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Abstract

We propose a new damage model for simulating the cohesive fracture behavior of
multi-phase composite materials such as concrete. The proposed model can evaluate
the damage of the matrix-phase in composite materials using the volume fraction of
the matrix within an element comprising the matrix and other materials. The damage
model was first formulated for 1D problems and then extended to two-dimensional
(2D) and three-dimensional (3D) problems using the equivalent strain based on the
modified von-Mises criterion. The validity of the damage model was verified for 1D and
2D problems, and the model was also applied to the simulation of 3D cohesive crack
growth in a heterogeneous solid with a large number of spherical inclusions. The
results confirm that the proposed model allows the meshless finite element analysis of
cohesive fracturing in composite materials.

Keywords: Damage model, Multi-phase composite, Cohesive fracture, Concrete,
Meshless analysis

Introduction
Concrete is widely used as a construction material in civil engineering structures, and
can be considered as a heterogeneous material comprising a mortar matrix and coarse-
aggregate inclusions in the meso-scale, which corresponds to centimeter scale. Generally,
mortar without aggregates and concrete with aggregates exhibit different fracture behav-
iors, and therefore have different material strength and toughness. Concrete has higher
toughness than mortar owing to the presence of coarse aggregates, which complicates
the concrete’s fracture behavior and results in cracks generating and propagating dispers-
edly at various locations within the concrete. This implies that coarse aggregates play a
mechanically significant role in the deformation and fracture behavior of concrete.
In ordinary concrete, cracks rarely penetrate coarse aggregates. In many cases, cracks

propagate within themortar and around the coarse aggregates. To reproduce this fracture
behavior using numerical analysis, it is necessary to prepare an analysis mesh that reflects
the geometry and distribution of aggregates, and to simulate the cohesive crack propaga-
tion behavior of mortar. However, such an analysis mesh for a heterogeneous structure
with plenty of aggregates is difficult to generate owing to the aggregates’ various shapes
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and random distribution. Moreover, even if the mesh could be prepared, it would still be
difficult to simulate the cohesive crack propagation behavior. The mesh generation for
a complicated micro- or meso-structure, and the analysis of crack propagation are both
major challenges for computational mechanics and the finite element method (FEM).
Numerical analyses for the crack propagation behavior in the concrete’s meso-scale

have been conducted, andmany such analyses have employed discretemodels, such as the
discrete-element model [1–3], the lattice model [4–8], and the rigid-body-spring model
[9–11], as analysis tools for simulating discontinuous deformation. These approaches
allow the simulation of crack propagation and its interactionswith the coarse aggregates in
concrete because they enable the easy modeling of discontinuous deformation. Although
the lattice or discrete modeling fits the simulation of complicated fracture behavior, such
as that of concrete, the principal drawback of the abovementioned models is that the
numerical result is strongly dependent on the mesh pattern and mesh size.
The FEM is a reasonable choice as a tool for structural analysis. Many studies have

reported the analysis of the concrete’s meso-structure using the FEM, and have achieved
the generation of finite elementmeshes along the geometry of coarse aggregates by replac-
ing the actual aggregates with simple artificial figures such as two-dimensional (2D) circles
or polygons in [12–15], and three-dimensional (3D) spheres or polyhedrons in [16–21].
To simulate the fracture behavior of the meso-structure of actual concrete, the problem
of mesh generation must first be solved.
Image-based analyses have been conducted using the computed tomography image of

concrete to analyze actual concrete’s meso-structures [22–26].Most of these analyses use
the Voxel-type FEM, which allows the direct transformation of the digital image into a
finite element mesh [27–30]. Although the Voxel FEM has the advantage of easily reflect-
ing the complicated geometry of aggregates using a grid mesh instead of mesh generation
in accordancewith the geometry, the zigzag-patternedmesh reduces the accuracy of stress
at thematerial interface. Additionally, the requirement of a finemesh to express a smooth
geometry increases the computational cost. In recent years, the virtual element method
[31] has been applied to analyze concrete’s mesostructures reconstructed by X-ray and
neutron-computed tomography images [32]. Computational techniques for modeling
the random distribution of coarse aggregates with a complex geometry have also been
investigated [33–35].
As an alternative approach for avoiding the difficulty of mesh generation, meshfree or

