
Geometry aware physics informed neural
network surrogate for solving Navier–Stokes
equation (GAPINN)
Jan Oldenburg1*   , Finja Borowski1, Alper Öner2, Klaus‑Peter Schmitz1 and Michael Stiehm1 

Abstract 

Many real world problems involve fluid flow phenomena, typically be described by the
Navier–Stokes equations. The Navier–Stokes equations are partial differential equations
(PDEs) with highly nonlinear properties. Currently mostly used methods solve this dif‑
ferential equation by discretizing geometries. In the field of fluid mechanics the finite
volume method (FVM) is widely used for numerical flow simulation, so-called com‑
putational fluid dynamics (CFD). Due to high computational costs and cumbersome
generation of the discretization they are not widely used in real time applications. Our
presented work focuses on advancing PDE-constrained deep learning frameworks for
more real-world applications with irregular geometries without parameterization. We
present a Deep Neural Network framework that generate surrogates for non-geometric
boundaries by data free solely physics driven training, by minimizing the residuals of
the governing PDEs (i.e., conservation laws) so that no computationally expensive CFD
simulation data is needed. We named this method geometry aware physics informed
neural network—GAPINN. The framework involves three network types. The first
network reduces the dimensions of the irregular geometries to a latent representation.
In this work we used a Variational-Auto-Encoder (VAE) for this task. We proposed the
concept of using this latent representation in combination with spatial coordinates as
input for PINNs. Using PINNs we showed that it is possible to train a surrogate model
purely driven on the reduction of the residuals of the underlying PDE for irregular non-
parametric geometries. Furthermore, we showed the way of designing a boundary
constraining network (BCN) to hardly enforce boundary conditions during training of
the PINN. We evaluated this concept on test cases in the fields of biofluidmechanics.
The experiments comprise laminar flow (Re = 500) in irregular shaped vessels. The main
highlight of the presented GAPINN is the use of PINNs on irregular non-parameterized
geometries. Despite that we showed the usage of this framework for Navier Stokes
equations, it should be feasible to adapt this framework for other problems described
by PDEs.

Keywords:  Physics informed neural network, Parametric, Non-parametric, Fluid flow,
Stenosis

Open Access

© The Author(s) 2022, corrected publication 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH ARTICLE

Oldenburg et al.
Adv. Model. and Simul. in Eng. Sci. (2022) 9:8
https://doi.org/10.1186/s40323-022-00221-z

*Correspondence:
jan.oldenburg@uni-rostock.de

1 Institute for ImplantTechnology
and Biomaterials e.V., Rostock,
Germany
2 Heart Center/Department
of Cardiology, Rostock University
Medical Center, Rostock,
Germany

http://orcid.org/0000-0003-1580-8531
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40323-022-00221-z&domain=pdf

Page 2 of 15Oldenburg et al. Adv. Model. and Simul. in Eng. Sci. (2022) 9:8

Introduction
Many real world problems involve fluid flow phenomena, for instance, in aerospace,
maritime engineering and biomedical engineering. Such problems mathematically can
be described by the Navier–Stokes equations as a basis for computational simulation.
The Navier–Stokes equations are partial differential equations (PDE) with highly non-
linear properties. Currently used computational methods solve these differential equa-
tions using numerical methods with discretization techniques like finite volume method
(FVM) mostly used in computational fluid dynamics (CFD). Depending on the com-
plexity of the problem involved, these methods tend to be very computationally expen-
sive and require a high level of methodological understanding in the generation of the
discretization (meshing). These factors inhibit an intensive utilization in time-relevant
applications such as surgery planning or real-time simulation during the operation in
the cardiovascular field.

Surrogate models, which approximate the output in relation to the input, could
increase the use in these fields. Quantities like the fluid velocity and pressure could be
captured very fast by these methods. Three different types of surrogate modeling tech-
niques can be distinguished: Reduced Order Models (ROM), data fit models and Deep
Neural Network (DNN) based models.

ROM’s are used to reduce the order of the problem in an unsupervised manner, among
others Proper Orthogonal Decomposition (POD) and Principal Component Analysis
(PCA) are the most popular. However, these methods appear to be limited by stability
and robustness difficulties [1]. Moreover, they are intrusive in the code and limited in
speedup potential with high nonlinearities, as summarized by Sun et al. [2, 3].

Data fit models create a fit between input and output based on simulations. The most
popular methods are polynomial basis, radial basis functions, Gaussian process and sto-
chastic polynomial chaos expansion. These methods mostly do not require any change in
the simulation solver.

