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Abstract

Mass-movement hazards involving fast and large soil deformation often include huge
rocks or other significant obstacles increasing tremendously the risks for humans and
infrastructures. Therefore, numerical investigations of such disasters are in high
economic demand for prediction as well as for the design of countermeasures.
Unfortunately, classical numerical approaches are not suitable for such challenging
multiphysics problems. For this reason, in this work we explore the combination of the
Material Point Method, able to simulate elasto-plastic continuum materials and the
Discrete Element Method to accurately calculate the contact forces, in a coupled
formulation. We propose a partitioned MPM-DEM coupling scheme, thus the solvers
involved are treated as black-box solvers, whereas the communication of the involved
sub-systems is shifted to the shared interface. This approach allows to freely choose the
best suited solver for each model and to combine the advantages of both physics in a
generalized manner. The examples validate the novel coupling scheme and show its
applicability for the simulation of large strain flow events interacting with obstacles.

Keywords: Material point method, Discrete element method, Partitioned coupling,
Natural hazards, Granular flow

Introduction
Mass-movement hazards involving fast and large soil deformation have increased signifi-
cantly during the past decades due to climate change and global warming. Those phenom-
ena like debris flow, avalanches and mudflow can cause extensive damage to landscapes
and infrastructures. Even more devastating are those phenomena, which carry huge rocks
or other significant obstacles, causing high economic loss and often human casualties.
Therefore, further assessment on the evolution and effects of such disasters as well as
the definition of predictive tools and of countermeasures are in high demand. One of the
critical issues for further understanding of such phenomena, as well as the prerequisite
for the construction of countermeasures, are numerical simulations.

For the simulation of those large strain flow events, which include topology changes of
the material, standard discretization techniques such as the Finite Element Method (FEM)
are likely to suffer from mesh entanglement and distortion requiring expensive remeshing
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schemes, which on the one hand increases the computational time significantly and on the
other hand reduces the accuracy. Therefore, continuum-based particle methods, such as
the Smoothed Particle Hydrodynamics (SPH) [1] successfully applied to a broad range of
geomechanical applications [2], Element-free Galerkin Method [3], Particle Finite Element
Method (PFEM) [4] and the Material Point Method (MPM) [5,6] are the natural choice
for the simulation of large deformation solid dynamics problems.

As MPM is a mixture between mesh-based methods and mesh-less methods, it combines
many advantages. It eliminates issues like mesh entanglement and remeshing inherent in
mesh-based methods or time-consuming neighbor search algorithms, stability issues, and
the definition of kernel functions appearing commonly in mesh-less methods. Using a dual
discretization, the material domain in MPM is, on one hand discretized by Lagrangian
moving particles, also called material points, which carry the history-dependent variables
during the calculation. On the other hand, a computational background grid is intro-
duced to approximate continuous fields and their gradients, which is usually defined in
an Eulerian fashion, as it is reset after each time step.

MPM has been successfully applied to a variety of problems just mentioning hyper-
velocity impact [7,8], explosions [9], failure [10], snow avalanches [11,12], and multi-
phase geomechanical problems [13-15] and also some extensions where introduced such
as the Generalized Interpolation Material Point (GIMP) method [16], the Convected
Particle Domain Interpolation (CPDI) [17,18] or the PQMPM [19]. Further applications
of the MPM including a detailed introduction into the theory can be found in the books
published by Zhang et al. [20] and Fern et al. [21].

Due to the dual discretization, the computational background grid on one hand and
the material points on the other hand, MPM naturally deals with the simulation of multi-
material, as different constitutive laws can be assigned to the material points and the
mutual interaction is solved via the background grid. However, in case of substantial
stiffness differences between adjacent material points, which is a general case for the
simulation of mass-movement hazards interacting with huge rocks or other significant
obstacles, this approach suffers from significant loss of accuracy and, more importantly,
this approach leads to a sticking and therefore unphysical contact behaviour without the
consideration of expensive contact detection algorithms.

Inspired by many multiphysics simulations, just mentioning the fluid—structure Inter-
action (FSI) [22-24] and Soil-Structure Interaction (SSI) [25-27] problems, it is the most
efficient and accurate way to model each material in its preferred reference frame and
shift the communication between the sub-problems to their shared interface. Therefore,
to describe the movement of the obstacles as well as the interaction among themselves
and the continuous flow, the Discrete Element Method (DEM) [28,29] is the best-suited
method, as it efficiently describes the Newtonian movement of discrete bodies and, even
more critical provides optimized contact detection. In the past, this method has been
applied successfully in a multiphysics context, mentioning the coupling with FEM in a
monolithic or partitioned approach [30-34], the coupling with particle-based methods
[35] as well as monolithic coupling approaches with MPM for the simulation of granular
material interacting with discrete objects [36,37].

Liu et al. [36] modeled a 2D collapsing sand-pile impacting three wooden blocks using a
monolithic MPM-DEM coupling scheme. For the contact detection between the granular
flow, modeled by MPM, and the discrete wooden blocks, represented by DEM, nine
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additional material points for the representation of each discrete block are introduced
so that the contact can be detected through the nodes of the computational background
grid. The resulting acceleration at the grid nodes arising from the interaction is projected
to the nodes of the discrete element working as body forces, whereas the contact between
the blocks is detected using a shrunken point method. The proposed scheme is enhanced
by Jiang et al. [37] using a spheropolygon DEM (SDEM) [38] which is coupled with MPM
by exchanging contact forces. As the contact detection and force evaluation is unified
under the scheme of SDEM, the dependency on the computational background grid is
reduced significantly compared to the previous approach, and the influence of different
particle shapes can be better preserved. During the calculation, MPM particles which
are in the Verlet distance, which is the cut-off distance of the potential contact between
two discrete elements, are treated as small SDEM disk particles with a certain radius for
contact detection resulting in DEM contact forces, which are applied in the form of an
additional boundary force term to the material points.

In this article, we propose a novel partitioned MPM and DEM coupling scheme, which
allows us to use the best-suited solution strategy for each sub-problem, whereas the
interaction is shifted to the shared interface leading to an exchange of data. Therefore the
user is not restricted to a code that includes both participants, and even more important,
no special treatment as transforming material points to DEM particles [37] or introducing
additional material points at the outline of DEM particles [36] for the contact detection
have to be considered. Instead, it is possible to couple any existing DEM and MPM
software by creating a suitable interface, leading to an efficient and robust partitioned
coupling scheme. For this work the open-source multiphysics software KRATOS [39-41]
has been used, which is written in C++ and offers a Python interface.

This paper presents the basic theory, introducing the used notation of MPM and DEM in
“Material point method (MPM)” and “Discrete element method (DEM)” sections, respec-
tively. Then, in “Partitioned weak MPM-DEM coupling scheme” section, the partitioned
coupling scheme of DEM and MPM is presented and finally validated in “Examples and
validation” section. Several examples are conducted, starting with a beam impacted by a
DEM sphere, which can be solved analytically, and therefore the numerical results of this
example constitutes the validation and verification of the proposed coupling scheme. This
example is calculated in two- as well as three dimensional case. Additionally by enlarging
the beam, a multiple impact scenario can be created and the results can be compared to the
literature. Finally, to show the applicability for mass-movement hazards, the numerical
results are compared to the experiment conducted by Liu et al. [36] as well as to reference
solutions [36,37] from literature.

Material point method (MPM)

Governing equations

In a Lagrangian kinematic description of a continuum body B, which occupies a domain
Q in a three-dimensional space £ the conservation of mass

d
d—‘;+pv-u=o in Q (1)

and linear momentum

pi=V.o+ pb in (2)
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needs to be satisfied, assuming isothermal settings. In these equations, p represents the
mass density, b the volume acceleration and o is the symmetric Cauchy stress tensor.
The first and second material derivatives of the displacement u are the velocity and the
acceleration, respectively.

The problem (1)-(2) is fully defined with the boundary conditions

u I'p, (3)
'y, (4')

u

o-n

|
o]l

where 1 is a prescribed displacement on the Dirichlet boundary I'p and p is a traction
vector on the Neumann boundary I'y with normal n.