meshless analyses such as the extended FEM (XFEM) [36], the finite cover method (FCM)
[37], and other related methods, have been applied to the analysis of heterogeneous solids
such as concrete. These methods can analyze the crack growth and the heterogeneous
solidswithoutmesh generation along thephysical boundaries [38,39].Moreover,meshless
analysis is a possible approach toward simulating the crack growth in the concrete’smeso-
structure, but its application to the analysis of multiple cracks in heterogeneous solids is
difficult, owing to physical boundaries such as cracks or interfaces,whichmust be captured
and traced during the finite element analysis, instead of meshing or re-meshing along the
physical boundaries.
The authors have previously investigated adamagemodel basedon the fracturemechan-

ics of concrete [40,41]. By analyzing thismodel using the FEM, it is possible to simulate the
fracture behavior of quasi-brittle materials. The arbitrary crack growth can be expressed
using a finemesh, owing to themethod’s low dependence onmesh size. The application of
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this method to the crack propagation analysis of the mortar phase enables the simulation
of the fracture behavior of the concrete’s meso-structure, but simulation has not yet been
achieved owing to the difficulty ofmesh generation, as reported by other studies. Thus, the
first point to be addressed is the development of an approach for simulating the fracture
behavior of heterogeneous solids in a meshless manner.
This paper proposes a new damage model for simulating the cohesive fracture behavior

of multi-phase composite materials such as concrete. A remarkable characteristic of the
proposed model is that the formulation is based on the theoretical solution of a one-
dimensional (1D) elastic bar problem, which allows the damage evaluation of the matrix
phase in multi-phase composite materials using the volume fraction of each material
phase. This means that finite element analysis can be carried out without mesh gener-
ation along the material interfaces. In other words, the proposed damage model allows
a type of meshless analysis using a finite element mesh generated irrespectively of the
physical geometries, and is effective in simulating the fracture behavior of the concrete’s
meso-structure. It is well known that the fracture of concrete is affected by the presence
of the interface between themortar and aggregates. The best thing to simulate the fracture
behavior of composite materials like concrete is to model the three-phase structure com-
posed of the matrix, inclusions, and interfaces. This paper, however, focuses on modeling
two-phase structures composed of the matrix and inclusions as a first step to simulate the
fracture behavior of real concrete.
This paper is organized as follows. Section 2 begins with the formulation of the dam-

age model as a 1D problem, which is then extended to 2D and 3D problems using the
equivalent strain and stress. Additionally, the potential of meshless finite element analysis
for composite materials is explained. In Section 3, numerical examples are solved for 1D
and 2D two-phase composites to verify the validity of the proposed damage model, and
the results are compared with reference solutions. Subsequently, the proposed model is
applied to the simulation of 3D cohesive crack growth in a heterogeneous solid with a
large number of spherical inclusions as an alternative to the concrete’s meso-structure.
The final section presents the concluding remarks andmakes recommendations for future
work.

Formulation of damagemodel
This section presents the formulation of the proposed damage model for simulating the
cohesive fracture behavior of multi-phase composite materials. First, the damage model
is formulated as a 1D problem based on the elastic solution of a composite bar problem.
Then, the 1D formulation is extended tomulti-dimensional problemsu sing the equivalent
strain and stress. The characteristics of meshless finite element analysis for multi-phase
composite materials using the damage model is also described.