Deep learning-based surrogate models promise the ability to handle strong non-
dimensional problems by their basic structure as it is required for the Navier–Stokes
equations. These methods are heavily developed and pushed in the fields of computer
vision. Traditional deep learning methods use a large data set and the information con-
tained in the data, which is referred to as data-driven learning. In the case of a surro-
gate model as a specific problem, many numerical simulations would be required to
train a neural network as a function approximator for PDEs. In particular in the field
of CFD, the generation of training data would eliminate the performance enhancement
of DNN. The enormous effort involved in generating the training data initiated in the
1990s the further development of applying neural networks directly as a solver for dif-
ferential equations [4, 5]. This concept takes into account that the modelled physics are
known a-priori and due to the known governing equations constrains could be formu-
lated or drive the training of the neural network. With increasing computational power,
this approach became more and more feasible in the last years, leading to the develop-
ment of a new type of neural networks, the so-called physics informed neural networks
(PINNs), which were first launched by Raissi et al. [6]. They solved one-dimensional (1D)
PDEs such as viscous Burger’s equation, and PDE-constrained inverse problems by using
only few amounts of training data. In order to perform surrogate modeling, a working

Page 3 of 15Oldenburg et al. Adv. Model. and Simul. in Eng. Sci. (2022) 9:8	

group used the PDE-bounded DNN for uncertainty propagation in steady-state heat
equations [7]. Furthermore, Gao et al. proposed an approach of surrogate modeling for
Navier–Stokes equations for irregular geometries by means of coordinate transforma-
tion to rectangular grids, which allowed an effective use of convolutional neural net-
works and efficient derivative computation (Finite Difference) due to rectangular grids
[8]. This approach is limited by the regular meshing method even for irregular geom-
etries. Most techniques showed the possibilities to solve PDE without the use of train-
ing data only on canonical problems with rectangular domains. Sun et al. showed that
it is feasible to train PINNs for parameterized geometries without simulation or exper-
imental data, by adding the parametric variable as input to the network for surrogate
modeling of incompressible steady flows [2]. Motivated from this work we solved the
underlying Navier–Stokes equations for nonparametric geometries. Analogue to Sun
et al. we trained surrogates using data free solely physics driven methods, by minimizing
the residuals of the governing PDEs (i.e., conservation laws). As a result no computation-
ally expensive CFD simulation data is needed.

In this paper we introduce a framework to create a fluid flow surrogate model based on
irregular geometry with no parameterization using PINNs without the need for training
data, which to the best of the author’s knowledge has not been done so far. We named
our method geometry aware physics informed neural network—GAPINN.

Our current work focuses on advancing the PDE-constrained deep learning frame-
work for more real-world applications with irregular geometric shapes. The paper is
organized as follows. First the physical background and its mathematical description is
presented. In the next section the architecture of the deep learning algorithm proposed
here is explained. In the following chapters the numerical experiments will be described
and are followed by the results obtained from the proposed GAPINN framework in
comparence with CFD-Simulations and vanilla PINN. Finally, conclusions are drawn in
the last chapter.

Network architecture
Physical background

In this work we will focus on a biomedical problem, the flow inside blood vessels with
stenosis leading to pathological blood flow. These vascular stenoses could lead to major
health complaints, especially in the field of cardiology or neurology. The anatomy of
stenosed vessels is highly individual and can be considered as non-parametric geome-
tries. The blood can be described with the conservation equations of fluid mechanics,
in particular with the Navier–Stokes equations. We want to point out that the proposed
workflow could also be adapted to problems arising from other fields in continuum
mechanics such as structural mechanics or heat and mass transfer.

The Navier–Stokes equations can be written in its residual formulation like below:

With X being spatial coordinates and t the time. The PDE is constraint due to � describ-
ing parameters like boundary and initial conditions and fluid properties. In the formula

(1)

F(U, p) = 0 :=

{
∇ ·U = 0, X, t ∈ �f ,t� ∈ R

d ,
∂U
∂t + (U · ∇)U + 1

ρ
∇p− υ∇2

U + bf = 0, X, t ∈ �f ,t� ∈ R
d

Page 4 of 15Oldenburg et al. Adv. Model. and Simul. in Eng. Sci. (2022) 9:8

U(t,X,�) is the fluid velocity, with its components u, v, w, in three dimensions and
p(t,X,�) is the corresponding pressure. ρ and υ are the density and the kinematic vis-
cosity of the fluid respectively. The method has been tested for 2-dimensional steady
state cases.

