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Abstract 

Many real world problems involve fluid flow phenomena, typically be described by the 
Navier–Stokes equations. The Navier–Stokes equations are partial differential equations 
(PDEs) with highly nonlinear properties. Currently mostly used methods solve this dif‑
ferential equation by discretizing geometries. In the field of fluid mechanics the finite 
volume method (FVM) is widely used for numerical flow simulation, so-called com‑
putational fluid dynamics (CFD). Due to high computational costs and cumbersome 
generation of the discretization they are not widely used in real time applications. Our 
presented work focuses on advancing PDE-constrained deep learning frameworks for 
more real-world applications with irregular geometries without parameterization. We 
present a Deep Neural Network framework that generate surrogates for non-geometric 
boundaries by data free solely physics driven training, by minimizing the residuals of 
the governing PDEs (i.e., conservation laws) so that no computationally expensive CFD 
simulation data is needed. We named this method geometry aware physics informed 
neural network—GAPINN. The framework involves three network types. The first 
network reduces the dimensions of the irregular geometries to a latent representation. 
In this work we used a Variational-Auto-Encoder (VAE) for this task. We proposed the 
concept of using this latent representation in combination with spatial coordinates as 
input for PINNs. Using PINNs we showed that it is possible to train a surrogate model 
purely driven on the reduction of the residuals of the underlying PDE for irregular non-
parametric geometries. Furthermore, we showed the way of designing a boundary 
constraining network (BCN) to hardly enforce boundary conditions during training of 
the PINN. We evaluated this concept on test cases in the fields of biofluidmechanics. 
The experiments comprise laminar flow (Re = 500) in irregular shaped vessels. The main 
highlight of the presented GAPINN is the use of PINNs on irregular non-parameterized 
geometries. Despite that we showed the usage of this framework for Navier Stokes 
equations, it should be feasible to adapt this framework for other problems described 
by PDEs.
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Introduction
Many real world problems involve fluid flow phenomena, for instance, in aerospace, 
maritime engineering and biomedical engineering. Such problems mathematically can 
be described by the Navier–Stokes equations as a basis for computational simulation. 
The Navier–Stokes equations are partial differential equations (PDE) with highly non-
linear properties. Currently used computational methods solve these differential equa-
tions using numerical methods with discretization techniques like finite volume method 
(FVM) mostly used in computational fluid dynamics (CFD). Depending on the com-
plexity of the problem involved, these methods tend to be very computationally expen-
sive and require a high level of methodological understanding in the generation of the 
discretization (meshing). These factors inhibit an intensive utilization in time-relevant 
applications such as surgery planning or real-time simulation during the operation in 
the cardiovascular field.

Surrogate models, which approximate the output in relation to the input, could 
increase the use in these fields. Quantities like the fluid velocity and pressure could be 
captured very fast by these methods. Three different types of surrogate modeling tech-
niques can be distinguished: Reduced Order Models (ROM), data fit models and Deep 
Neural Network (DNN) based models.

ROM’s are used to reduce the order of the problem in an unsupervised manner, among 
others Proper Orthogonal Decomposition (POD) and Principal Component Analysis 
(PCA) are the most popular. However, these methods appear to be limited by stability 
and robustness difficulties [1]. Moreover, they are intrusive in the code and limited in 
speedup potential with high nonlinearities, as summarized by Sun et al. [2, 3].

Data fit models create a fit between input and output based on simulations. The most 
popular methods are polynomial basis, radial basis functions, Gaussian process and sto-
chastic polynomial chaos expansion. These methods mostly do not require any change in 
the simulation solver.