Formulation in 1D problems

The tension problem of the two-phase composite bar shown in Fig. 1 is set to formulate
the damagemodel, wherein the composite bar does not include the interface. This section
targets the composite bar in which different materials are arranged in series under tensile
load to model the tensile damage of multi-phase composite materials. In many cases
of multi-phase composites, the stress redistribution due to fracture damages the only
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(a)

(b)

Fig. 1 Tensile problem of an elastic bar comprising two materials: a elastic state without damage; b damaged
state

weakest material. Thus, the damage is assumed to be induced only in Material 1. Let h1
and E1 be the length and Young’s modulus of Material 1, respectively, and h2 and E2 be
the length and Young’s modulus of Material 2, respectively. The cross-sectional area is
constant throughout the bar.
By letting h = h1 + h2 be the total length of the bar, the volume fraction of Materials 1

and 2 can be expressed as follows:

V = h1
h ; 1 − V = h2

h (1)

where V is the volume fraction of Material 1.
First, let us consider the elastic state without damage, as shown in Fig. 1 a. The axial

force is constant in the composite bar, wherein different materials are arranged in series.
With a constant cross-section, the stress is also constant throughout the bar and can be
expressed as follows:

σ = E1ε1 = E2ε2 (2)

where ε1 and ε2 are the strain of Materials 1 and 2, respectively. From the relationship
between the displacement and strain, the average strain of the entire bar can be calculated
using the volume fraction of the materials in Eq. (1), as follows:

ε = ε1h1 + ε2h2
h = V1ε1 + (1 − V )ε2 (3)

Substituting Eq. (2) into Eq. (3) yields the following relationship between the stress and
strain of the entire bar:

σ =
( V
E1

+ 1 − V
E2

)−1
ε = Eε (4)

where E is the average Young’smodulus for the composite bar, and is expressed as follows:

E =
( V
E1

+ 1 − V
E2

)−1
(5)

Let ε̄1 be the damage initiation strain ofMaterial 1, and let ε̄ denote the average strain of
the composite bar when the strain of Material 1 reaches the damage initiation strain; that
is, ε1 = ε̄1. The combination of Eqs. (2) and (3) yields the following relationship between
ε̄ and ε̄1:

ε̄ = V ε̄1 + (1 − V )ε2 =
{
V + (1 − V )

E1
E2

}
ε̄1 = α0ε̄1 (6)
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where α0 is expressed as follows:

α0 =
{
V + (1 − V )

E1
E2

}
(7)

By combining Eqs. (5) and (7), we can also obtain the following relationship between E
and E1:

E = α0
−1E1 (8)

Next, we consider the case whereinMaterial 1 is in a damaged state, as shown in Fig. 1 b.
LetD be the damage variable representing the degree of stiffness degradation, which takes
0 ≤ D ≤ 1. Because the axial force is constant throughout the composite bar even when
Material 1 is in a damaged state, the stress of the composite bar is expressed as follows:

σ = (1 − D)E1ε1 = E2ε2 (9)

The combination of Eqs. (3) and (9) yields the following relationship between ε and ε1,
when Material 1 is in a damaged state:

ε = V ε1 + (1 − V )ε2 =
{
V + (1 − V )(1 − D)E1E2

}
ε1 = αDε1 (10)

where αD is given by the following relationship:

αD =
{
V + (1 − V )(1 − D)E1E2

}
(11)

To model the cohesive fracture process in quasi-brittle materials, a fracture mechanics
model based on the energy balance approach in terms of fracture energy, as proposed
by Hillerborg et al. [42], is introduced into the damage model. Specifically, the following
relationship between the cohesive-traction force and the crack-opening displacement on
the crack faces, which has the same form as in [43] and as shown in Fig. 2, is used as the
fracture mechanics model, as follows::

t1 = t̄1 exp
(

− t̄1
Gf

w1

)
(12)

where t1 is the cohesive-traction force per unit area,w1 is the crack-opening displacement,
t̄1 is the fracture (damage) initiation stress, Gf is the fracture energy, and subsript 1 indi-
cates Material 1. Again, note that fracture (damage) initiation is allowed only in Material
1. For 1D problems, the cohesive-traction force accommodates the stress as follows:

t1 = σ1 ; t̄1 = σ̄1 = E1ε̄1 (13)

where σ1 and σ̄1 are the stress and the fracture (damage) initiation stress of Material 1,
respectively. From the relationship between displacement and strain, the crack-opening
displacement of Material 1, w1 can be calculated as follows:

w1 = ε1h1 − ε̄1h1 = (ε1 − ε̄1)h1 (14)
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Fig. 2 Relationship between cohesive-traction force and crack-opening displacement in fracture process zone
of quasi-brittle materials