Multiplying the momentum Eq. (2) with a virtual displacement field du and integrating
over the domain  C £ leads to the weak form of the balance equation:

8W=/a:8ed9—/pb-8ud9—/ §~6udFN—|—‘/pﬁ'8udQ=0 (5)
Q Q Ty Q

with the virtual strain §e arising from the virtual displacement field du. Thus Eq. (5) can
be expressed as a variation w.r.t. fu as

sw =Y su=o (6)
ou
Considering geometric and material nonlinearities, a linearization of the weak form is
necessary, and thus the Newton-Raphson method is used to approximate the solution
iteratively.

Discretization in time and space
In MPM, the body B is discretized (indicated by superscript h) into a finite number #,, of
Lagrangian moving particles, also called material points:

p
B~B'=]J 9. (7)
p=1

Those particles, assigned a constant mass #1,, represent a finite volume of the body 2,,
and they carry the history-dependent variables and the material information during the
calculation process.

Additionally a fixed background grid is introduced to approximate the continuous fields
and their respective gradients by locally defined basis functions N and discrete quantities
at the respective nodes I of the corresponding background element. Therefore Eq. (6) is
rewritten in its discretized version:

sw =Y suh = _R.sut =0, (8)
ou”

where R represents the residual force vector which has to vanish, since the virtual displace-

ments are arbitrary. The linearization of this non-linear equation leads to the discretized

solution system
oR
R+ mAuh =R+Kau" =0, )

where K is the tangential stiffness matrix and Au” the incremental displacement for which
the system is solved. The entries of the tangential stiffness matrix, related to the nodes /
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Fig. 1 General workflow of MPM: (I) Initialization phase, (Il) Lagrangian phase and (Ill) Convective phase

and J of the background grid element, as well as the residual force vector components,
related to the respective background grid node I, can be obtained by:

"p

Ky = ((va,)Ta(va,) +BIDB; +N1paN]I) Q (10)
p=1
p n

R; = U B;o — pbN; + ZN],ON]I"I] Qp —/ NypdI'y, (11)
p=1 J=1 v

where D is the constitutive matrix, B; the deformation matrix related to each node I in the
element and V, denotes the spatial gradient at the current configuration. The operator
|J specifies the assembly procedure that takes into account the kinematic compatibility,
while the factor « in Eq. (10) is defined by the integration scheme which is defined by
o = 1/(0.25At?) applying an implicit Newmark time integration scheme. Notice, that the
traction surface integral in Eq. (11) is kept in the weak form, as the boundary discretization
is discussed in “Boundary conditions in MPM”.

Due to this dual description of material points and computational background grid,
data from the material points (marked with underscore p in the equations) has to be
extrapolated to the nodes of the computational background grid (marked with underscore
I in the equations) and vice versa, resulting in the three phases of a MPM calculation, also
illustrated in Fig. 1:

I Initialization phase: At the beginning of each time step #, a search is performed
to determine the current element with the corresponding nodes of the background
grid where each material point is located. This relationship between the material
point and the background grid element is called connectivity and defines the nec-
essary basis function values Nj(x;), where x; is the material point position at time
step n. The kinematic variables @, and i, are mapped via mass projection to the

corresponding nodes as initial conditions:

— Calculate nodal mass: m} = Zp: 1 Nf(x”)mp

Calculate nodal momentum: q;’ Zp 1 mpu”NI(x”)
— Calculate nodal force: ff = Zp | Mty Ni(xy)
Calculate nodal velocity: 6; = qf /m}

Calculate nodal acceleration: @} = f; /m]
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II Lagrangian phase: Solution of the discretized governing equations, resulting in a
deformation of the background grid. This step is similar to an Updated Lagrangian
FEM step, therefore the reader is referred to [42] or [43—45] for a detailed description.

III Convective phase: Solutions obtained at the nodes are interpolated back to the mate-
rial points, resulting in an update of the material point’s position, and the background
grid is reset to its initial position.

. . . RS n 1)1 +1
— Material point displacement: wy™ = ) ;" | Nj(x;)u;

. . . L+l ny s n+1
— Material point acceleration: i, =} ;" Ni(xy)i]

— Material point velocity: w;t! = w} +1/2 - Ae(ity + iy t)

The summation to receive the position and acceleration update is performed for all
connectivity nodes n, whereas the velocity is updated via a trapezoidal rule where
the upper index 7 indicates the time-stepping and At the time-step size.

The implicit Newmark time integration scheme applied in this paper is an extension of
the initially proposed displacement-based formulation presented in [46]. Further details,
as well as an extension to incorporate mixed formulation, can be found in [42,47,48].

Boundary conditions in MPM

Boundary conditions in MPM can be applied directly at the nodes of the computational
background grid if the boundary of the material domain matches with the background
grid. This means that both Neumann and Dirichlet boundary conditions can be imposed
in a FEM fashion, complying naturally with the Kronecker delta property. However, as
the material points move independently of the grid, the boundaries do not necessarily
coincide with the nodes of the background grid leading to the necessity of imposing
in-homogeneous or non-conforming boundary conditions for the general case. Several
attempts have been made to address this issue, just mentioning among them the Penalty
Method [49] for the weak imposition of Dirichlet conditions, and [50] to impose moving
Neumann boundary conditions.

Focusing on the imposition of point loads for the proposed coupling scheme, boundary
particles are introduced [51] to discretize the continuous Neumann interface I'yy by a
discrete number of mass-less particles 7,

Hpp
v~ Ty = | Abp (12)
bp=1
where App indicates the current area of the boundary particle. Hence, the traction surface
integral of Eq. (11) can be rewritten as

Npp Npp
NpdTn ~ | J NipAw, = | NiFs (13)
Y bp=1 bp=1

where Fs is the respective resulting point load at each introduced boundary particle. The
subscript S, which is introduced at this point, indicates the imposition of the point load
within the MPM solver.

Including this in the MPM calculation procedure means, that in the Initialization phase
a search for each boundary particle is performed to define the connectivity before the
respective point load is mapped via the corresponding basis functions to the nodes of the
background grid.
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Then the system is solved in the Lagrangian phase before the kinematic variables at the
boundary particle are updated, following the concept of material points. Therefore the
boundary particles move according to the deformation of the body discretized by material
points. This is an important feature for the proposed partitioned MPM-DEM coupling
scheme, as those boundary particles are tracking the interface of the MPM domain.

Special consideration is necessary for background elements, which carry boundary par-
ticles but no material points. Therefore, to fulfill the equilibrium condition, the point load
values are mapped solely to nodes of the background grid, which are assigned a mass and
therefore are connected to the body. This can be achieved by modifying the basis functions
Ni(xpp) of the nodes evaluated at the position of the boundary particle xy:

3 N/ (xpp) 0.0, ifm; <e
Ni(Xpp) = =~  Where :Nj(xpp) = (14)
" NJ (xbp) N[(Xbp), otherwise,

where € is usually considered numeric zero whereas the partition of unity is guaranteed
by the weighting procedure.

Discrete element method (DEM)

In contrast to MPM, which belongs to the group of continuum-based particle methods,
DEM considers the motion and interaction of discrete particles. Since its first mention and
derivation in [29], DEM has become increasingly popular and is now used in both industrial
applications and science. DEM is a particle method, which discretizes the considered body
into discrete particles. Therefore it is often used for granular materials on one hand and
interacting discrete obstacles on the other side. Additionally, large discrete events, such
as rockfall [30—32] can be efficiently handled with the DEM.

While arbitrary polyhedral shapes of the particles could be considered [28], contact
algorithms applying a sphere are preferable, as the contact calculation is efficient. For the
simulation of arbitrarily shaped bodies, the clustering of DEM particles which has been
investigated in [52] will be applied. The creation of such clusters has been extensively
discussed in [53,54], which provide a free-to-use online tool [55].