GAPINN framework

The GAPINN framework consists of three separate networks, see Fig. 1: (1) as one of
the most important parts, to solve for varying non-parametric geometries, a Shape
Encoding Network (SEN); (2) a Physics Informed Neural Network (PINN) in order to
solve the differential equation of a given fluid mechanical problem; (3) and a Bound-
ary Constrain Network (BCN) to constrain the boundary and initial conditions for
each given non-parametric geometric boundaries.

The shape of a fluid domain, where the Navier–Stokes equations to be solved, was
defined by spatial positions Xj,(i,b) whereas the subscript i denotes locations of the
internal field of the fluid domain, b denotes locations on the boundary and j indicates
different cases defined by a set of varying non-parametric geometries of fluid domains
(made up from i and b). The framework outputs velocities Uj,(i,b) and pressure pj,(i,b)
for this spatial locations. In this framework the SEN was used to reduce the dimen-
sions of the given non-parametric geometric boundaries. This latent representation
was than concatenated with the spatial positions and serves as input for the PINN
and the BCN, see Fig. 1.

The workflow for training the GAPINN framework was that way that the SEN was
trained first, generating a latent representation. The BCN was trained second and
the PINN trained last, given the information’s from the SEN and BCN as depicted
in Fig. 1. After the training of SEN and BCN was performed, no more adjustment of
weights and biases were done for these networks.

Fig. 1  Schematic description of the architecture of the proposed DNN Method (GAPINN) to generate
surrogates of PDEs with irregular non-parameterized geometries using PINNs. The network consists of three
subnetworks which are trained separately. The SEN is a Variational-Auto-Encoder type reducing the geometry
dimensions to a latent vector k. PINN takes k and spatial positions to solve the PDE and building the surrogate
and BCN, by also taking spatial information and k, helps constraining boundary conditions in the PINN.
Dimensions at each operation are noted in brackets

Page 5 of 15Oldenburg et al. Adv. Model. and Simul. in Eng. Sci. (2022) 9:8	

We first describe the SEN more in detail to help the reader to understand how differ-
ent fluid domain geometries can be interpreted by a PINN. Moreover, how this facili-
tates the development of a surrogate model that is able to solve fluid mechanical partial
differential equations for various non-parametric geometries without the need of train-
ing data.

Shape encoding network (SEN)

As input we assumed a non-parametric but well-defined fluid domain. We aimed to
get a latent representation of each geometric shape, by using the technique of Varia-
tional-Auto-Encoder (VAE) [9]. VAE are a common technique in the field of computer
vision to reduce high dimensional information to a lower dimensional representation in
an unsupervised learning process. A VAE is built from two main components namely
the encoder, which actually reduces the dimensions and the decoder, which reconstructs
the input from a lower dimensional representation.

A reason why we recommend VAE instead of Auto-Encoder (AE) is that we had found
poor validation performance for AE. In order to obtain a feasible latent representation,
in terms of interpolation capabilities for geometric similar shapes, we used a VAE with a
regularization term which fits the latent vector to a known distribution.

To ensure that the low dimensional representation is robust against permutation we
had chosen a PointNet-like architecture [10]. The main concept of this type of network
is the usage of Multilayer Perceptron neural networks with shared weights and a glob-
ally acting “symmetrical” pooling function in order to construct the lower dimensional
representation from a set of points. For this study we used one dimensional convolu-
tion operators with a kernel size of 1 and stride of 1, which in principle is an imple-
mentation of a multilayer perceptron with shared weights. A schematic depiction of the
encoder network used in the experiments is shown in Fig. 2. The input of the network
was a subset of points representing the boundary (Xj,b with size nb). Followed by four
1d convolution layers which were increasing the spatial dimensional axis from d to 512
channels (Conv1:128, Conv2:128, Conv3:256, Conv4:512). Subsequently, a max pool-
ing operation was used in a channel wise manner to aggregate information shared by
all points, resulting in an array with 512 channels. This was followed by two fully con-
nected neural networks (FCNN) with one hidden layer. The FCNN reduced the pooled
vector to the desired lower dimensional representation size nk of the latent vector k.
The pooled vector was split into prediction of mean and variance. This describes the

[nb,d]

Conv1

[nb,128] [nb,128] [nb,256]
[nb,512]

In
pu

t

[1,512] mean

var

[1,k]

[1,k]

Fig. 2  Schematic visualization of the use encoder architecture used here, build from input given into 4 × 1d
Convolutions, channel-wise max pooling and two fully connected networks with three layers each (layers:
512, 256, k). The dimension after every operation is given in brackets

Page 6 of 15Oldenburg et al. Adv. Model. and Simul. in Eng. Sci. (2022) 9:8

posterior distribution predicted by the encoder. One can sub sequentially follow next
steps by using either both vectors (mean vector and variance) or only the mean vector.
For our cases applying the mean vectors reaches proper results.

