffness matrices for the com-
plete system. F and q are the force and response of the system in the frequency domain.
When the stiffness of a fluid bearing is modeled as Eq. (33), the system stiffness matrix K
can be written as

K = Kr + Kb (35)

where Kr is the stiffness matrix of the system excluding bearings.
Inverse problem algorithms, similar to those for forward problems, also use the residual

of the equation as the loss function. In this case the residual r is

r = [−ω2M + jω(Gω + C) + K
]
q − F (36)

Minimizing this residual by optimizing the neural network parameters results in a neural
network which predicts the bearing stiffness for a given speed.
Figure 12 compares the predicted bearing stiffness against the actual stiffness. The actual

stiffness values are calculated by modelling a fluid bearing with the help of an open source

Meethal et al. AdvancedModeling and Simulation in Engineering Sciences (2023) 10:6 Page 20 of 23

Fig. 12 Bearing stiffness vs Speed for x-direction (left) and y-direction (right)

software called ross rotordnamic [59]. It can be observed that the stiffness variation against
speed of rotation is captured precisely by the neural network. The stiffness in the x− and
y− direction, which vary differently, are learned by a single training process using FEM-
NN algorithm for inverse problems proposed in section Finite element method-enhanced
neural network for inverse problems.

Conclusion and outlook
We introduced the Finite Element Method-enhanced neural networks (FEM-NN) for
forward and inverse PDE problems. The method combines the discretized form of the
PDE and loss function of the neural network to result in physics-informed surrogate
models. State-of-the-art algorithms in informed machine learning follow the idea of two
loss terms, using the strong form of the PDE or its variants as one loss term and weakly
enforcing boundary conditions with the help of a mean squared error as the other loss
term. In contrast to the trend in informed machine learning, we use a single loss term
that encapsulates the PDE along with boundary conditions in the discretized form. This
way, the well-posedness of the problem is not compromised. Compared to conventional
supervised learning, the computational cost is reduced drastically by using inexpensive
FEM simulation (system matrices) data for the training. In contrast, traditional methods
use the final solution,which is obtained after solving thematrix systemusing linear solvers.
The method also opens a way to use conventional FEM frameworks and neural networks
to make inexpensive surrogate models. Additionally, developments in the FEM and AI
communities could further develop the hybrid approach.
Although the algorithm is simple and has the potential to change simulation methods

drastically, it demands more research. The selection of suitable neural network architec-
ture is empirical in nature. This makes the application of the method to bigger problems
time-consuming in terms of architecture search. The presentmethod developed for linear
problems needs to be investigated for non-linear cases. The constant parameterized input
nature of neural networks restricts using a trained neural network on other geometries.
Even though concepts like transfer learning offer flexibility, they require further investiga-
tion before they can be combined with the proposed algorithm. The same problem can be
solved from the numerical community point of view by employing a polycube represen-
tation of the geometry. However, such methods are yet to be explored. It is also possible
to combine the introduced method with state-of-the-art PINNs. If the predictions using
PINNs are performed on a numerical grid, we can use the introduced residual-based loss

Meethal et al. AdvancedModeling and Simulation in Engineering Sciences (2023) 10:6 Page 21 of 23

function as a new loss term for PINNs. This way, the ill-posedness experienced by PINNs
can be reduced.

Acknowledgements
The authors are grateful to Siemens for sponsoring this project

Author contributions
RE, BO, KUB and RW conceptualized the main algorithm presented in this work. RE, AG and MK developed the
methodology for forward and inverse problems. AK implemented the uncertainty quantification application. RE and MK
implemented the parameter identification of fluid bearing. All authors approved the final submitted draft.

Funding Information
Open Access funding enabled and organized by Projekt DEAL.

Availability of data andmaterials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable
request. They are generated using open-source softwares Kratos [60] and Ross [59]. A sample case is available at https://
github.com/rishithellathmeethal/fem_nn.git.

Declarations

Consent for publication
All authors approved the final submitted draft

Competing interests
R.E., B.O., and M.K. are employed at company Siemens AG.