Contact detection

As described in [28] this approach results in a reduced computational time when calculat-
ing overlaps compared to the contact between two polyhedra. Using spheres or clusters of
spheres, only the contact between sphere-sphere, sphere-line, sphere-vertex, and sphere-
surface need to be considered, which are simple operations in which only the shortest
distance and the respective sphere radius are compared. This has been investigated in
[33,34], which additionally describes an efficient way of handling various contact partners
at the same time, applying the so-called Double Hierarchy Method. A sphere with the
center C; and a corresponding radius R; is in contact with an arbitrary geometric object as
soon as the shortest distance d; from the surface of the object to the center of the sphere
C; is smaller than the radius, that is d; < R;. See [34], on how to calculate d; for different

geometric entities, such as vertices, lines, and surfaces.
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Fig.2 Rheological model (I) for sphere-sphere contact. (Il) for sphere-vertex/line/surface contact. Source [33]

Contact forces
As soon as contact is detected, the respective contact forces are calculated. A variety of
different contact laws can be applied, while a Hertz-Mindlin spring-dashpot (HM+D) [56]
model is used in this work.

As Fig. 2 visualizes, the contact between different geometric objects with the HM+D
model needs the definition of various DEM parameters:

o ky, k;: Normal and tangential spring stiffness.
» ¢y, ¢: Normal and tangential damping coefficients ¢, ¢;.
« e (Sliding) Friction coeflicient, restricted to Coulomb’s friction limit [56].

The proceeding calculation of the contact force, with the help of the DEM parameters
mentioned above, is omitted at this point and can be looked up in [33,34,56-59].

Integration of motion

After computing the contact forces, the DEM solution process proceeds to the integra-
tion of motion, following Newton’s second law of motion. While the mass m relates the
translational acceleration i to the forces F, the inertia tensor I is used to calculate the

moments (torques) T via the rotational acceleration @.

F = mii, (15)
T = Ie. (16)

Following [30,34,60] the forces and moments on each of the particles are described as

the sum of multiple contributions,

Fi
n N
Fi=F + ) (Fd + BT ) +F, (17)
j=1
n s
T=T8+ Y (e x BY) 4+ (. (18)
j=1

With,

« F&*, T¢": External loads, torques.
« FY: Contact forces between sphere i and sphere j or MPM boundary j as F; contact-

. F?ﬂm” , T;iam‘y : External damping loads / boundaries.
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« n%, t¥: Normal and tangential vectors at the contact points between the two respective
geometric objects i, j.
« r/: Connection vector between sphere i and the contact point to the neighbour ;.

Different time integration schemes can be applied, ranging from a first-order forward
Euler to arbitrarily high-order schemes with an increasing level of complexity. For the
simulations in this work, a second-order Velocity-Verlet [28] (central differences) scheme
is used to integrate the translational degrees of freedom. In contrast to the classical Verlet
method [61] the Velocity-Verlet provides second-order accuracy for both the displace-
ment as well as the velocity. Furthermore, to provide a robust time integration of the
rotations [62] proposes a time integration, working with quaternions [63] which is used
in the following examples.

For a more detailed discussion of the DEM more information can be found in [28,33,
34,56-60)].

Partitioned weak MPM-DEM coupling scheme

The fundamental idea of a partitioned or staggered coupling scheme is that the involved
sub-solvers, specifically for the proposed coupling scheme the MPM- and DEM-solver, are
treated as black-box solvers and the communication between them, the MPM (indicated
by subscript S) domain Qg with boundary I's and the DEM (indicated by subscript P)
domain Qp with boundary I'p is shifted to their shared interface

I'sp =T'sNTp, (19)

where the interface transmission conditions need to be satisfied. Enforcing the consistent
deformation of the involved sub-systems leads to the kinematic condition

up(x) = ug(x), up(x) =us(x)  (x € Tsp), (20)

where ug(x), up(x) are the continuous displacement and us(x), ap(x) the velocity fields of
the MPM and DEM partition at the interface respectively. Additionally, the load balance
has to be satisfied, leading to the dynamic condition

pp(x) = —ps(x)  (x € Isp), (21)

where pg(x) and pp(x) are the traction fields at the respective interface, which are defined
with respect to the corresponding outward normal vectors. Discretizing the involved sub-
systems for the solution process, the kinematic constraint is formulated in the discrete
form as

up = Hpsus, up = Hpsus, (22)

where up, ug are the displacements and up,ug are the velocities at the respective nodes
of the discretized interface. The matrix Hps is the direct mapping matrix, arising from
the applied mapping technique [64,65], as the discretizations of the sub-systems are in
general non-matching.

Rewriting the dynamic condition in its discrete form results in

Fs = HygFp, (23)

where Fsare the resulting external forces at the MPM interface nodes and Fp the resulting
contact forces at the nodes of the DEM partition. In this study a conservative mapping
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technique [64,66] is applied and therefore the transposed mapping matrix Hgs is used, to
map the forces from DEM to MPM, enforcing the conservation of energy

/ up(x)pp(x)dTsp = — / us()ps()dTsp, (24)
I'sp Isp

at the shared interface.

In the partitioned strategy the two partitions are solved separately and the interface
equilibrium is enforced by boundary conditions which are imposed at each interface.
Therefore in the DEM partition a Dirichlet condition, called wall condition in the following
is introduced at the shared interface which was originally proposed by Santasusana [33]
for partitioned coupling with FEM. Depending on the velocity and the displacement of
this wall condition, contact forces with the DEM particles can be calculated. During the
calculation process this interface is discretized into line segments whereas the respective
surface is triangulated in the three-dimensional case. Therefore, solving the DEM partition
possibly results in contact between the DEM particle and a vertex, a line segment or a
triangular surface, leading to contact forces Fjcontact at the DEM particle i and discrete
forces Fp at the corresponding nodes of the wall condition.

Thus, expressing the DEM partition as black-box solver results in

Fp = DEM(up, up), (25)

where up, up represent the discrete nodal displacements and velocities of the wall condi-
tion, which are the input for the DEM solver and finally resulting in contact forces Fp at
the discretized nodes of the interface condition after solving the DEM problem (details
of the DEM calculation process are summarized in “Discrete element method (DEM)”
section).

Applying a Dirichlet- Neumann partitioning, a Neumann boundary condition is intro-
duced in the MPM model at the shared interface. This interface is discretized by boundary
particles which can be assigned a point load and are kinematically updated according to
the material points, tracking the interface. Therefore, meeting the discrete dynamic inter-
face condition (Eq. 23) the contact forces Fp calculated by the DEM solver are mapped to
the MPM partition as external forces Fs. For the data transfer between the two interfaces
the nearest neighbor interpolation technique [64] is applied in this study resulting in a
copy operation in most of the cases, as the boundary particles usually are located at the
same position as the nodes of the discretized wall condition in DEM to reduce errors
arising from the mapping.

Therefore the equation for the MPM black-box solver can be written as (details of the
MPM calculation process are summarized in “Material point method (MPM)”)

(us, uis) = MPM(Fs) (26)

taking the forces Fg as input. The solution of the MPM domain then results in new dis-
placements us and velocities ug at the boundary particles which are discretizing the shared
interface within the MPM partition. Meeting the discrete kinematic constraints (Eq. 22)
this interface update consequently leads to updated displacements up and velocities up
as an input for the DEM solver. Thus, sequentially solving Eqs. (25) and (26) which are
determined by the interface transmission conditions (Egs. 22 and 23), result in the Gauss-
Seidel communication pattern [67,68], which is schematically visualized in Fig. 3 for the
weak coupling scheme.
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DEM 1). 1).

N

MPM N @) N
—/ (4

t t+ At t+ 2At

--------> Forces Displacement and Velocity

Fig.3 Gauss-Seidel communication pattern for the partitioned weak MPM-DEM coupling scheme. Steps (1)-(4).
are explained by Algorithm 1

In detail, bringing all aspects together the following workflow results for a complete
partitioned weak MPM-DEM coupling scheme:

First of all, the models for the MPM and DEM partition are created independently of
each other. At the shared interface, which usually coincides with the outline of the MPM
body, a wall is defined in the DEM partition whereas boundary particles are introduced
in the MPM counterpart. Avoiding errors due to data mapping, it is recommended, to
locate the boundary particles in the MPM model at the same positions as the nodes of the
discretized DEM wall.

After the problem setup, the calculation procedure starts, which is also summarized in
algorithm 1 and visualized in Fig. 4, assuming that both involved solvers advance in time

with the same time-step.