During training the encoder was constrained to learn a given distribution (in our
experiments this was a Gaussian distribution). From the output of the encoder the
decoder reconstructs the input point cloud. The decoder consisted of FCNN with three
hidden layers. After training of the SEN the decoder was no longer needed and only the
encoder module was of importance. The reconstruction and the real input were com-
pared using the chamfers distance function. During training the summation of the Kull-
back–Leibler divergence [11], between the approximate and true prior distribution,
( LKL ) weighted with β , and the chamfer distance loss ( LREC ) [12], here called LVAE , were
minimized.

With LREC described by following formula:

With S being points from Xb and their reconstruction Ŝ from X̂b due to the decoder. That
means that LREC describes the distance between a point from the subset Xb and its near-
est neighbor in the reconstructed X̂b ; and the other way around.

Physics informed neural network (PINN)

The PINN was of fully connected feedforward type (FCNN). Input to the PINN were
on the one hand spatial positions Xj,(i,b) and on the other hand the encoded informa-
tion k for each of the geometry domains. These two inputs were concatenated along the
dimensional axis of X before inserted into the network. The dimension of the input is
[n,d + nk], with n being the number of points from a subset of Xj,i and Xj,b, d the number
of spatial dimensions and nk being the dimension of the latent vector k. The network
maps the inputs to the velocity Uj,(i,b) and pressure pj,(i,b). For more general informa-
tion on feed forward neural networks we recommend [13] or for more specific aspects
regarding PINN’s [6, 14]. Layers between the input and output were referred to as hid-
den layers. As activation function after each hidden layer we used a sigmoid linear unit
function [15], with the output coming from logistic sigmoid of the input multiplied with
the input itself.

During the training the weights (W) and biases (b) were adapted so that the loss will
be minimal, see Eq. 5. The loss function is describing the physics, in form of a differen-
tial equation in its residual formulation. In the case of steady state Navier–Stokes equa-
tions the loss is described due to the conservation of mass and momentum in the fluid
domain, see Eq. 4.

(2)LVAE = LREC − βLKL

(3)LREC =
∑

S∈Xb

min
Ŝ∈X̂b

∥∥∥S − Ŝ
∥∥∥
2

2
+

∑

Ŝ∈X̂b

min
S∈Xb

∥∥∥S − Ŝ
∥∥∥
2

2

(4)Lphy(W,b) =
∥∥∥∇U

2
∥∥∥+

∥∥∥∥(U · ∇)U +
1

ρ
∇p− ϑ∇2

U

∥∥∥∥
2

Page 7 of 15Oldenburg et al. Adv. Model. and Simul. in Eng. Sci. (2022) 9:8	

For this loss function several first and second order derivatives of the output (U,p)
with respect to spatial coordinates X were needed. These calculations were performed
be means of the concept of automatic differentiation (AD). AD is a common tech-
nique used in the field of machine-learning, mainly to get gradients of the network
with respect to the weights and biases. This technique relies on the concept of the
calculation of derivatives inside a computational graph and is implemented in most
state of the art deep-learning libraries such as TensorFlow, PyTorch or Theano; here
we worked with PyTorch. For solving the optimization problem (Eq. 5), we used the
Adam algorithm [16].

Boundary enforcing

Boundary conditions can be imposed mainly in two ways. First, by adding an extra
penalty loss term Lsoft to Eq. 4, which affects the PINN to learn conditions on the
boundary, by minimizing L(W,b) during training, with W and b being weights and
biases of the neural network see Eq. 6. Sun et al. showed several major drawbacks
of this so-called soft boundary imposing. As mentioned by Sun et al. this approach
is not feasible to ensure the accurate definition of initial and boundary conditions
due to its implicit manner. Furthermore, the optimization performance could depend
on relative importance of the boundary loss term and PDE loss term [2]. This could
be addressed by weighting the terms, but also a-prior weighting will mostly not be
known.