Received: 23 June 2022 Accepted: 8 March 2023

References
1. Russell S, Norvig P. Artificial intelligence—a modern approach. Prentice Hall series in artificial intelligence. 2nd ed.

Prentice Hall; 2003.
2. Szeliski R. Computer vision: algorithms and applications. Berlin: Springer; 2010.
3. Jurafsky D. Speech & language processing. India: Pearson Education India; 2000.
4. Burbidge R, Trotter M, Buxton B, Holden S. Drug design by machine learning: support vector machines for pharma-

ceutical data analysis. Comput Chem. 2001;26(1):5–14.
5. Lavecchia A. Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today.

2015;20(3):318–31.
6. LibbrechtMW, NobleWS.Machine learning applications in genetics and genomics. Nat Rev Genet. 2015;16(6):321–32.
7. Funge JD. Artificial intelligence for computer games: an introduction. CRC Press; 2004.
8. Grzeszczuk R, Terzopoulos D, Hinton G. Neuroanimator: fast neural network emulation and control of physics-based

models. In: Proceedings of the 25th annual conference on computer graphics and interactive techniques; 1998. p.
9–20.

9. Kawato M, Uno Y, Isobe M, Suzuki R. Hierarchical neural network model for voluntary movement with application to
robotics. IEEE Control Syst Mag. 1988;8(2):8–15.

10. Lu D, Weng Q. A survey of image classification methods and techniques for improving classification performance. Int
J Remote Sens. 2007;28(5):823–70.

11. Papageorgiou CP, Oren M, Poggio T. A general framework for object detection. In: Sixth international conference on
computer vision (IEEE Cat. No. 98CH36271), IEEE; 1998. p. 555–562.

12. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2015. p. 3431–3440.

13. Nareyek A. Ai in computer games. Queue. 2004;1(10):58–65.
14. Fairclough C, FaganM, Mac Namee B, Cunningham P. Research directions for AI in computer games. Technical report,

Trinity College Dublin, Department of Computer Science; 2001.
15. Yannakakis GN. AI in computer games : generating interesting interactive opponents by the use of evolutionary

computation. PhD thesis, University of Edinburgh, UK; 2005.
16. Tompson J, Schlachter K, Sprechmann P, Perlin K. Accelerating eulerian fluid simulation with convolutional networks.

CoRR abs/1607.03597; 2016. arXiv:1607.03597
17. Hecht-Nielsen R. Theory of the backpropagation neural network. In: Neural networks for perception. Elsevier; 1992. p.

65–93.
18. Adeli H, Yeh C. Perceptron learning in engineering design. Comput-Aided Civil Infrastruct Eng. 1989;4(4):247–56.
19. Thuerey N, Weißenow K, Prantl L, Hu X. Deep learning methods for reynolds-averaged navier-stokes simulations of

airfoil flows. AIAA J. 2020;58(1):25–36.
20. Pfaff T, Fortunato M, Sanchez-Gonzalez A, Battaglia PW. Learning mesh-based simulation with graph networks; 2020.

arXiv preprint http://arxiv.org/abs/2010.03409
21. Guo X, Li W, Iorio F. Convolutional neural networks for steady flow approximation. In: Proceedings of the 22nd ACM

SIGKDD international conference on knowledge discovery and data mining; 2016. p. 481–490
22. Zhang R, Liu Y, Sun H. Physics-informed multi-lstm networks for metamodeling of nonlinear structures. Comput

Methods Appl Mech Eng. 2020;369:113226.

https://github.com/rishithellathmeethal/fem_nn.git
https://github.com/rishithellathmeethal/fem_nn.git
http://arxiv.org/abs/1607.03597
http://arxiv.org/abs/2010.03409

Meethal et al. AdvancedModeling and Simulation in Engineering Sciences (2023) 10:6 Page 22 of 23

23. von Rueden L, Mayer S, Beckh K, Georgiev B, Giesselbach S, Heese R, Kirsch B, Pfrommer J, Pick A, Ramamurthy R,
et al. Informed machine learning–a taxonomy and survey of integrating knowledge into learning systems; 2019.
arXiv:1903.12394

24. Chang M-W, Ratinov L, Roth D. Guiding semi-supervision with constraint-driven learning. In: Proceedings of the 45th
annual meeting of the association of computational linguistics; 2007. p. 280–287

25. Hu Z, Yang Z, Salakhutdinov R, Xing E. Deep neural networks with massive learned knowledge. In: Proceedings of the
2016 conference on empirical methods in natural language processing; 2016. p. 1670–1679.