Deep learning-based surrogate models promise the ability to handle strong non-
dimensional problems by their basic structure as it is required for the Navier–Stokes 
equations. These methods are heavily developed and pushed in the fields of computer 
vision. Traditional deep learning methods use a large data set and the information con-
tained in the data, which is referred to as data-driven learning. In the case of a surro-
gate model as a specific problem, many numerical simulations would be required to 
train a neural network as a function approximator for PDEs. In particular in the field 
of CFD, the generation of training data would eliminate the performance enhancement 
of DNN. The enormous effort involved in generating the training data initiated in the 
1990s the further development of applying neural networks directly as a solver for dif-
ferential equations [4, 5]. This concept takes into account that the modelled physics are 
known a-priori and due to the known governing equations constrains could be formu-
lated or drive the training of the neural network. With increasing computational power, 
this approach became more and more feasible in the last years, leading to the develop-
ment of a new type of neural networks, the so-called physics informed neural networks 
(PINNs), which were first launched by Raissi et al. [6]. They solved one-dimensional (1D) 
PDEs such as viscous Burger’s equation, and PDE-constrained inverse problems by using 
only few amounts of training data. In order to perform surrogate modeling, a working 
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group used the PDE-bounded DNN for uncertainty propagation in steady-state heat 
equations [7]. Furthermore, Gao et al. proposed an approach of surrogate modeling for 
Navier–Stokes equations for irregular geometries by means of coordinate transforma-
tion to rectangular grids, which allowed an effective use of convolutional neural net-
works and efficient derivative computation (Finite Difference) due to rectangular grids 
[8]. This approach is limited by the regular meshing method even for irregular geom-
etries. Most techniques showed the possibilities to solve PDE without the use of train-
ing data only on canonical problems with rectangular domains. Sun et al. showed that 
it is feasible to train PINNs for parameterized geometries without simulation or exper-
imental data, by adding the parametric variable as input to the network for surrogate 
modeling of incompressible steady flows [2]. Motivated from this work we solved the 
underlying Navier–Stokes equations for nonparametric geometries. Analogue to Sun 
et al. we trained surrogates using data free solely physics driven methods, by minimizing 
the residuals of the governing PDEs (i.e., conservation laws). As a result no computation-
ally expensive CFD simulation data is needed.

In this paper we introduce a framework to create a fluid flow surrogate model based on 
irregular geometry with no parameterization using PINNs without the need for training 
data, which to the best of the author’s knowledge has not been done so far. We named 
our method geometry aware physics informed neural network—GAPINN.

Our current work focuses on advancing the PDE-constrained deep learning frame-
work for more real-world applications with irregular geometric shapes. The paper is 
organized as follows. First the physical background and its mathematical description is 
presented. In the next section the architecture of the deep learning algorithm proposed 
here is explained. In the following chapters the numerical experiments will be described 
and are followed by the results obtained from the proposed GAPINN framework in 
comparence with CFD-Simulations and vanilla PINN. Finally, conclusions are drawn in 
the last chapter.

Network architecture
Physical background

In this work we will focus on a biomedical problem, the flow inside blood vessels with 
stenosis leading to pathological blood flow. These vascular stenoses could lead to major 
health complaints, especially in the field of cardiology or neurology. The anatomy of 
stenosed vessels is highly individual and can be considered as non-parametric geome-
tries. The blood can be described with the conservation equations of fluid mechanics, 
in particular with the Navier–Stokes equations. We want to point out that the proposed 
workflow could also be adapted to problems arising from other fields in continuum 
mechanics such as structural mechanics or heat and mass transfer.

The Navier–Stokes equations can be written in its residual formulation like below:

With X being spatial coordinates and t the time. The PDE is constraint due to � describ-
ing parameters like boundary and initial conditions and fluid properties. In the formula 

(1)

F(U, p) = 0 :=

{
∇ ·U = 0, X, t ∈ �f ,t� ∈ R

d ,
∂U
∂t + (U · ∇)U + 1

ρ
∇p− υ∇2

U + bf = 0, X, t ∈ �f ,t� ∈ R
d
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U(t,X,�) is the fluid velocity, with its components u, v, w, in three dimensions and 
p(t,X,�) is the corresponding pressure. ρ and υ are the density and the kinematic vis-
cosity of the fluid respectively. The method has been tested for 2-dimensional steady 
state cases.