Algorithm 1 Partitioned Weak MPM-DEM Coupling Scheme
while time < te,q do
(1). DEM Solver: Fp = DEM (up, tp)
(2). Mapper: Fs = Hgst
(3). MPM Solver: (us, ug) = MPM (Fs)
(4). Mapper: up = Hpsug and up = Hpgug

equation 25)
equation 23)
equation 26)

> (
> (
> (
> (equation 22)

The DEM partition is solved first, with given displacements up and velocities ap at the
nodes of the discretized wall condition, possibly leading to some contact between the
DEM particles and the wall condition. The resulting contact forces at the nodes of the
discretized wall condition are then transferred by Eq. (23) to the interface of the MPM
partition as external forces Fs.

In the MPM calculation process, those point loads Fg at the boundary particles are
treated as non-conforming Neumann conditions, leading to the calculation process,
described in “Boundary conditions in MPM”. According to the deformation of the mate-
rial points, also the displacements ug and the velocities ug of the boundary particles are
updated, leading to a kinematic update of the shared interface. This update is mapped by
Eq. (22) to the DEM partition updating the nodal displacements up and velocities up of
the DEM wall condition accordingly.
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Fig.4 Partitioned MPM-DEM coupling scheme: In each time step, DEM is solved first (1). The resulting forces are
mapped to MPM as external forces (2). Then MPM is solved leading to a kinematic update of the MPM interface (3),
which is mapped back to DEM interface (4). Due to weak coupling, the steps are repeated for the next time steps

Applying a weak coupling scheme also known as an explicit coupling scheme [22], the
DEM solver advances in time and solves the DEM partition with the updated wall. For
each time step, those steps are repeated until the end of the simulation fepq.

It is important to remark that a DEM particle i calculates one resulting contact force
Fi Contact, depending on the shortest distance between the interacting object and the center
of the particle. This can lead to difficulties during the coupling simulation especially
considering solid or granular material in the MPM domain and their interaction with
rather large obstacles compared to the background mesh size.

As illustrated in Fig. 5a the DEM particle i calculates a single contact force Fj contact with
the wall condition in each time step and resulting in forces Fp at the corresponding nodes
of the discretized wall condition. Assuming a two-dimensional case and a DEM particle
interacting with a line segment, this would result in two forces at the nodes of this segment.
Mapping those forces to the MPM partition leads to point loads at the boundary particles,
and usually, as a matching discretization of the interface is used, it would result in two
point loads. Depending on the location of the boundary particles within the background
mesh and the element size of the mesh, a particular area of the MPM domain is affected
by the interface forces within each time step. Especially for granular material or solids
within the MPM domain, together with a relatively larger particle size compared to the
element size of the computational background grid in the MPM domain, this could lead

Page 12 of 24
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Fig.5 Calculation of contact forces in DEM and influence of the MPM partition. a One DEM particle calculates
one resulting contact force, affecting only a limited number of background grid nodes in the MPM partition. b By
clustering the DEM particles, also suited for arbitrarily shaped particles, the contact forces are distributed over the
interface, leading to an accurate interface representation

to an insufficient representation of the shared interface, possibly resulting in penetration
of the MPM material into the DEM particle and thus negatively affecting the results of
the coupled simulation.

To resolve this issue, clustering of DEM particles [52] can be applied. Besides the advan-
tage that arbitrarily shaped obstacles can be modeled efficiently by clustering DEM par-
ticles, each DEM particle within the cluster can calculate a contact force, leading to a
more accurate representation of the interface, depicted in Fig. 5b. Therefore the cluster-
ing method should be applied if the shape of the particle should be accurately considered
and a detailed interface representation is necessary in the MPM model.

Examples and validation

A series of tests have been conducted to show the application of the proposed partitioned
MPM-DEM coupling scheme and its accuracy. First of all, the results are compared to
an example with analytical solution from the literature for two- and three-dimensional
problems. The second example which is an extension of the first one, represents a more
challenging impact scenario. Also for this example a reference solution found in the litera-
ture is used for the assessment of the proposed numerical approach. Finally the numerical
solution of a granular flow impacting on wooden obstacles is compared to experimental
results conducted by Liu [36] to show the application for Soil-Particle interaction.

Single impact of DEM particle on simply supported beam modelled with MPM

For the validation of the proposed algorithm, an academic particle-structure interaction
example is chosen, which was first proposed by Timoshenko [69] in 1951 and reviewed in
detail by Meijaard [70]. It consists of a simply supported beam, impacted at its center by
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Fig.6 Single spanned beam hit at its center by a sphere

a sphere, and was also studied by Santasusana [33] to validate the partitioned DEM-FEM
coupling scheme. The beam, in [33], was modeled by FEM solid elements, whereas a DEM
particle represented the impacting sphere. According to this setup, in the proposed study,
the impacting sphere is also represented by a DEM particle, whereas the elastic beam is
calculated, using MPM.

The flexible beam, single supported on both sides, has a total length of 15.35cm and
a square cross-section of A = 1 x 1cm? whereas the impacting sphere has a radius of
R = 1.0 cm and an imposed velocity of i = —0.01<F in y-direction. The system as well
as the material parameters described in [70] are illustrated in Fig. 6.

Two models are created to validate the proposed coupling scheme and the respective
boundary conditions for both the two and three-dimensional case. For the discretization
of the two-dimensional MPM model, a quadrilateral background grid is chosen, which
has three times the height of the beam and a total length of 15.87 cm meshed by 62 x 13
elements. Therefore the resulting element size of the computational background grid
is similar to the mesh size chosen by [33] when discretizing the beam by FEM solid
elements. To generate the material points, an additional quadrilateral body mesh with
120 x 8 elements is created in the preprocessing step. This mesh is used to initialize
the material points at the respective Gauss point positions. For this example 16 particles
within each body mesh element are considered, minimising the error arising from particle
integration. The shared interface, defined at the top edge of the beam, is divided into 60
line segments for the DEM wall condition, whereas in the MPM model, 61 boundary
particles are initialized coinciding with the nodal positions of the DEM wall.

The wall condition in the three-dimensional example, introduced at the top surface of
the beam is discretized by 77 x 10 structured triangles. Again, the boundary particles are
placed at the same positions as the nodes of the wall, reducing errors arising from the
mapping. For the three-dimensional MPM model, a structured hexahedral mesh is con-
sidered similar to the two-dimensional case but with a width of 1.52 cm being discretized
by seven elements following [33]. For the body mesh the width direction is divided into 10
elements resulting in a hexahedral mesh. Again, 16 material points are initialized at the
respective Gauss point positions of the body mesh elements.

For the impacting sphere, a Hertzian contact law is considered, and the coefficient
of restitution is chosen to be 1.0, whereas a zero friction coefficient for the interaction
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Fig.7 Single spanned beam with a total length of 15.35 cm hit laterally at its center by a sphere with radius
R = 1.cm. Numerical results for 2D and 3D simulation in comparison to reference solution [70]

between DEM and MPM is considered. For both examples, a time step of At = 5¢78 is
chosen.

During the calculation, the displacement of the sphere and the deformation of the
beam center is measured. Additionally, the total contact force resulting from the impact
is observed during the calculation time. The results are printed in diagram 7 and show
excellent agreement with the solution obtained by [70] and [33].

Due to the chosen geometry, this example produces a single impact between the beam
and sphere, resulting in an oscillation of the beam, depicted in blue in the diagram 7 which
corresponds to the natural frequency of the structure.

Multiple impacts of a DEM particle on simply supported beam modelled with MPM

The configuration of the second validation example is similar to the previous one except
for the length of the beam which is increased to 30.70 cm and the radius of the sphere
being R = 2.0 cm in this case resulting in multiple impacts of the DEM particle on the
simply supported beam. Also for this case, the reference solution can be found in [69], [70]
and [33] investigated this example to validate the proposed DEM-FEM coupling scheme,
too.

Following [33] the background grid is meshed by 124 x 13 quadrilateral elements con-
sidering a total length of 30.96 cm for the grid. The material points are initialized at the
Gauss point positions of a structured body mesh with 24 x 8 quadrilateral elements. Also
in this example 16 particles within each body mesh element are generated, reducing the
error arising from particle integration within the MPM calculation procedure. Again, the
top edge of the beam is the shared interface which is divided into 240 line segments for
the DEM wall condition while the boundary particles in MPM are placed at the same
positions as the nodes of the discretized DEM wall.
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Fig.8 Single spanned beam with a total length of 30.70 cm hit laterally at its center by a sphere with radius
R = 2 cm. Numerical results compared to reference solution [70] and numerical results of a DEM-FEM coupling
scheme conducted by [33]

The obtained results for the displacement of the beam center and the sphere as well as
the resulting contact forces during the simulation are plotted in Fig. 8 in comparison with
the reference solution proposed by [70] and [33].