26. Stewart R, Ermon S. Label-free supervision of neural networks with physics and domain knowledge. In: Thirty-first
AAAI conference on artificial intelligence; 2017.

27. Raissi M, Perdikaris P, Karniadakis GE. Physics informed deep learning (part i): Data-driven solutions of nonlinear partial
differential equations; 2017. arXiv preprint http://arxiv.org/abs/1711.10561

28. Griewank A, et al. On automatic differentiation. Math Program Recent Dev Appl. 1989;6(6):83–107.
29. Cai S, Mao Z, Wang Z, Yin M, Karniadakis GE. Physics-informed neural networks (pinns) for fluid mechanics: a review.

Acta Mech Sinica. 2022;1–12.
30. Cai S, Wang Z, Wang S, Perdikaris P, Karniadakis GE. Physics-informed neural networks for heat transfer problems. J

Heat Transfer. 2021;143(6).
31. Misyris GS, Venzke A, Chatzivasileiadis S. Physics-informed neural networks for power systems. In: 2020 IEEE power &

energy society general meeting (PESGM), IEEE; 2020. p. 1–5.
32. Lu L, Meng X, Mao Z, Karniadakis GE. Deepxde: a deep learning library for solving differential equations. SIAM Review.

2021;63(1):208–28.
33. Pang G, Lu L, Karniadakis GE. fpinns: fractional physics-informed neural networks. SIAM J Sci Comput. 2019;41(4):2603–

26.
34. Zhang D, Lu L, Guo L, Karniadakis GE. Quantifying total uncertainty in physics-informed neural networks for solving

forward and inverse stochastic problems. J Comput Phys. 2019;397:108850.
35. Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L. Physics-informed machine learning. Nature Reviews.

Physics. 2021;3(6):422–40.
36. Wang S, Yu X, Perdikaris P. When and why pinns fail to train: a neural tangent kernel perspective. J Comput Phys.

2022;449:110768.
37. Krishnapriyan A, Gholami A, Zhe S, Kirby R, Mahoney MW. Characterizing possible failure modes in physics-informed

neural networks. Adv Neural Inf Process Syst. 2021;34:26548–60.
38. Zienkiewicz OC, Taylor RL. The finite element method, the basis. The finite element method. Wiley; 2000. https://

books.google.de/books?id=Huc5tAEACAAJ
39. Versteeg HK, Malalasekera W. An introduction to computational fluid dynamics: the finite volume method. Pearson

education; 2007.
40. Oñate E, Owen R. Particle-based methods: fundamentals and applications. Computational methods in applied sci-

ences. Netherlands: Springer; 2011.
41. Kollmannsberger S. The finite cell method: towards engineering applications. Technische Universität München,

Munich; 2019. https://books.google.de/books?id=oJtdzQEACAAJ
42. Ypma TJ. Historical development of the Newton-Raphson method. SIAM Rev. 1995;37(4):531–51.
43. Niroomandi S, Alfaro I, González D, Cueto E, Chinesta F. Real-time simulation of surgery by reduced-order modeling

and x-fem techniques. Int J Numer Methods Biomed Eng. 2012;28(5):574–88. https://doi.org/10.1002/cnm.1491.
44. Keiper W, Milde A, Volkwein S. Reduced-order modeling (ROM) for simulation and optimization: powerful algorithms

as key enablers for scientific computing. Berlin: Springer; 2018.
45. Schilders WH, van der Vorst HA, Rommes J. Model order reduction: theory, research aspects and applications. Mathe-

matics in industry. Heidelberg: Springer; 2008.
46. Antoulas AC. Approximation of large-scale dynamical systems. Society for Industrial and Applied Mathematics;

2005. https://doi.org/10.1137/1.9780898718713. https://epubs.siam.org/doi/pdf/10.1137/1.9780898718713. https://
epubs.siam.org/doi/abs/10.1137/1.9780898718713

47. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J,
Monga R, Moore S, Murray DG, Steiner B, Tucker PA, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X. Tensorflow: a
system for large-scale machine learning. In: OSDI. USENIX Association; 2016. p. 265–283.