The substitution of Eqs. (13) and (14) into (12) yields the following relationship between
the stress and strain of Material 1:

σ1 = E1ε̄1 exp
{
−E1ε̄1

Gf
(ε1 − ε̄1)h1

}
(15)

By rearranging Eq. (15) such that it follows the constitutive equation using the damage
variable, we obtain the following relationship:

σ1 = ε̄1
ε1

exp
{
−E1ε̄1

Gf
(ε1 − ε̄1)h1

}
E1ε1

=
(
1 −

[
1 − ε̄1

ε1
exp

{
−E1ε̄1

Gf
(ε1 − ε̄1)h1

}])
E1ε1

= (1 − D)E1ε1 (16)

where the damage variable D is expressed as follows:

D = 1 − ε̄1
ε1

exp
{
−E1ε̄1

Gf
(ε1 − ε̄1)h1

}
(17)

Next, we must derive the constitutive equation for the composite bar involving the
damage ofMaterial 1, instead of deriving it only forMaterial 1. The composite bar wherein
differentmaterials are arranged in serieswith the samecross-section exerts constant stress;
that is,σ1 = σ . Additionally, by substituting Eqs. (1), (6) and (8) into Eq. (16), we can obtain
the following constitutive relationship between the stress and strain of the entire bar:

σ = Eε̄ exp
{
−Eε̄

Gf

(
ε

αD
− ε̄

α0

)
Vh

}

=
(
1 −

[
1 − ε̄

ε
exp

{
−Eε̄

Gf

(
ε

αD
− ε̄

α0

)
Vh

}])
Eε

= (1 − D)Eε (18)

where the damage variable D is expressed as follows:

D = 1 − ε̄

ε
exp

{
−Eε̄

Gf

(
ε

αD
− ε̄

α0

)
Vh

}
(19)
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Extension to multi-dimensional problems

In multi-dimensional problems, the two-phase 1D composite bar is translated into two-
phase composite materials. The constitutive equation for the damage of two-phase com-
posite materials in multi-dimensional problems is expressed as follows:

σ = (1 − De)c : ε (20)

where σ is the Cauchy stress tensor, ε is the small strain tensor, c is the elastic coefficient
tensor, and De is the damage variable in multi-dimensional problems.
Moreover, in multi-dimensional problems, the stress and strain tensors are converted

into the equivalent stress and strain to accommodate the unidirectional stress and strain.
Specifically, we use the followingmodified von-Mises criterion [44] as the equivalent strain
εe because it is suitable to quasi-brittle materials such as concrete:

εe = k − 1
2k(1 − 2ν)

I ′1 + 1
2k

√( k − 1
1 − 2ν

I ′1
)2

+ 12k
(1 + ν)2

J ′2 (21)

where ν is the Poisson’s ratio, k is the ratio of tensile to compressive strength, and I ′1 and
J ′2 are the first invariant of the strain tensor and second invariant of the deviatoric strain
tensor, respectively, and are defined as follows:

I ′1 = tr ε = εkk (22)

J ′2 = 1
2
e : e = 1

2
eklekl ; e = ε − 1

3
tr ε (23)

Figure 3 shows the contour plots of the equivalent strain based on the modified von-
Mises criterion in the principal strain space for different values of the strength ratio, k .
As can be seen in the plots, the equivalent strain is capable of representing a compressive
strength higher than the tensile strength, which is essential for modeling the fracture of
quasi-brittle materials.
Let σe be the equivalent stress obtained from the equivalent strain, that is, εe. Because

the equivalent stress and strain are scalar values corresponding to unidirectional prob-
lems, they can be related using 1D constitutive equations. This implies that the above-
mentioned formulation for 1D problems can be applied. Accordingly, the relationship
between the equivalent stress and strain corresponding to the constitutive equation in
multi-dimensional problems can be expressed as follows:

σe = Eε̄e exp
{
−Eε̄e

Gf

(
εe
αD

− ε̄e
α0

)
Vhe

}

=
(
1 −

[
1 − ε̄e

εe
exp

{
−Eε̄e

Gf

(
εe
αD

− ε̄e
α0

)
Vhe

}])
Eεe

= (1 − De)Eεe (24)

where ε̄e is the fracture (damage) initiation strain in multi-dimensional problems, he is
the length of the multi-dimensional domain, which can also be considered as the repre-
sentative length of the element whose damage is evaluated, andDe is the damage variable
in multi-dimensional problems and expressed as follows:

De = 1 − ε̄e
εe

exp
{
−Eε̄e

Gf

(
εe
αD

− ε̄e
α0

)
Vhe

}
(25)
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Fig. 3 Contour plot of modified von-Mises criterion

The abovementioned formulation results in the damage model of two-phase materials.
Naturally, the damage model is also applicable to multi-phase composite materials.

Governing equation for quasi-static equilibrium

The damage variableDe given in Eqs. (24) and (25) allows the damage evaluation of multi-
phase compositematerials. Thus, the governing equations for the quasi-static equilibrium
of an elastic continuum involving damage are expressed as follows:

∇ · σ + b̄ = 0 in Ω (26)

ε = 1
2

{
∇u + (∇u)T

}
in Ω (27)

σ = (1 − De)c : ε in Ω (28)

where b̄ is the given body force vector,u is the displacement vector,Ω is the entire domain,
and ∇ is the nabla operator for calculating the gradients.

Application to finite element analysis

As can be seen in Eq. (28) from the governing equations, the proposed damage model can
be subjected to finite element analysis simply by introducing the damage variable (easily
calculated using the equivalent strain) into Hooke’s law.
To calculate the damage variable, the length of themulti-dimensional domain he shown

in Eq. (24) must be determined. Here, he conforms to the total length h of the composite
bar in 1D problems, as shown in Fig. 1, and corresponds to the length of the finite element
in 1D finite element analysis. In 2D or 3D finite element analysis, he accommodates the
representative length of finite elements, as shown schematically in Fig. 4. In the numer-
ical examples presented in Section 3, unstructured random meshes were prepared with
triangular elements for 2D problems and with tetrahedral elements for 3D problems so
as to reduce the dependency of mesh configuration on the damage (crack) propagation
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Fig. 4 Conversion of multi-dimensional problems into 1D problems

behavior. In this study, the representative length of the finite elements was estimated as
follows:

he = √
2Ae for 2D triangular finite elements (29)

he = (12Ve)1/3 for 3D tetrahedral finite elements (30)

whereAe is the area of the 2D finite element andVe is the volume of the 3D finite element.
The multiplier of 2 in Eq. (29) for the triangular elements results from the assumption
whereby two triangles form a quadrilateral. Similarly, the multiplier of 12 in Eq. (30) for
the tetrahedral elements is based on the assumption whereby 12 tetrahedrons form a
hexahedron.

Capability for meshless finite element analysis

The proposed damage model is based on the theoretical solution of 1D elastic composite
bar problems, and allows the damage evaluation of the matrix-phase in composite mate-
rials using the volume fraction of the matrix. An important point is that the presence of
each material-phase can be expressed only by the volume ratio, and does not require the
physical shape.
In multi-dimensional problems, the multi-axial strain fields are replaced by a uni-axial

bar problem using the equivalent strain, as shown in Fig. 4. Thus, it becomes possible to
evaluate the damage of the matrix-phase in composite materials using only the volume
ratio, in the same manner as for multi-dimensional problems. This implies that, in the
finite element analysis, the mesh configuration does not need to conform to the physical
boundaries of composite materials. In other words, the finite element mesh can be gen-
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(a)

(b)

(c)

Fig. 5 Tensile problem of bar comprising two different materials

erated irrespectively of the physical boundaries, which enables a type of meshless finite
element analysis.