GAPINN framework

The GAPINN framework consists of three separate networks, see Fig. 1: (1) as one of 
the most important parts, to solve for varying non-parametric geometries, a Shape 
Encoding Network (SEN); (2) a Physics Informed Neural Network (PINN) in order to 
solve the differential equation of a given fluid mechanical problem; (3) and a Bound-
ary Constrain Network (BCN) to constrain the boundary and initial conditions for 
each given non-parametric geometric boundaries.

The shape of a fluid domain, where the Navier–Stokes equations to be solved, was 
defined by spatial positions Xj,(i,b) whereas the subscript i denotes locations of the 
internal field of the fluid domain, b denotes locations on the boundary and j indicates 
different cases defined by a set of varying non-parametric geometries of fluid domains 
(made up from i and b). The framework outputs velocities Uj,(i,b) and pressure pj,(i,b) 
for this spatial locations. In this framework the SEN was used to reduce the dimen-
sions of the given non-parametric geometric boundaries. This latent representation 
was than concatenated with the spatial positions and serves as input for the PINN 
and the BCN, see Fig. 1.

The workflow for training the GAPINN framework was that way that the SEN was 
trained first, generating a latent representation. The BCN was trained second and 
the PINN trained last, given the information’s from the SEN and BCN as depicted 
in Fig. 1. After the training of SEN and BCN was performed, no more adjustment of 
weights and biases were done for these networks.

Fig. 1  Schematic description of the architecture of the proposed DNN Method (GAPINN) to generate 
surrogates of PDEs with irregular non-parameterized geometries using PINNs. The network consists of three 
subnetworks which are trained separately. The SEN is a Variational-Auto-Encoder type reducing the geometry 
dimensions to a latent vector k. PINN takes k and spatial positions to solve the PDE and building the surrogate 
and BCN, by also taking spatial information and k, helps constraining boundary conditions in the PINN. 
Dimensions at each operation are noted in brackets
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We first describe the SEN more in detail to help the reader to understand how differ-
ent fluid domain geometries can be interpreted by a PINN. Moreover, how this facili-
tates the development of a surrogate model that is able to solve fluid mechanical partial 
differential equations for various non-parametric geometries without the need of train-
ing data.

Shape encoding network (SEN)

As input we assumed a non-parametric but well-defined fluid domain. We aimed to 
get a latent representation of each geometric shape, by using the technique of Varia-
tional-Auto-Encoder (VAE) [9]. VAE are a common technique in the field of computer 
vision to reduce high dimensional information to a lower dimensional representation in 
an unsupervised learning process. A VAE is built from two main components namely 
the encoder, which actually reduces the dimensions and the decoder, which reconstructs 
the input from a lower dimensional representation.

A reason why we recommend VAE instead of Auto-Encoder (AE) is that we had found 
poor validation performance for AE. In order to obtain a feasible latent representation, 
in terms of interpolation capabilities for geometric similar shapes, we used a VAE with a 
regularization term which fits the latent vector to a known distribution.

To ensure that the low dimensional representation is robust against permutation we 
had chosen a PointNet-like architecture [10]. The main concept of this type of network 
is the usage of Multilayer Perceptron neural networks with shared weights and a glob-
ally acting “symmetrical” pooling function in order to construct the lower dimensional 
representation from a set of points. For this study we used one dimensional convolu-
tion operators with a kernel size of 1 and stride of 1, which in principle is an imple-
mentation of a multilayer perceptron with shared weights. A schematic depiction of the 
encoder network used in the experiments is shown in Fig. 2. The input of the network 
was a subset of points representing the boundary (Xj,b with size nb). Followed by four 
1d convolution layers which were increasing the spatial dimensional axis from d to 512 
channels (Conv1:128, Conv2:128, Conv3:256, Conv4:512). Subsequently, a max pool-
ing operation was used in a channel wise manner to aggregate information shared by 
all points, resulting in an array with 512 channels. This was followed by two fully con-
nected neural networks (FCNN) with one hidden layer. The FCNN reduced the pooled 
vector to the desired lower dimensional representation size nk of the latent vector k. 
The pooled vector was split into prediction of mean and variance. This describes the 

[nb,d] 