The second approach of imposing boundary conditions is to hard enforce these in the
neural network. This approach can be implemented by constructing a set of functions
that are taking the outputs of the PINN Ûb,i and p̂b,i as input and, while automatically
satisfying boundary conditions, computing the output Ub,i and pb , see Eq. 7. It is benefi-
cial that these functions are “smooth” on Xj,(i,b) . For most boundary problems we can use
functions that indicate where a boundary condition should be constraint, here referred
to as B

(
Ûb,i, p̂b,i

)
. In addition to that functions for applying the correct value on the

boundary, here expressed as C
(
Xj,(i,b)

)
 , need to be set. This concept is motivated accord-

ing to [17].

For hard constrain boundary conditions for common fluid mechanic domains we pro-
pose to use a pre-trained neural network which is predicting the minimal Euclidean dis-
tance of each Xj,i to the walls which are considered fixed, here indicated as the function
BCN

(
Xj,(i,b)

)
 . We used a simple FCNN for this task. The advantage of this approach lies

in the capability of tracking gradients in order to use the concept of automatic differen-
tiation during neural network training. Therefore we did not compute the distance on
the fly while training.

(5)W ∗
= arg min

W
Lphy(W,b)

(6)L(W,b) = Lphy + Lsoft

(7)
Uj(b,i)

pj(b,i)
= B

(
Û j,(i,b), p̂j,(i,b),Xj,(i,b)

)
+ C

(
Xj,(i,b)

)

Page 8 of 15Oldenburg et al. Adv. Model. and Simul. in Eng. Sci. (2022) 9:8

The network takes as input the spatial positions Xj,(i,b) and the latent vector k. The
prediction of BCN was compared to pre-computed Euclidean distances of the spa-
tial positions to the boundaries with fixed zero velocity by using mean squared error.
Reduction of the mean squared error was done in the training process of the BCN, by
adapting the weights of the neural network. The exact form of the functions B and C
are highly dependent on the investigated fluid mechanical problem to be solved. For
detailed description on how to construct the boundary functions for a specific prob-
lem we refer to the following experiment chapter.

Experiments
In the experiments we focused on a biomedical blood flow problem—the flow inside
vessels with irregular geometries including stenosis and/or aneurysm sections in
steady state condition within a two-dimensional fluid domain. The physics of blood
flow (Newtonian assumption) can be described using the following formulation of the
incompressible Navier–Stokes equations.

We generated 1000 geometries, by fitting a spline function through randomly gen-
erated marking points, building an irregular vessel wall, see Fig. 3. On each of the 4
boundaries we sampled 100 points (nj=1000, nb=400). The spatial dimensions were nor-
malized to the inlet size (D). The inlet was positioned at x = 0. The Reynolds number
was set to Re = 500. The velocities were normalized according to the mean veloc-
ity at the inlet at which a parabolic velocity flow profile in x-direction was applied.
On the walls we defined Uwall = 0 m/s. The pressure at the outlet was fixed to zero.
The predicted pressure was normalized to pressure difference (p*) according to flow
through a straight channel without stenosis and aneurysm. Neumann boundary con-
ditions were implemented as soft boundary condition in the neural network and were
imposed as zero gradient pressure at inlet and walls and zero gradient velocity at the
outlet. For simplification, it is assumed that the blood is a Newtonian fluid.

We used the trained BCN to help constrain velocity boundary conditions, see Eq. 7,
by applying the following formulation for the functions B

(
Û j,(i,b), p̂j,(i,b),Xj,(i,b)

)
:

(8)F(U, p) = 0 :=

{
∇ ·U = 0

(U · ∇)U + 1
ρ
∇p− υ∇2

U = 0,

Fig. 3  Schematic of irregular geometric vessel with a fixed set of boundary and fluid domain points. With
Dirichlet and Neumann boundary conditions: parabolic velocity profile at the inlet, zero velocity at walls and
zero pressure at the outlet as well as zero gradient in reference to normal vectors (n) of geometry for pressure
on inlet and vessel walls and velocity at the outlet. Red points are indicating internal points and green points
are indicating points on the boundary

Page 9 of 15Oldenburg et al. Adv. Model. and Simul. in Eng. Sci. (2022) 9:8	

With function C, in Eq. 7, enforcing a parabolic velocity profile at the inlet, with R = D/2,
and zero pressure at the outlet.

For training of the SEN we only included Xj,b into the SEN. As already mentioned,
the weights of the SEN were fixed when further used for training of the BCN and
PINN. Training the BCN we used the boundary points as input for the SEN to gen-
erate the latent representation (here: nk = 60), and used all points in the training set
to train the BCN. The prediction of BCN was compared to precomputed Euclidean
distances of Xj,i to the boundaries Xj,b with fixed zero velocity by using mean squared
error.