Verification of damagemodel
The proposed damage model enables the damage evaluation of the matrix-phase in com-
posite materials within the framework of meshless finite element analysis. This section
presents several numerical examples to verify the validity of thedamagemodel anddemon-
strate the availability of meshless finite element analysis.

Verification example in 1D

First, the verification of the proposed damage model is carried out for 1D problems. The
analysis target is a composite bar composed of two differentmaterials subjected to a tensile
load, as shown in Fig. 5 a.OnlyMaterial 1 in the center of the bar is assumed to be damaged.
The material parameters are as follows: E1 = 20 GPa, ε̄1 = 0.0002, Gf = 0.05 N/mm,
E2 = 60 GPa.
Figure 5 b shows the finite element mesh for the reference solution, wherein the com-

posite bar is divided into nine elements according with thematerial configuration at equal
intervals. Reference analysis was performed by applying the original damagemodel [40] to
Material 1 in the reference finite element mesh. Figure 5 c shows the finite element mesh
for the proposed damagemodel. In the proposedmodel, the mesh generation conforming
to the material interfaces is not required; therefore, it suffices to prepare three elements
irrespectively of the material configuration, and provide each element with the volume
fraction of Material 1.
Figure 6 compares the load–displacement responses obtained by the reference analysis

and the proposed analysis. The horizontal axis indicates the apparent strain calculated as
the displacement divided by the length of the model, while the vertical axis represents the
apparent stress defined as the load divided by the loading area. The results confirmed that
theproposedmodel has goodfit to the reference solution andallows thedamage evaluation
of Material 1 within the element by only using the volume fraction. This indicates the
validity of the damagemodel based on the elastic solution of a 1D composite bar problem.
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Fig. 6 Comparison of load–displacement curves in 1D bar problem

Fig. 7 Three-point bending problem of beam with three circular inclusions

Verification example in 2D

Next, the validity of the proposed damage model was verified for 2D problems. Unlike
1D problems, the damage may be evaluated by using the equiavalent strain. The main
difference from 1D problems is that the equivalent strain is used in finite element analysis
with the damage model.
The analysis target is a beam with a single-edge notch subjected to three-point bending

under the plane strain condition, as shown in Fig. 7. To investigate the crack propagation
behavior, the beam has three circular inclusions in the region where the crack propagates.
The material parameters of the matrix and the inclusions are presented in Fig. 7, and it is
assumed that the inclusions do not fracture.
Figure 8 shows two finite element mesh types. The mesh sizes are determined such

that the inclusion geometries can be sufficiently reproduced. The finite element mesh in
Fig. 8a was generated according to the material interfaces, and used for reference analysis.
Figure 8b presents the finite element mesh for applying the proposed damage model; the
mesh was generated irrespectively of the material interfaces. The difference of the meshes
is obvious, as can be seen from the enlarged view shown in Figure 8 (c).
Figure 9 compares the load–displacement curves obtained from the reference analysis

and proposed analysis. The response obtained from the proposed model is in good agree-
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(a)

(b)

(c)

Fig. 8 Finite element meshes for 2D three-point bending problem

Fig. 9 Comparison of load–displacement curves in 2D beam problem

mentwith the reference solution. Thismeans that, in the samemanner as for 2Dproblems,
the proposed damage model is capable of evaluating the damage of the matrix-phase in
composite materials using the volume fraction of the matrix within the element.
The distributions of equivalent strain are shown in Fig. 10. The damage in the proposed

model is evaluated based on the equivalent strain, and the strain localization in such an
analysis with a damage model can be considered as cracking. Thus, it becomes possible to
visualize the crack propagation behavior by displaying the equivalent strain distribution,
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(a)

(b)

Fig. 10 Comparison of damage propagation: left figures show the reference solutions; right figures present the
results obtained by the proposed model

which takes the damage initiation strain as the minimum value, as shown in Fig. 10. For
convenience, the strain localization caused by damage is referred to as “crack” in this
paper.
The comparison of these results revealed that the path and rate of crack propagation are

approximately the same, and thus the proposed model is capable of evaluating only the
matrix-phase damage within elements arranged irrespectively of the material interfaces.
The damage model formulated in this paper can also obtain satisfactory results for 2D
problems.