Conv1 

[nb,128] [nb,128] [nb,256] 
[nb,512] 

In
pu

t 

[1,512] mean 

var 

[1,k] 

[1,k] 

Fig. 2  Schematic visualization of the use encoder architecture used here, build from input given into 4 × 1d 
Convolutions, channel-wise max pooling and two fully connected networks with three layers each (layers: 
512, 256, k). The dimension after every operation is given in brackets
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posterior distribution predicted by the encoder. One can sub sequentially follow next 
steps by using either both vectors (mean vector and variance) or only the mean vector. 
For our cases applying the mean vectors reaches proper results.

During training the encoder was constrained to learn a given distribution (in our 
experiments this was a Gaussian distribution). From the output of the encoder the 
decoder reconstructs the input point cloud. The decoder consisted of FCNN with three 
hidden layers. After training of the SEN the decoder was no longer needed and only the 
encoder module was of importance. The reconstruction and the real input were com-
pared using the chamfers distance function. During training the summation of the Kull-
back–Leibler divergence [11], between the approximate and true prior distribution, 
( LKL ) weighted with β , and the chamfer distance loss ( LREC ) [12], here called LVAE , were 
minimized.

With LREC described by following formula:

With S being points from Xb and their reconstruction Ŝ from X̂b due to the decoder. That 
means that LREC describes the distance between a point from the subset Xb and its near-
est neighbor in the reconstructed X̂b ; and the other way around.

Physics informed neural network (PINN)

The PINN was of fully connected feedforward type (FCNN). Input to the PINN were 
on the one hand spatial positions Xj,(i,b) and on the other hand the encoded informa-
tion k for each of the geometry domains. These two inputs were concatenated along the 
dimensional axis of X before inserted into the network. The dimension of the input is 
[n,d + nk], with n being the number of points from a subset of Xj,i and Xj,b, d the number 
of spatial dimensions and nk being the dimension of the latent vector k. The network 
maps the inputs to the velocity Uj,(i,b) and pressure pj,(i,b). For more general informa-
tion on feed forward neural networks we recommend [13] or for more specific aspects 
regarding PINN’s [6, 14]. Layers between the input and output were referred to as hid-
den layers. As activation function after each hidden layer we used a sigmoid linear unit 
function [15], with the output coming from logistic sigmoid of the input multiplied with 
the input itself.

During the training the weights (W) and biases (b) were adapted so that the loss will 
be minimal, see Eq. 5. The loss function is describing the physics, in form of a differen-
tial equation in its residual formulation. In the case of steady state Navier–Stokes equa-
tions the loss is described due to the conservation of mass and momentum in the fluid 
domain, see Eq. 4.

(2)LVAE = LREC − βLKL

(3)LREC =
∑

S∈Xb

min
Ŝ∈X̂b

∥∥∥S − Ŝ
∥∥∥
2

2
+

∑

Ŝ∈X̂b

min
S∈Xb

∥∥∥S − Ŝ
∥∥∥
2

2

(4)Lphy(W,b) =
∥∥∥∇U

2
∥∥∥+

∥∥∥∥(U · ∇)U +
1

ρ
∇p− ϑ∇2

U

∥∥∥∥
2
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For this loss function several first and second order derivatives of the output (U,p) 
with respect to spatial coordinates X were needed. These calculations were performed 
be means of the concept of automatic differentiation (AD). AD is a common tech-
nique used in the field of machine-learning, mainly to get gradients of the network 
with respect to the weights and biases. This technique relies on the concept of the 
calculation of derivatives inside a computational graph and is implemented in most 
state of the art deep-learning libraries such as TensorFlow, PyTorch or Theano; here 
we worked with PyTorch. For solving the optimization problem (Eq. 5), we used the 
Adam algorithm [16].