Due to the changed geometry of the system, compared to the first example, the sphere
impacts the beam three times leading to the vibration of the beam. Also for this example,
the results show a very good agreement with the analytical solution proposed by [70],
however, a small difference of the data during the second and third impact can be observed.
This effect was also observed by [33] where the beam was modelled by linear solid elements
(FEM), which similarly to the MPM model are not correctly capturing the higher vibration
modes and therefore leading to the small deviation on the second and third contact
events. Therefore, compared to the numerical solutions proposed by [33] a nearly perfect
agreement can be observed. The slight difference in the two simulations are inherently
arising from the MPM calculation, as the nodes of the computational background grid
are not coinciding with the boundary of the considered beam, leading compared to FEM
to a cruder approximation of the displacement field and a weak imposition of the contact
forces.

Granular flow impacting DEM obstacles

The third validation case considers the interaction of significant strain flow events with
obstacles. For this purpose, the experiment of granular material impacting wooden blocks,
which was initially conducted by [36] is simulated and the obtained results are compared
with the available data from the literature at specific time steps. Furthermore, this experi-
ment was also investigated numerically by Liu et al. [36] for the validation of a monolithic
coupled MPM-DEM method as well as by Jiang et al. [37] validating their proposed MPM-
SDEM coupling method.
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Fig.9 Granular material calculated with MPM impacting wooden blocks modelled with DEM cluster

In both numerical simulations from the literature the granular flow is modeled by MPM
whereas the discrete wooden blocks are represented as DEM [36] or SDEM [37] particles.
In the coupling scheme proposed by [36] additional material points at the outline and
the center of the discrete wooden blocks are introduced, so that the contact between
the discrete objects and the granular flow is simulated by a momentum exchange at the
nodes of the computational background grid. Therefore the accuracy of the method hardly
depends on the background grid size which is improved by [37], where both the contact
detection and the force calculation is unified under the contact scheme of the SDEM
method. In this case, however, it is necessary to transform the material points which are
within the Verlet radius of a SDEM particle into small SDEM disk particles with a certain,
user-defined radius to calculate the contact forces which are applied to the material point
as an external boundary force. Both methods are using a monolithic approach for the
coupling of MPM and DEM and the respective numerical solutions are compared to the
simulation results of the proposed partitioned MPM-DEM coupling scheme.

The initial configuration of the two-dimensional model representing the experiment is
depicted in Fig. 9.

consisting of the granular material confined initially to a region of 10 x 20 x 20 cm® and
after releasing flows down due to gravity. Additionally, three identical wooden blocks are
considered, which are placed on top of each other at a distance of 30 cm of the granular
material, whereas the block on the bottom is glued to the desk to simulate a foundation
of a building. Due to gravity, the granular flow impacts those wooden blocks, pushing the
upper two wooden particles to the right side, resulting in an angular velocity, whereas the
block on the bottom stays fixed.

For the calculation of this experiment, the bottom of the box containing the material is
modelled as a fixed boundary while a slip condition is assumed for the vertical wall. The
granular flow is simulated by MPM using Mohr-Coulomb plane strain material law with
the respective material parameters summarized in Table 1 taken from [36].

For the discretization of the MPM model, an unstructured triangular background mesh
with an element size of 0.5cm is chosen, whereas for the initialization of the material
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Table1 Material properties for the granular flow and the wooden blocks

Material properties Granular material (MPM) Wooden blocks (DEM)
Density 1300 kg/m? 500 kg/m?

Young's modulus 50kPa 50 MPa

Poisson’s ratio 04 0.5

Cohesion 0Pa 0Pa

Friction angle 220 -

Dilation angle 0o -

Restitution coeff. - 0.05

points a body mesh of structured triangles with half of the element size containing three
particles each is selected. Compared to [36] where the background grid size is determined
by the contact detection, a finer discretization is chosen for our MPM model, to accurately
reproduce the movement of the granular material between the wooden blocks in the run
out of the experiment. As the granular material undergoes large deformation, boundary
particles are placed with a distance of 0.005cm around the initial configuration of the
granular material to ensure a suitable discretization of the shared interface throughout
the simulation. For this example however, those boundary particles are not placed exactly
at the outline of the body but are shifted marginally inside the body, to avoid numerical
instabilities during the calculation.

Considering gravity driven granular material, this modification is necessary, as the
boundary particles receive the resulting contact forces from the DEM partition and apply
them to the MPM model as point loads. If those point loads are applied to elements which
contain only few single material points—which is a general case at the body outline—this
could lead to non-physical behaviour of those elements and therefore to large movement
of the material points within those elements. Therefore to ensure that the forces are
applied to the main material flow, the boundary particles are defined within the first row
of the material points. In this specific case, the marginal shift § is one third of the body
mesh size, much smaller than the size of the background elements, and therefore almost
negligible for the final solution. In addition to the marginal shift §, future research could
investigate alternative solutions to overcome the numerical instabilities at the interface
such as [71,72].

The wooden blocks are simulated by DEM, whereas each block of size 2 x 1.8 x 19.8 cm?
consists of 8 x 8 spherical particles which are compacted to a cluster to model the squared
shape of the blocks. As the block on the bottom is glued to the desk, it can be modeled as a
fixed boundary in the simulation, and therefore only block one and two are represented as
a DEM cluster particle. The discretization of the boundary wall follows the initialization
of boundary particles in MPM, meaning that the nodes of the wall condition coincide
with the boundary particle positions to avoid errors occurring from data mapping. For
the calculation of the contact forces within the DEM partition a Hertzian contact law
is considered. Friction and adhesion between the wood clusters itself is set to u = 0.6
and ¢ = 30 Pa whereas for interaction with the rigid boundary 4 = 0.3 and ¢ = 60Pa is
assumed, respectively. For the simulation, a time-step of At = 5e~ is considered.

The numerical results of the newly proposed partitioned MPM-DEM coupling scheme
are presented in Fig. 10 in comparison to the experimental results published by [36]. It
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I) Experiment [36] 1I) Simulation I) Experiment [36] 1I) Simulation

Fig. 10 Granular material calculated with MPM impacting wooden blocks modelled with DEM cluster.
Comparison of the experimental results [36] and the obtained numerical solution

can be seen, that our solution can reproduce accurately the experimental result. Similar
to the experiment, the granular flow reaches the wooden blocks at ¢ = 0.25s. Due to the
impact, the DEM clusters start to move and rotate around the fixed block at the bottom.
Comparing the results at time ¢ = 0.30s one can observe, that the two cluster blocks
are still in touch over the full width of the block which agrees well with the experiment.
This is an enhancement if compared to the numerical results obtained by [37], which is
illustrated in Fig. 12, as the adhesion between the DEM blocks can be considered by the
implemented Hertzian contact law within the DEM application. In our simulation, the
second block firstly touches the ground between ¢t = 0.36s and ¢ = 0.37s with one edge
and rotates subsequently until the complete outer edge is in touch with the ground at
t = 0.40s which corresponds to a rotation of 90° in total. Figure 11 shows the rotation
angle of the second block in comparison to the experiment and the results from the
literature [36,37]. The obtained solution is in good agreement for the entire simulation
time.