Training was done on single GPU (NVIDIA Quadro RTX 5000). Network and hyper
parameters used in the experiments are listed belohnt, see Table 1.

To validate the prediction performance of the data-free trained GAPINN we per-
formed numerical simulations on randomly generated vessels by means computa-
tional fluid dynamics (CFD) using OpenFOAM 9 [18] for comparison with geometries
used in training and ANSYS 18.0 Fluent with vessel geometries not included in train-
ing. The mesh consisted of 150,000 hexahedron elements. This validation set of ves-
sels was not included in the training process.

To show the advantage of the developed framework, we also performed experi-
ments on exactly the same dataset and training parameters while using Vanilla PINN
framework. The Vanilla PINN had the same number of hidden layers and neurons in
the hidden layers as the PINN used in the GAPINN approach. Furthermore, in addi-
tion to the hard boundary constraint strategy as presented here, we applied soft con-
straint strategy for both GAPINN and classical PINN.

(9)B
(
Û j,(i,b), p̂j,(i,b),Xj,(i,b)

)
=

{
for U:BCN

(
Xj,(i,b)

)
Û j,(i,b)xj,(i,b)

for p : p̂j,(i,b)
(
xj,(i,b) − 10D

)

(10)C
�
Xj,(i,b)

�
=






for u:

�
1−

��
BCN

�
Xj,(i,b)

�
−R

�

R

�2
�

∗ umax

for v:0
for p:0

Table 1  Network and hyper parameter settings used in the experiments

SEN PINN BCN

Network parameter

 Layers 4 × 1d Convolutions (feature size:
128, 128, 256, 512)
FCN (3 hidden layer with 256 neu‑
rons, nk = 60); β = 0.001

2 hidden layer (each 256
neurons)

2 hidden layer
(each 25 neurons)

Training parameter

 Batch size 50 10 10

 Optimizer Adam [16]
Betas = (0.9, 0.999)
No weight decay
No amsgrad

Adam
Betas = (0.9, 0.999)
No weight decay
No amsgrad

Adam
Betas = (0.9, 0.999)
No weight decay
No amsgrad

 Learning rate 1e−3 1e−3 1e−3

 Epochs 650 1300 3000

Page 10 of 15Oldenburg et al. Adv. Model. and Simul. in Eng. Sci. (2022) 9:8

Results and discussion
Here we present results to evaluate the performance of the proposed DNN frame-
work named GAPINN. We performed experiments on 2D steady and laminar flow
inside vessels with irregular geometries referring to biomedical blood flow problem.
We trained the three networks (SEN, BCN, PINN) on 1000 different geometries,
referred to as training set. For evaluation of GAPINN we generated vessel that are not
included in training, referred to as validation set. The output from the GAPINN were
velocity u and v as well as pressure p. For comparing, the output data of GAPINN and
CFD were interpolated on the same grid using linear interpolation.

Figure 4 shows the comparison between GAPINN predictions and CFD solutions
on samples from the training and from the validation set with velocity in stream-wise
component u on the left and span-wise velocity component v on the right.

It can be seen that the main flow phenomena predictions using GAPINN agree
reasonable well with the CFD solutions. For instance, with decreasing diameter, the
velocity u increases, this phenomena is shown using conventional CFD simulation as
well as GAPINN. The mean squared error (mse) of comparison between CFD and
GAPINN on the shown validation samples are mseu = 3.61e−3 msev = 2.30e−4. We
think that an intensive study on architecture and hyper parameter optimization could
increase the prediction performance but that this is out of scope of the current work.
The experiments shown here are for proof of concept only.

Figure 5 shows the comparison between GAPINN predictions and CFD solutions of
pressure distribution on samples from the training and validation set.

x

x

x

x

x

x

x

x

y

y

y

y

y

y

y

y

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

CFD (u) GAPINN (u) CFD (v) GAPINN (v)

Va
lid

a

on

 se
t

a

Tr
ai

ni
ng

 se
t

b

#1 #1

#2 #2

#3 #3

#4 #4

#1 #1

#2 #2

#3 #3

#4 #4

#5 #5

#6 #6

#7 #7

#8 #8

#5 #5

#6 #6

#7 #7

#8 #8

u/umean v/umean

Fig. 4  Comparison between GAPINN predictions and CFD solutions eight randomly picked samples (#1–#8)
of irregular vessels from training (a) and validation (b) with velocity in streamwise component u on the left
and spanwise velocity component v on the right

Page 11 of 15Oldenburg et al. Adv. Model. and Simul. in Eng. Sci. (2022) 9:8	

The GAPINN predict the pressure distribution in qualitative manner quite well. An
discrepancy can be observed in the quantitative value. The mean squared error on the
validation set is msep = 1.6e−2.