Boundary enforcing

Boundary conditions can be imposed mainly in two ways. First, by adding an extra 
penalty loss term Lsoft to Eq.  4, which affects the PINN to learn conditions on the 
boundary, by minimizing L(W,b) during training, with W and b being weights and 
biases of the neural network see Eq.  6. Sun et  al. showed several major drawbacks 
of this so-called soft boundary imposing. As mentioned by Sun et  al. this approach 
is not feasible to ensure the accurate definition of initial and boundary conditions 
due to its implicit manner. Furthermore, the optimization performance could depend 
on relative importance of the boundary loss term and PDE loss term [2]. This could 
be addressed by weighting the terms, but also a-prior weighting will mostly not be 
known.

The second approach of imposing boundary conditions is to hard enforce these in the 
neural network. This approach can be implemented by constructing a set of functions 
that are taking the outputs of the PINN Ûb,i and p̂b,i as input and, while automatically 
satisfying boundary conditions, computing the output Ub,i and pb , see Eq. 7. It is benefi-
cial that these functions are “smooth” on Xj,(i,b) . For most boundary problems we can use 
functions that indicate where a boundary condition should be constraint, here referred 
to as B

(
Ûb,i, p̂b,i

)
. In addition to that functions for applying the correct value on the 

boundary, here expressed as C
(
Xj,(i,b)

)
 , need to be set. This concept is motivated accord-

ing to [17].

For hard constrain boundary conditions for common fluid mechanic domains we pro-
pose to use a pre-trained neural network which is predicting the minimal Euclidean dis-
tance of each Xj,i to the walls which are considered fixed, here indicated as the function 
BCN

(
Xj,(i,b)

)
 . We used a simple FCNN for this task. The advantage of this approach lies 

in the capability of tracking gradients in order to use the concept of automatic differen-
tiation during neural network training. Therefore we did not compute the distance on 
the fly while training.

(5)W ∗
= arg min

W
Lphy(W,b)

(6)L(W,b) = Lphy + Lsoft

(7)
Uj(b,i)

pj(b,i)
= B

(
Û j,(i,b), p̂j,(i,b),Xj,(i,b)

)
+ C

(
Xj,(i,b)

)
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The network takes as input the spatial positions Xj,(i,b) and the latent vector k. The 
prediction of BCN was compared to pre-computed Euclidean distances of the spa-
tial positions to the boundaries with fixed zero velocity by using mean squared error. 
Reduction of the mean squared error was done in the training process of the BCN, by 
adapting the weights of the neural network. The exact form of the functions B and C 
are highly dependent on the investigated fluid mechanical problem to be solved. For 
detailed description on how to construct the boundary functions for a specific prob-
lem we refer to the following experiment chapter.

Experiments
In the experiments we focused on a biomedical blood flow problem—the flow inside 
vessels with irregular geometries including stenosis and/or aneurysm sections in 
steady state condition within a two-dimensional fluid domain. The physics of blood 
flow (Newtonian assumption) can be described using the following formulation of the 
incompressible Navier–Stokes equations.

We generated 1000 geometries, by fitting a spline function through randomly gen-
erated marking points, building an irregular vessel wall, see Fig. 3. On each of the 4 
boundaries we sampled 100 points (nj=1000, nb=400). The spatial dimensions were nor-
malized to the inlet size (D). The inlet was positioned at x = 0. The Reynolds number 
was set to Re = 500. The velocities were normalized according to the mean veloc-
ity at the inlet at which a parabolic velocity flow profile in x-direction was applied. 
On the walls we defined Uwall = 0  m/s. The pressure at the outlet was fixed to zero. 
The predicted pressure was normalized to pressure difference (p*) according to flow 
through a straight channel without stenosis and aneurysm. Neumann boundary con-
ditions were implemented as soft boundary condition in the neural network and were 
imposed as zero gradient pressure at inlet and walls and zero gradient velocity at the 
outlet. For simplification, it is assumed that the blood is a Newtonian fluid.