Block number one, the top block, starts to move and rotate together with the second
block and touches the ground for a first time between ¢ = 0.38s and t = 0.39s with its
corner. This impact causes its detachment from the ground and its rotation around its
axis, which coincides with the picture of the experiment at £ = 0.40s and finally comes
to rest with a total rotation of 180° until ¢ = 0.45s. In Fig. 12 the experimental results
during the impact are presented in comparison with the available numerical solutions
taken from [36] and [37] and our novel approach. In particular, the rotation of the upper
block was not captured correctly in previous solutions but is reproduced very well by the
novel approach.
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Finally, comparing the run out configuration of the simulation with the experiment, the
resting distance of the two moving blocks can be measured. In the experiment [36] the
distance between the left boundary of the second block and the left boundary of the box
was measured at 34.6cm whereas in our simulation the distance turned out to be 34.5cm.
Likewise for the top block, where the distance in the experiment was measured at 40.1cm
compared with 39.7cm in the simulation which is in very good agreement. In order to
achieve an even higher accuracy of the results, the calculation parameters, especially within
the DEM application, have to be calibrated for the respective experiment. Additionally, to
prevent the penetration of material points into the DEM particles at the very end of the
simulation a finer discretization of the interface as well as a smaller background element
size in MPM could be chosen. Apart from that, the numerical solution agrees very well
with the experimental results, proving the applicability of the proposed partitioned MPM-
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DEM coupling scheme for large strain flow events in interaction with discrete obstacles,
which is a common case in the numerical investigation of mass-movement hazards.

Conclusion

In contrast to previous solution techniques for the coupling of MPM and DEM, the
proposed partitioned coupling scheme offers the possibility to choose the most suitable
solver for each involved subsystem including the respective available toolboxes within
these solvers. Therefore each physic involved can be solved independently in its preferred
reference frame whereas the interaction is transferred to the shared interface.

Assuming mass-movement hazards interacting with discrete obstacles, the continuous
flow can be discretized by MPM, which can simulate the large strain flow event also for
large scale application cases using a continuum based approach. The discrete obstacles
within the flow and the mutual interaction as well as the interaction with the surrounding
gravity-driven flow, however, are simulated by DEM, as the contact detection itself and
the calculation of the contact forces is advantageous within the DEM application.

During the simulation process, as the MPM and DEM applications are treated as black-
box solvers, boundary conditions are introduced within each partition to ensure the com-
munication of the involved solvers at the shared interface. Within the DEM model, the
interface of the surrounding material is represented by a wall condition, which moves
according to the material points in MPM. The contact forces between the wall and the
DEM particles are mapped to those boundary particles which are discretizing the interface
in the MPM partition and are receiving the contact forces as external forces. Due to the
applied forces, the material points as well as the boundary particles are moving accord-
ingly, leading to a kinematic update of the shared interface which, in turn, is mapped back
to the DEM application to update the wall condition accordingly. The proposed coupling
sequence is solved in a weak sense, applying Gauss-Seidel communication pattern.

Several numerical examples have been simulated to asses the quality of the proposed
work. The comparison of the obtained results with analytical reference solutions from the
literature proves the accuracy of the proposed scheme in both two- and three-dimensional
models. Furthermore, the application for elasto-plastic regimes is demonstrated by com-
paring the results to experimental data from literature. The considered experiment con-
sists of granular material, which flows down due to gravity and impacts three wooden
blocks which are placed on top of each other. The numerical solution of this example,
where the granular material is modelled by MPM and the wood blocks are discretized by
DEM cluster particles, agrees very well with the experimental data for the entire simula-
tion time. Moreover, compared to existing MPM-DEM coupling schemes in the literature,
no special treatment such as transforming material points to DEM particles or introduc-
ing additional material points at the outline of the DEM domain is required for contact
detection as the two involved physics are solved in a partitioned manner.

To conclude, the proposed partitioned MPM-DEM coupling scheme is a powerful
method for the simulation of large strain flow events interacting with discrete objects
as for example the numerical investigation of mass-movement hazards including huge
rocks or other significant obstacles.



Singer et al. Advanced Modeling and Simulation in Engineering Sciences(2022)9:16

Acknowledgements

This work was supported by the Hans Fischer Fellowship program of the Institute of Advanced Studies of the Technical
University of Munich, Germany. The authors would like to acknowledge the support by Indam (Istituto Nazionale di Alta
Matematica “Francesco Severi”).

Author contributions
All the authors prepared the manuscript. All the authors read and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Availability of data and materials
The software used is [39-41]. The current developers’ version is available at [73] as a GitHub repository.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 21 March 2022 Accepted: 2 July 2022
Published online: 16 August 2022

References

1.

2.

20.

Lucy LB. A numerical approach to the testing of the fission hypothesis. Astronom J. 1977;82:1013-24. https://doi.org/
10.1086/112164.

Bui HH, Nguyen GD. Smoothed particle hydrodynamics (sph) and its applications in geomechanics: from solid fracture
to granular behaviour and multiphase flows in porous media. Comput Geotech. 2021;138: 104315. https://doi.org/
10.1016/j.compgeo.2021.104315.

Belytschko T, Lu YY, Gu L. Element-free Galerkin methods. Int J Numer Meth Eng. 1994;37(2):229-56. https://doi.org/
10.1002/nme.1620370205.

Onate E, Idelsohn SR, Del Pin F, Aubry R. The particle finite element method. An overview. Int J Comput Methods.
2004;1(02):267-307. https://doi.org/10.1142/50219876204000204.

Sulsky D, Chen Z, Schreyer HL. A particle method for history-dependent materials. Comput Methods Appl Mech Eng.
1994;118(1-2):179-96. https://doi.org/10.1016/0045-7825(94)90112-0.

Sulsky D, Zhou S-J, Schreyer HL. Application of a particle-in-cell method to solid mechanics. Comput Phys Commun.
1995;87(1-2):236-52.

Ma S, Zhang X, Qiu X. Comparison study of MPM and SPH in modeling hypervelocity impact problems. Int J Impact
Eng. 2009;36(2):272-82. https://doi.org/10.1016/}.ijimpeng.2008.07.001.

Zhang X, Sze K, Ma S. An explicit material point finite element method for hyper-velocity impact. Int J Numer Meth
Eng. 2006;66(4):689-706. https://doi.org/10.1002/nme.1579.

Ma'S, Zhang X, Lian Y, Zhou X. Simulation of high explosive explosion using adaptive material point method. Comput
Model Eng Sci (CMES). 2009;39(2):101-24. https://doi.org/10.3970/cmes.2009.039.101.

Chen Z, Hu W, Shen L, Xin X, Brannon R. An evaluation of the MPM for simulating dynamic failure with damage
diffusion. Eng Fract Mech. 2002;69(17):1873-90. https://doi.org/10.1016/50013-7944(02)00066-8.

Li X, Sovilla B, Jiang C, Gaume J. The mechanical origin of snow avalanche dynamics and flow regime transitions.
Cryosphere. 2020;14(10):3381-98. https://doi.org/10.5194/tc-14-3381-2020.

Li X, Sovilla B, Jiang C, Gaume J. Three-dimensional and real-scale modeling of flow regimes in dense snow avalanches.
Landslides. 2021;18(10):3393-406. https://doi.org/10.1007/510346-021-01692-8.

Zhang H, Wang K, Chen Z. Material point method for dynamic analysis of saturated porous media under external
contact/impact of solid bodies. Comput Methods Appl Mech Eng. 2009;198(17-20):1456-72. https://doi.org/10.1016/
j.cma.2008.12.006.

Bandara SS. Material point method to simulate large deformation problems in fluid-saturated granular medium. PhD
thesis, University of Cambridge Cambridge, UK 2013. https://doi.org/10.17863/CAM.31294.

Yerro Colom A, Alonso Pérez de Agreda E, Pinyol Puigmarti NM. The material point method for unsaturated soils.
Géotechnique. 2015;65(3):201-17. https://doi.org/10.1680/geot.14.P.163.

Bardenhagen SG, Kober EM. The generalized interpolation material point method. Comput Model Eng Sci.
2004;5(6):477-96.

Sadeghirad A, Brannon RM, Burghardt J. A convected particle domain interpolation technique to extend applicability
of the material point method for problems involving massive deformations. Int J Numer Meth Eng. 2011;86(12):1435—
56. https://doi.org/10.1002/nme.3110.

Sadeghirad A, Brannon RM, Guilkey J. Second-order convected particle domain interpolation (CPDI2) with enrichment
for weak discontinuities at material interfaces. Int J Numer Meth Eng. 2013;95(11):928-52. https://doi.org/10.1002/
nme.4526.

Wilson P, Wiichner R, Fernando D. Distillation of the material point method cell crossing error leading to a novel
quadrature-based c0 remedy. Int J Numer Meth Eng. 2021;122:1513-37. https://doi.org/10.1002/nme.6588.