Application to 3D problem

Finally, the availability and applicability of the proposed model is demonstrated for a 3D
problem, for which it is very difficult to prepare a finite element mesh. The analysis target
is a concrete-like beam subjected to three-point bending. The concrete includes a large
number of coarse aggregates, as shown in Figure 11. For simplicity, the aggregates are
considered as spherical inclusions with different sizes, and each of them is arranged as
densely as possible within the beam.
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Fig. 11 Three-point bending problem for beam with many spherical inclusions

The finite element mesh is prepared irrespective of the spherical aggregate geometries.
A random mesh with tetrahedral elements is used because it has good compatibility for
reducing the mesh dependency on the damage propagation behavior. The total number
of finite elements and nodes is approximately 4.4 million and 0.8 million, respectively.
The material properties of the matrix and inclusions are presented in Fig. 11. Because it is
impractical to generate a finite element mesh in accordance with the physical geometries,
only numerical analysis was conducted for the proposed model.
The distribution of equivalent strain is shown in Fig. 12, along with an enlarged view

of the center of the beam. The result shows the cracks propagating around the spherical
coarse aggregates, which is similar to the cracking of actual concrete and confirms that the
proposed model allows crack propagation analysis for such an extremely complicated 3D
problem. Additionally, it can be seen that the meshless analysis of heterogeneous solids
can also be performed without mesh generation according to the physical geometries,
which implies that the proposed damage model can successfully simulate the cohesive
fracture behavior of the meso-structure of actual concrete.

Conclusion
This paper presented a new damage model for simulating the cohesive fracture behavior
of multi-phase composite materials. An outstanding feature of the proposed model is its
capability of evaluating the matrix-phase damage within an element comprising different
materials, which thus enables the meshless finite element analysis of crack growth in
composite materials. This is attributed to the formulation of the damage model on the
basis of a theoretical solution of 1D elastic composite bar problems.
Several numerical examples were presented to demonstrate the validity and availability

of the proposed model. The validity of the formulation based on the elastic solution of
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(a)

(b)

(c)

Fig. 12 Distribution of damage: 3D crack propagation behavior in highly heterogeneous solid

composite bar problems was first verified for a 1D problem. Then, a 2D problem was
solved to verify the capability of evaluating the damage of the matrix-phase in composite
materials. The numerical result also revealed that the proposedmodel allows themeshless
finite element analysis of crack propagation behavior in multi-phase composite materials
using the volume fraction of the matrix within the element, instead of generating a finite
element mesh in accordance with the material interfaces. Finally, the proposed model
was applied to the simulation of 3D cohesive crack growth in a heterogeneous solid with
a large number of spherical inclusions, and the obtained results demonstrated that the
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proposed damage model can potentially simulate the cohesive fracture behavior of the
meso-structure of actual concrete.
For simplicity, our results are limited to the analysis of two-phase heterogeneousmateri-

alswith circular or spherical inclusionswithout interfaces. However, owing to itsmeshless
nature, the proposed model is also applicable to the analysis of real composite materials
with arbitrarily-shaped inclusions, such as concrete. To this end, future work should
formulate the interfacial damage between the matrix and inclusions and demonstrate
that the damage model facilitates the analysis of cohesive crack growth in the micro- or
meso-structure of actual composite materials. Besides, the damage model should also be
examined for its applicability to fracture problems subjected to other loading patterns.
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