We used the trained BCN to help constrain velocity boundary conditions, see Eq. 7, 
by applying the following formulation for the functions B

(
Û j,(i,b), p̂j,(i,b),Xj,(i,b)

)
:

(8)F(U, p) = 0 :=

{
∇ ·U = 0

(U · ∇)U + 1
ρ
∇p− υ∇2

U = 0,

Fig. 3  Schematic of irregular geometric vessel with a fixed set of boundary and fluid domain points. With 
Dirichlet and Neumann boundary conditions: parabolic velocity profile at the inlet, zero velocity at walls and 
zero pressure at the outlet as well as zero gradient in reference to normal vectors (n) of geometry for pressure 
on inlet and vessel walls and velocity at the outlet. Red points are indicating internal points and green points 
are indicating points on the boundary
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With function C, in Eq. 7, enforcing a parabolic velocity profile at the inlet, with R = D/2, 
and zero pressure at the outlet.

For training of the SEN we only included Xj,b into the SEN. As already mentioned, 
the weights of the SEN were fixed when further used for training of the BCN and 
PINN. Training the BCN we used the boundary points as input for the SEN to gen-
erate the latent representation (here: nk = 60), and used all points in the training set 
to train the BCN. The prediction of BCN was compared to precomputed Euclidean 
distances of Xj,i to the boundaries Xj,b with fixed zero velocity by using mean squared 
error.

Training was done on single GPU (NVIDIA Quadro RTX 5000). Network and hyper 
parameters used in the experiments are listed belohnt, see Table 1.

To validate the prediction performance of the data-free trained GAPINN we per-
formed numerical simulations on randomly generated vessels by means computa-
tional fluid dynamics (CFD) using OpenFOAM 9 [18] for comparison with geometries 
used in training and ANSYS 18.0 Fluent with vessel geometries not included in train-
ing. The mesh consisted of 150,000 hexahedron elements. This validation set of ves-
sels was not included in the training process.

To show the advantage of the developed framework, we also performed experi-
ments on exactly the same dataset and training parameters while using Vanilla PINN 
framework. The Vanilla PINN had the same number of hidden layers and neurons in 
the hidden layers as the PINN used in the GAPINN approach. Furthermore, in addi-
tion to the hard boundary constraint strategy as presented here, we applied soft con-
straint strategy for both GAPINN and classical PINN.

(9)B
(
Û j,(i,b), p̂j,(i,b),Xj,(i,b)

)
=

{
for U:BCN

(
Xj,(i,b)

)
Û j,(i,b)xj,(i,b)

for p : p̂j,(i,b)
(
xj,(i,b) − 10D

)

(10)C
�
Xj,(i,b)

�
=






for u:

�
1−

��
BCN

�
Xj,(i,b)

�
−R

�

R

�2
�

∗ umax

for v:0
for p:0

Table 1  Network and hyper parameter settings used in the experiments

SEN PINN BCN

Network parameter

 Layers 4 × 1d Convolutions (feature size: 
128, 128, 256, 512)
FCN (3 hidden layer with 256 neu‑
rons, nk = 60); β = 0.001

2 hidden layer (each 256 
neurons)

2 hidden layer 
(each 25 neurons)

Training parameter

 Batch size 50 10 10

 Optimizer Adam [16]
Betas = (0.9, 0.999)
No weight decay
No amsgrad

Adam
Betas = (0.9, 0.999)
No weight decay
No amsgrad

Adam
Betas = (0.9, 0.999)
No weight decay
No amsgrad

 Learning rate 1e−3 1e−3 1e−3

 Epochs 650 1300 3000
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Results and discussion
Here we present results to evaluate the performance of the proposed DNN frame-
work named GAPINN. We performed experiments on 2D steady and laminar flow 
inside vessels with irregular geometries referring to biomedical blood flow problem. 
We trained the three networks (SEN, BCN, PINN) on 1000 different geometries, 
referred to as training set. For evaluation of GAPINN we generated vessel that are not 
included in training, referred to as validation set. The output from the GAPINN were 
velocity u and v as well as pressure p. For comparing, the output data of GAPINN and 
CFD were interpolated on the same grid using linear interpolation.

Figure  4 shows the comparison between GAPINN predictions and CFD solutions 
on samples from the training and from the validation set with velocity in stream-wise 
component u on the left and span-wise velocity component v on the right.