Zhang X, Chen Z, Liu Y. The material point method: a continuum-based particle method for extreme loading cases.
Oxford: Academic Press; 2016.

Page 22 of 24


https://doi.org/10.1086/112164
https://doi.org/10.1086/112164
https://doi.org/10.1016/j.compgeo.2021.104315
https://doi.org/10.1016/j.compgeo.2021.104315
https://doi.org/10.1002/nme.1620370205
https://doi.org/10.1002/nme.1620370205
https://doi.org/10.1142/S0219876204000204
https://doi.org/10.1016/0045-7825(94)90112-0
https://doi.org/10.1016/j.ijimpeng.2008.07.001
https://doi.org/10.1002/nme.1579
https://doi.org/10.3970/cmes.2009.039.101
https://doi.org/10.1016/S0013-7944(02)00066-8
https://doi.org/10.5194/tc-14-3381-2020
https://doi.org/10.1007/s10346-021-01692-8
https://doi.org/10.1016/j.cma.2008.12.006
https://doi.org/10.1016/j.cma.2008.12.006
https://doi.org/10.17863/CAM.31294
https://doi.org/10.1680/geot.14.P.163
https://doi.org/10.1002/nme.3110
https://doi.org/10.1002/nme.4526
https://doi.org/10.1002/nme.4526
https://doi.org/10.1002/nme.6588

Singer et al. Advanced Modeling and Simulation in Engineering Sciences(2022)9:16

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33.

34

35.

36.

37.

38.

39.

40.

42.

43.

44,

45.
46.

47.

48.

49.

50.

51.

52.

Fern J, Rohe A, Soga K, Alonso E. The material point method for geotechnical engineering. A practical guide. Boca
Raton: CRC Press; 2019.

Wiichner, R. Mechanik und numerik der formfindung und fluid-struktur-interaktion von membrantragwerken. Disser-
tation, Technische Universitdt Minchen, Minchen 2006.

Winterstein A, Lerch C, Bletzinger K-U, Wiichner R. Partitioned simulation strategies for fluid—structure-control inter-
action problems by gauss-seidel formulations. Adv Model Simul Eng Sci. 2018;5(1):29. https://doi.org/10.1186/
s40323-018-0123-6.

Guma G, Bucher P, Letzgus P, Lutz T, Wichner R. High-fidelity aeroelastic analyses of wind turbines in complex terrain:
Fsi and aerodynamic modelling. Wind Energy Sci Discuss. 2022,2022:1-25. https://doi.org/10.5194/wes-2021-131.
Chandra, B, Larese A, laconeta |, Rossi R, Wiichner R. Soil-structure interaction simulation of landslides impacting a
structure using an implicit material point method. 2019; 72-78.

Chandra B, Larese De Tetto A, Bucher P, Wiichner R. Coupled soil-structure interaction modeling and simulation of
landslide protective structures. In: Coupled VIII: Proceedings of the VIII International Conference on Computational
Methods for Coupled Problems in Science and Engineering, pp. 135-143, 2019. CIMNE

SingerV, Bodhinanda C, Larese A, Wichner R. A staggered material point method and finite element method coupling
scheme using gauss seidel communication pattern. In: 9th Edition of the International Conference on Computational
Methods for Coupled Problems in Science and Engineering 2021.

Matuttis H-G, Chen J. Understanding the discrete element method: simulation of non-spherical particles for granular
and multi-body systems. Singapore: Wiley; 2014.

Cundall PA, Strack ODL. A discrete numerical model for granular assemblies. Géotechnique. 1979. https://doi.org/10.
1680/geot.1979.29.1.47.

Sautter KB, Teschemacher T, Angel Celigueta M, Bucher P, Bletzinger KU, Wiichner R. Partitioned strong coupling
of discrete elements with large deformation structural finite elements to model impact on highly flexible tension
structures. Advances in Civil Engineering (2020). https://doi.org/10.1155/2020/5135194.

Sautter KB, Hofmann H, Wendeler C, Wichner R, Bletzinger KU. Influence of de-cluster refinement on numerical
analysis of rockfall experiments. Comput Particle Mech. 2021. https://doi.org/10.1007/540571-020-00382-x.

Sautter KB, Hofmann H, Wendeler C, Wilson P, Bucher P, Bletzinger KU, Wiichner R. Advanced modeling and simulation
of rockfall attenuator barriers via partitioned dem-fem coupling. Front Built Environ. 2021;7. https://doi.org/10.3389/
fbuil.2021.659382

Santasusana M. Numerical techniques for non-linear analysis of structures combining Discrete Element and Finite
Element Methods. PhD thesis, CIMNE 2016.

Santasusana M, Irazabal J, Ofate E, Carbonell JM. The Double Hierarchy Method.A parallel 3D contact method for
the interaction of spherical particles with rigid FE boundaries using the DEM. Comput Particle Mech. 2016;407-428 .
https://doi.org/10.1007/540571-016-0109-4

Asai M, Li 'Y, Chandra B, Takase S. Fluid-rigid-body interaction simulations and validations using a coupled stabilized
isph-dem incorporated with the energy-tracking impulse method for multiple-body contacts. Comput Methods Appl
Mech Eng. 2021;377: 113681. https://doi.org/10.1016/j.cma.2021.113681.

Liu G, Sun Q, Zhou GGD. Coupling of material point method and discrete element method for granular flows
impacting simulations. Int J Numer Meth Eng. 2018;115:172-88. https://doi.org/10.1002/nme.5800.

Jiang Y, Li M, Jiang C, Alonso-Marroquin F. A hybrid material-point spheropolygon-element method for solid and
granular material interaction. Int J Numer Meth Eng. 2020;121:3021-47. https://doi.org/10.1002/nme.6345.
Alonso-Marroquin F, Wang Y. An efficient algorithm for granular dynamics simulations with complex-shaped objects.
Granular Matter. 2009;11:317-29. https://doi.org/10.1007/510035-009-0139-1.

Dadvand P, Rossi R, Onate E. An object-oriented environment for developing finite element codes for multi-
disciplinary applications. Arch Comput Methods Eng. 2010;253-297 . https://doi.org/10.1007/511831-010-9045-2
Dadvand P, Rossi R, Gil M, Martorell X, Cotela J, Juanpere E, Idelsohn S, Onate E. Migration of a generic multi-physics
framework to HPC environments. Comput Fluids. 2013;301-309. https://doi.org/10.1016/j.compfluid.2012.02.004
Ferrandiz VM, Bucher P, Rossi R, Cotela J, Carbonell JM, Zorrilla R, Tosi R. KratosMultiphysics (Version 8.0). Zenodo 2020.
https://doi.org/10.5281/zenodo.3234644.

laconeta I, Larese A, Rossi R, Guo Z. Comparison of a material point method and a Galerkin Meshfree method for the
simulation of cohesive-frictional materials. Materials. 2017;10(10):1150. https://doi.org/10.3390/ma10101150.
Bonet J, Wood RD. Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge
1997. https://doi.org/10.1017/CBO9780511755446.

Belytschko T, Liu WK, Moran B, Elkhodary K. Nonlinear finite elements for continua and structures. Chichester: Wiley;
2013.

Wriggers P. Nonlinear finite element methods. Berlin: Springer; 2008.

Guilkey JE, Weiss JA. Implicit time integration for the material point method: quantitative and algorithmic comparisons
with the finite element method. Int J Numer Meth Eng. 2003;57(9):1323-38. https://doi.org/10.1002/nme.729.
laconeta |, Larese A, Rossi R, Onate E. A stabilized mixed implicit material point method for non-linear incompressible
solid mechanics. Comput. Mech. 2018;1-18 . https://doi.org/10.1007/500466-018-1647-9.

laconeta I. A discrete-continuum hybrid modelling of flowing and static regimes. PhD thesis 2019.

Chandra B, Singer V, Teschemacher T, Wichner R, Larese A. Nonconforming dirichlet boundary conditions in
implicit material point method by means of penalty augmentation. Acta Geotech. 2021. https://doi.org/10.1007/
$11440-020-01123-3.