To get an overview of the performance of the GAPINN on the encoded geometries, we
use t-SNE [19] to embed the latent vector k for visualization of our validation (20 CFD
simulations) and training (100 CFD simulations) set into a 2D space. Figure 6 shows the
embedding space. It can be seen that similar vessel shapes are clustered. Furthermore,

x

x

x

x

y

y

y

y

x

x

x

x

x

x

x

x

x

x

x

x

y

y

y

y

y

y

y

y

y

y

y

y

a

CFD (p) GAPINN (p) CFD (p) GAPINN (p)

b

#1

#2

#3

#4

#5

#6

#7

#8

#1

#2

#3

#4

#5

#6

#7

#8

Training set Valida�on set

p/p* p/p*

Fig. 5  Comparison between GAPINN predictions and CFD solutions on eight randomly picked samples
(#1–#8) of irregular vessels from training (a) and validation (b) with velocity in streamwise component u on
the left and spanwise velocity component v on the right

mse u
mse v
mse p

flow

vessle geometry

Fig. 6  two dimensional embedding of shape encoded latent vector k by means of t-SNE technique for
visualization. Gray shapes indicating shapes from validation set and black shapes indicating shapes from
training set. Under each shape is the mean squared error (mse) with respect to CFD-Simulations plotted
(squares: mse u, triangle: mse v and circles: mse p). The color is linearly scaled between 0 and 1, the
corresponding maximal values are msemax u = 0.15, msemax v = 0.07 and msemax p = 0.27

Page 12 of 15Oldenburg et al. Adv. Model. and Simul. in Eng. Sci. (2022) 9:8

the varieties of vessel geometries are widely distributed over the embedded space
which is due to the use of VAE. Plotted under each shape is the mean squared error
with respect to CFD-Simulations (squares: mse u, triangle: mse v and circles: mse p). The
color is linearly scaled between 0 and 1, the corresponding maximal values are msemax

u = 0.15, msemax v = 0.07 and msemax p = 0.27.
The following Fig. 7 shows the comparison of the loss during the training process

between the conventional PINN framework and the proposed GAPINN framework to
create surrogate models that resolve the Navier–Stokes equations on non-parameterized
geometries without the use of training data. Both soft and hard boundary constraint
methods were used for this experiment. The error on the training data set during train-
ing for the Vanilla PINN framework is several orders of magnitude higher than for the
proposed GAPINN framework. The Vanilla PINN framework fails to solve the Navier–
Stokes equations on varying geometries in non-parameterized form. We also see advan-
tage in using hard boundary constraint over soft boundary constraint for the GAPINN
framework. It should be noted that the soft boundary method is very sensitive to the
weighting of the loss terms for boundary constraint and the physical loss, as demon-
strated by Sun et al. In this experiment we weighted the boundary term by a factor of
100, which showed the best results for our cases.

The advantage of the GAPINN framework is that the quantities of interest can be esti-
mated at any arbitrary point within the domain. Only the number of points describing
the geometry should sufficiently represent the geometry and must be evaluated based
on the given problem. But in general, the network architecture of all networks shown
here is not limited in the number of points to be evaluated, in contrast to [8]. A dis-
advantage using point based computation compared to methods based on structured
spatial representation is the higher computational effort to calculate the derivatives by
means of AD, during training of the PINNs. Gao et al. showed this advantage by the

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

0.0E+00 2.0E+04 4.0E+04 6.0E+04 8.0E+04 1.0E+05 1.2E+05 1.4E+05

Lo
ss

Itera�ons

Vanilla PINN (hard)
Vanilla PINN (so�)
GAPINN (hard)
GAPINN (so�)

Fig. 7  Comparison of loss over epoch during the network training for both vanilla PINN and the proposed
GAPINN using hard and soft constraints for generating surrogate models for solving Navier–Stokes equations
on non-parameterized geometries without the use of training data. Depicted is the error after each epoch

Page 13 of 15Oldenburg et al. Adv. Model. and Simul. in Eng. Sci. (2022) 9:8	

usage of Finite Difference methods implemented in efficient kernel operations. The
chosen encoder structure provides a permutation invariant processing of the geometry
describing points [10]. Depending on the problem, other architectures are also possible
as encoders. For example, it is reasonable to use convolution operations for geometries
that do not contain permutation problems, e.g. if a unique sorting of the spatial infor-
mation can be done. It would also be conceivable to obtain the latent representation by
2D or 3D CNN on the basis of image data representing the geometry, which could be
feasible for example in imaging based medical examinations. Apart from reduction of
geometric dimension using VAE, it could be possible to use other techniques of dimen-
sion reduction such as PCA.