It can be seen that the main flow phenomena predictions using GAPINN agree 
reasonable well with the CFD solutions. For instance, with decreasing diameter, the 
velocity u increases, this phenomena is shown using conventional CFD simulation as 
well as GAPINN. The mean squared error (mse) of comparison between CFD and 
GAPINN on the shown validation samples are mseu = 3.61e−3 msev = 2.30e−4. We 
think that an intensive study on architecture and hyper parameter optimization could 
increase the prediction performance but that this is out of scope of the current work. 
The experiments shown here are for proof of concept only.

Figure 5 shows the comparison between GAPINN predictions and CFD solutions of 
pressure distribution on samples from the training and validation set.
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of irregular vessels from training (a) and validation (b) with velocity in streamwise component u on the left 
and spanwise velocity component v on the right
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The GAPINN predict the pressure distribution in qualitative manner quite well. An 
discrepancy can be observed in the quantitative value. The mean squared error on the 
validation set is msep = 1.6e−2.

To get an overview of the performance of the GAPINN on the encoded geometries, we 
use t-SNE [19] to embed the latent vector k for visualization of our validation (20 CFD 
simulations) and training (100 CFD simulations) set into a 2D space. Figure 6 shows the 
embedding space. It can be seen that similar vessel shapes are clustered. Furthermore, 
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(squares: mse u, triangle: mse v and circles: mse p). The color is linearly scaled between 0 and 1, the 
corresponding maximal values are msemax u = 0.15, msemax v = 0.07 and msemax p = 0.27
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the varieties of vessel geometries are widely distributed over the embedded space 
which is due to the use of VAE. Plotted under each shape is the mean squared error 
with respect to CFD-Simulations (squares: mse u, triangle: mse v and circles: mse p). The 
color is linearly scaled between 0 and 1, the corresponding maximal values are msemax 

u = 0.15, msemax v = 0.07 and msemax p = 0.27.
The following Fig.  7 shows the comparison of the loss during the training process 

between the conventional PINN framework and the proposed GAPINN framework to 
create surrogate models that resolve the Navier–Stokes equations on non-parameterized 
geometries without the use of training data. Both soft and hard boundary constraint 
methods were used for this experiment. The error on the training data set during train-
ing for the Vanilla PINN framework is several orders of magnitude higher than for the 
proposed GAPINN framework. The Vanilla PINN framework fails to solve the Navier–
Stokes equations on varying geometries in non-parameterized form. We also see advan-
tage in using hard boundary constraint over soft boundary constraint for the GAPINN 
framework. It should be noted that the soft boundary method is very sensitive to the 
weighting of the loss terms for boundary constraint and the physical loss, as demon-
strated by Sun et al. In this experiment we weighted the boundary term by a factor of 
100, which showed the best results for our cases.

The advantage of the GAPINN framework is that the quantities of interest can be esti-
mated at any arbitrary point within the domain. Only the number of points describing 
the geometry should sufficiently represent the geometry and must be evaluated based 
on the given problem. But in general, the network architecture of all networks shown 
here is not limited in the number of points to be evaluated, in contrast to [8]. A dis-
advantage using point based computation compared to methods based on structured 
spatial representation is the higher computational effort to calculate the derivatives by 
means of AD, during training of the PINNs. Gao et  al. showed this advantage by the 
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usage of Finite Difference methods implemented in efficient kernel operations. The 
chosen encoder structure provides a permutation invariant processing of the geometry 
describing points [10]. Depending on the problem, other architectures are also possible 
as encoders. For example, it is reasonable to use convolution operations for geometries 
that do not contain permutation problems, e.g. if a unique sorting of the spatial infor-
mation can be done. It would also be conceivable to obtain the latent representation by 
2D or 3D CNN on the basis of image data representing the geometry, which could be 
feasible for example in imaging based medical examinations. Apart from reduction of 
geometric dimension using VAE, it could be possible to use other techniques of dimen-
sion reduction such as PCA.