Bing Y, Cortis M, Charlton T, Coombs W, Augarde C. B-spline based boundary conditions in the material point method.
Comput Struct. 2019;212:257-74. https://doi.org/10.1016/j.compstruc.2018.11.003.

al-Kafaji IK. Formulation of a dynamic material point method (MPM) for geomechanical problems. PhD thesis, Univer-
sity of Stuttgart 2013.

Kodam M, Bharadwaj R, Curtis J, Hancock B, Wassgren C. Force model considerations for glued-sphere discrete
element method simulations. Chem Eng Sci. 2009. https://doi.org/10.1016/j.ces.2009.04.025.

Page 23 of 24


https://doi.org/10.1186/s40323-018-0123-6
https://doi.org/10.1186/s40323-018-0123-6
https://doi.org/10.5194/wes-2021-131
https://doi.org/10.1680/geot.1979.29.1.47
https://doi.org/10.1680/geot.1979.29.1.47
https://doi.org/10.1155/2020/5135194
https://doi.org/10.1007/s40571-020-00382-x
https://doi.org/10.3389/fbuil.2021.659382
https://doi.org/10.3389/fbuil.2021.659382
https://doi.org/10.1007/s40571-016-0109-4
https://doi.org/10.1016/j.cma.2021.113681
https://doi.org/10.1002/nme.5800
https://doi.org/10.1002/nme.6345
https://doi.org/10.1007/s10035-009-0139-1
https://doi.org/10.1007/s11831-010-9045-2
https://doi.org/10.1016/j.compfluid.2012.02.004
https://doi.org/10.5281/zenodo.3234644
https://doi.org/10.3390/ma10101150
https://doi.org/10.1017/CBO9780511755446
https://doi.org/10.1002/nme.729
https://doi.org/10.1007/s00466-018-1647-9
https://doi.org/10.1007/s11440-020-01123-3
https://doi.org/10.1007/s11440-020-01123-3
https://doi.org/10.1016/j.compstruc.2018.11.003
https://doi.org/10.1016/j.ces.2009.04.025

Singer et al. Advanced Modeling and Simulation in Engineering Sciences(2022)9:16

53. Bradshaw G, O'Sullivan C. Adaptive medial-axis approximation for sphere-tree construction. ACM Trans Graphics.
2004. https://doi.org/10.1145/966131.966132.

54. Bradshaw G, O'Sullivan C. Sphere-tree construction using dynamic medial axis approximation. In: Proceedings of
the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation 2002. https://doi.org/10.1145/545261.
545267.

55. Bradshaw G. Sphere-Tree Construction Toolkit. http://isg.cs.tcd.ie/spheretree/ 2021.

56. Cummins S, Thomnton C, Cleary P. Contact force models in inelastic collisions. In: Ninth International Conference on
CFD in the Minerals and Process Industries. 2012.

57. Schwager T, Poschel T. Coefficient of restitution and linear-dashpot model revisited. Granular Matter. 2007. https://
doi.org/10.1007/510035-007-0065-z.

58. Thornton C, Cummins SJ, Cleary PW. An investigation of the comparative behaviour of alternative contact force
models during inelastic collisions. Powder Technol. 2013. https://doi.org/10.1016/j.powtec.2012.08.012.

59. Shéfer J, Dippel S, Wolf D. Force schemes in simulations of granular materials. J Phys. 1996. https://doi.org/10.1051/
jp1:1996129.

60. Onate E, Zarate F, Celigueta MA, Gonzalez JM, Miquel J, Carbonell JM, Arrufat F, Latorre S, Santasusana M. Advances
in the DEM and coupled DEM and FEM techniques in non linear solid mechanics. Cham: Springer; 2018. p. 309-35.

61. Verlet L. Computer “experiments” on classical fluids. i. Thermodynamical properties of Lennard-Jones molecules. Phys
Rev. 1967;159:98-103. https://doi.org/10.1103/PhysRev.159.98.

62. IrazdbalJ, Salazar F, Santasusana M, Onate E. Effect of the integration scheme on the rotation of non-spherical particles
with the discrete element method. Comput Particle Mech. 2019. https://doi.org/10.1007/540571-019-00232-5.

63. Hamilton WR. On Quaternions, or on a new System of Imaginaries in Algebra. In: Wilkins D R, editor. London Edinburgh
and Dublin Philosophical Magazine 1844. 2000. https://www.emis.de/classics/Hamilton/OnQuat.pdf.

64. de Boer A, van Zuijlen AH, Bijl H. Comparison of conservative and consistent approaches for the coupling of non-
matching meshes. Comput Methods Appl Mech Eng. 2008;197(49):4284-97. https://doi.org/10.1016/j.cma.2008.05.
001.

65. Wang T. Development of co-simulation environment and mapping algorithms. Dissertation, Technische Universitat
Miinchen, Minchen 2016.

66. Farhat C, Lesoinne M, Le Tallec P. Load and motion transfer algorithms for fluid/structure interaction prob-
lems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and
application to aeroelasticity. Comput Methods Appl Mech Eng. 1998;157(1):95-114. https://doi.org/10.1016/
S0045-7825(97)00216-8.

67. Sicklinger S, Belsky V, Engelmann B, Elmqvist H, Olsson H, Wiichner R, Bletzinger K-U. Interface jacobian-based co-
simulation. International Journal for Numerical Methods in Engineering. 2014;98(6):418-44. https://doi.org/10.1002/
nme.4637. onlinelibrary.wiley.com/doi/pdf/10.1002/nme.4637.

68. Uekermann BW. Partitioned fluid-structure interaction on massively parallel systems. Dissertation, Technische Univer-
sitdt MUnchen, Minchen 2016.

69. Timoshenko S, N, GJ. Theory of elasticity. McGraw-Hill 1951.

70. Meijaard J. Lateral impacts on flexible beams in multibody dynamics simulations. In: IUTAM Symposium on Multiscale
Problems in Multibody System Contacts. Springer, Dordrecht, pp. 173-182 2007.

71. YamaguchiY, Moriguchi S, Terada K. Extended b-spline-based implicit material point method. Int J Numer Methods
Eng. 2021;122(7):1746-69. https://doi.org/10.1002/nme.6598. onlinelibrary.wiley.com/doi/pdf/10.1002/nme.6598.

72. Ma X, Giguere PT, Jayaraman B, Zhang DZ. Distribution coefficient algorithm for small mass nodes in material point
method. J Comput Phys. 2010,229(20):7819-33. https://doi.org/10.1016/j,jcp.2010.06.041.

73. KRATOS-Github repository. https://github.com/KratosMultiphysics/Kratos.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Page 24 of 24


https://doi.org/10.1145/966131.966132
https://doi.org/10.1145/545261.545267
https://doi.org/10.1145/545261.545267
http://isg.cs.tcd.ie/spheretree/
https://doi.org/10.1007/s10035-007-0065-z
https://doi.org/10.1007/s10035-007-0065-z
https://doi.org/10.1016/j.powtec.2012.08.012
https://doi.org/10.1051/jp1:1996129
https://doi.org/10.1051/jp1:1996129
https://doi.org/10.1103/PhysRev.159.98
https://doi.org/10.1007/s40571-019-00232-5
https://www.emis.de/classics/Hamilton/OnQuat.pdf
https://doi.org/10.1016/j.cma.2008.05.001
https://doi.org/10.1016/j.cma.2008.05.001
https://doi.org/10.1016/S0045-7825(97)00216-8
https://doi.org/10.1016/S0045-7825(97)00216-8
https://doi.org/10.1002/nme.4637.
https://doi.org/10.1002/nme.4637.
https://doi.org/10.1002/nme.6598.
https://doi.org/10.1016/j.jcp.2010.06.041
https://github.com/KratosMultiphysics/Kratos

	A partitioned material point method and discrete element method coupling scheme
	Abstract
	Introduction
	Material point method (MPM)
	Governing equations
	Discretization in time and space
	Boundary conditions in MPM

	Discrete element method (DEM)
	Contact detection
	Contact forces
	Integration of motion


	Partitioned weak MPM-DEM coupling scheme

	Examples and validation
	Single impact of DEM particle on simply supported beam modelled with MPM
	Multiple impacts of a DEM particle on simply supported beam modelled with MPM
	Granular flow impacting DEM obstacles

	Conclusion
	Declarations


	References