48. Ketkar N. Introduction to pytorch. In: Deep learning with Python. Springer; 2017. p. 195–208.
49. Kingma DP, Ba J. Adam: a method for stochastic optimization; 2014. arXiv preprint http://arxiv.org/abs/1412.6980
50. Sudret B. Uncertainty propagation and sensitivity analysis in mechanical models-contributions to structural reliability

and stochastic spectral methods. Habilitationa diriger des recherches, Université Blaise Pascal, Clermont-Ferrand,
France. 2007;147:53.

51. Oberkampf WL, DeLand SM, Rutherford BM, Diegert KV, Alvin KF. Error and uncertainty in modeling and simulation.
Reliab Eng Syst Saf. 2002;75(3):333–57.

52. Helton JC. Treatment of uncertainty in performance assessments for complex systems. Risk Anal. 1994;14(4):483–511.
53. Janssen H. Monte–Carlo based uncertainty analysis: sampling efficiency and sampling convergence. Reliab Eng Syst

Saf. 2013;109:123–32.
54. Braun AL, Awruch AM. Aerodynamic and aeroelastic analyses on the CAARC standard tall building model using

numerical simulation. Comput Struct. 2009;87(9–10):564–81.
55. Wardlaw R, Moss G. A standard tall building model for the comparison of simulated natural winds in wind tunnels.

CAARC, CC 662m Tech. 1970. p. 25.
56. Huang S, Li QS, Xu S. Numerical evaluation of wind effects on a tall steel building by CFD. J Constr Steel Res.

2007;63(5):612–27.
57. Tosi R, Núñez M, Pons-Prats J, Principe J, Rossi R. On the use of ensemble averaging techniques to accelerate the

uncertainty quantification of cfd predictions in wind engineering. J Wind Eng Ind Aerodyn. 2022;228:105105.
58. Lees A. Identification of dynamic bearing parameters: a review. Shock Vib Digest. 2004;36(2):99–124.

http://arxiv.org/abs/1903.12394
http://arxiv.org/abs/1711.10561
https://books.google.de/books?id=Huc5tAEACAAJ
https://books.google.de/books?id=Huc5tAEACAAJ
https://books.google.de/books?id=oJtdzQEACAAJ
https://doi.org/10.1002/cnm.1491
https://doi.org/10.1137/1.9780898718713
https://epubs.siam.org/doi/pdf/10.1137/1.9780898718713
https://epubs.siam.org/doi/abs/10.1137/1.9780898718713
https://epubs.siam.org/doi/abs/10.1137/1.9780898718713
http://arxiv.org/abs/1412.6980

Meethal et al. AdvancedModeling and Simulation in Engineering Sciences (2023) 10:6 Page 23 of 23

59. Timbó R, Martins R, Bachmann G, Rangel F, Mota J, Valério J, Ritto TG. Ross—rotordynamic open source software. J
Open Source Softw. 2020;5(48):2120. https://doi.org/10.21105/joss.02120.

60. DadvandP, Rossi R,Oñate E. Anobject-orientedenvironment for developingfinite element codes formulti-disciplinary
applications. Arch Comput Methods Eng. 2010;17(3):253–97.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.21105/joss.02120

	Finite element method-enhanced neural network for forward and inverse problems
	Abstract
	Introduction
	Algorithm
	Finite element method
	Neural network and custom loss
	Finite element method-enhanced neural network for forward problems
	Finite element method-enhanced neural network for inverse problems
	Comparison between FEM-enhanced neural network and conventional neural networks for simulation
	Comparison between FEM-enhanced neural network and PINN

	Results and discussion
	Steady-state convection diffusion problem
	23-member truss

	Applications
	Uncertainty quantification of vibration due to wind load on high-rise building
	Fluid bearing stiffness identification

	Conclusion and outlook
	Declarations

	References