Jin et al. showed another benefit of using PINNs for surrogate models, if the bound-
ary conditions are not well known or are badly imposed, a conventional solver would 
fail [20]. The PINN can also produce results, although it has to be carefully evaluated 
to ensure the meaningfulness of the predictions. They also demonstrated another 
advantage by using PINNs to resolve for unknown Reynolds numbers based on scat-
tered velocity data [20]. Thus, the concept of PINNs facilitates the prediction of many 
unknown quantities where conventional methods would be cumbersome. Our concept 
extends the usefulness of PINNs to irregular non-parameterized geometries.

We proved the concept of GAPINN for experiment with Re = 500 but we want to 
point out that this framework could be adapted to other Reynolds numbers within the 
laminar regimen. It could also be possible to use the Reynolds number as input param-
eter in addition to latent vector and spatial coordinates. Sun et al. experimented on this 
approach for parametrized stenosis and achieved promising results [2]. The application 
of this method on turbulent flow must be investigated in future studies.

It has been shown by Sun et  al. that a soft boundary constraint yields worse results 
compared to a hard constrained boundary condition [2]. Based on this, we have shown a 
simple method to hard constrain the boundary conditions for irregular non-parameter-
ized geometries. This method is for example suitable for many common flow situations. 
However, it should not be concluded that network architecture with soft boundary con-
straints cannot be used, the advantages should be individually evaluated.

Lastly, we want to discuss the difference in computational performance for the exper-
iment presented here. Solving the quasi 2d simulation, with 150  000 hexahedron ele-
ments, required 210 CPU seconds until convergence by using FVM implemented in 
OpenFOAM [18]. The training for the GAPINN method with 133,000 iterations, after 
which the loss converged, lasted approx. 13  h. By optimizing the training code, faster 
training could be possible. If we compare this training time on one GPU to the potential 
time for generating 1000 simulations (like the set included in training) we have a total of 
86 h on one CPU (Intel Xeon Gold 6226R). It should be noted that it is hard to directly 
compare CFD-simulation time done on CPU with surrogate neural network training on 
GPU because of the use of different computation devices but also by the result which is 
given by each method. It should be noted that the comparative CFD simulations were 
not optimized in terms of their computational cost.

Once the GAPINN was trained, the estimation is very fast, but depends on the 
number of points entered. The calculation with the GAPINN method of the analogue 
spatial distribution as used for CFD required 0.32 GPU seconds. While conventional 
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CFD simulations need to be done on each geometry separately, GAPINN allows to 
train a surrogate model which can be used for similar non-parametric geometries 
after training, see validation with geometries not involved in training (Figs.  4 and 
5). If one considers the time consumption for discretization steps as required step 
in the pre-processing of a CFD analysis, the advantage of GAPINN becomes even 
clearer. Particularly with regard to complex 3D geometries, a very high advantage is 
foreseeable.

Conclusion and future work
This article presented a novel DNN framework (GAPINN) to create a fluid flow surro-
gate model based on irregular geometries using PINNs without the need for training 
data. The framework involves three network types. The first network (SEN) reduces 
the dimensions of the irregular geometries to a latent representation. In this work 
we prove the feasibility of VAE-type networks for this task. We proposed the concept 
of using this latent representation in combination with spatial coordinates as input 
for the second network, a PINN. Using PINN we showed that it is possible to train 
a surrogate model purely driven on the reduction of the residuals of the underlying 
PDE. Furthermore, we showed the way of designing a boundary constraining network 
(BCN), the third network, to hardly enforce boundary conditions during training 
of the PINN. We evaluated this concept on an exemplarily experiment in the fields 
of biofluidmechanics. For this we generated 1000 different irregular shaped vessels 
in 2D. The experiments were done at Re 500. The main highlight of the presented 
GAPINN is the use of PINNs on irregular non-parameterized geometries. Despite 
that we showed the usage of this framework for Navier–Stokes equations, we see no 
major problems to adapt to usage for other problems described by PDE. In the future 
our aim is to study the possibility to use GAPINNs on time varying geometries and 
boundary conditions such as in pulsatile regimen of cardiovascular flows.
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