Jin et al. showed another benefit of using PINNs for surrogate models, if the bound-
ary conditions are not well known or are badly imposed, a conventional solver would
fail [20]. The PINN can also produce results, although it has to be carefully evaluated
to ensure the meaningfulness of the predictions. They also demonstrated another
advantage by using PINNs to resolve for unknown Reynolds numbers based on scat-
tered velocity data [20]. Thus, the concept of PINNs facilitates the prediction of many
unknown quantities where conventional methods would be cumbersome. Our concept
extends the usefulness of PINNs to irregular non-parameterized geometries.

We proved the concept of GAPINN for experiment with Re = 500 but we want to
point out that this framework could be adapted to other Reynolds numbers within the
laminar regimen. It could also be possible to use the Reynolds number as input param-
eter in addition to latent vector and spatial coordinates. Sun et al. experimented on this
approach for parametrized stenosis and achieved promising results [2]. The application
of this method on turbulent flow must be investigated in future studies.

It has been shown by Sun et al. that a soft boundary constraint yields worse results
compared to a hard constrained boundary condition [2]. Based on this, we have shown a
simple method to hard constrain the boundary conditions for irregular non-parameter-
ized geometries. This method is for example suitable for many common flow situations.
However, it should not be concluded that network architecture with soft boundary con-
straints cannot be used, the advantages should be individually evaluated.

Lastly, we want to discuss the difference in computational performance for the exper-
iment presented here. Solving the quasi 2d simulation, with 150 000 hexahedron ele-
ments, required 210 CPU seconds until convergence by using FVM implemented in
OpenFOAM [18]. The training for the GAPINN method with 133,000 iterations, after
which the loss converged, lasted approx. 13 h. By optimizing the training code, faster
training could be possible. If we compare this training time on one GPU to the potential
time for generating 1000 simulations (like the set included in training) we have a total of
86 h on one CPU (Intel Xeon Gold 6226R). It should be noted that it is hard to directly
compare CFD-simulation time done on CPU with surrogate neural network training on
GPU because of the use of different computation devices but also by the result which is
given by each method. It should be noted that the comparative CFD simulations were
not optimized in terms of their computational cost.

Once the GAPINN was trained, the estimation is very fast, but depends on the
number of points entered. The calculation with the GAPINN method of the analogue
spatial distribution as used for CFD required 0.32 GPU seconds. While conventional

Page 14 of 15Oldenburg et al. Adv. Model. and Simul. in Eng. Sci. (2022) 9:8

CFD simulations need to be done on each geometry separately, GAPINN allows to
train a surrogate model which can be used for similar non-parametric geometries
after training, see validation with geometries not involved in training (Figs. 4 and
5). If one considers the time consumption for discretization steps as required step
in the pre-processing of a CFD analysis, the advantage of GAPINN becomes even
clearer. Particularly with regard to complex 3D geometries, a very high advantage is
foreseeable.

Conclusion and future work
This article presented a novel DNN framework (GAPINN) to create a fluid flow surro-
gate model based on irregular geometries using PINNs without the need for training
data. The framework involves three network types. The first network (SEN) reduces
the dimensions of the irregular geometries to a latent representation. In this work
we prove the feasibility of VAE-type networks for this task. We proposed the concept
of using this latent representation in combination with spatial coordinates as input
for the second network, a PINN. Using PINN we showed that it is possible to train
a surrogate model purely driven on the reduction of the residuals of the underlying
PDE. Furthermore, we showed the way of designing a boundary constraining network
(BCN), the third network, to hardly enforce boundary conditions during training
of the PINN. We evaluated this concept on an exemplarily experiment in the fields
of biofluidmechanics. For this we generated 1000 different irregular shaped vessels
in 2D. The experiments were done at Re 500. The main highlight of the presented
GAPINN is the use of PINNs on irregular non-parameterized geometries. Despite
that we showed the usage of this framework for Navier–Stokes equations, we see no
major problems to adapt to usage for other problems described by PDE. In the future
our aim is to study the possibility to use GAPINNs on time varying geometries and
boundary conditions such as in pulsatile regimen of cardiovascular flows.

Abbreviations
PINN	� Physics informed neural network
SEN	� Shape encoding network
BCN	� Boundary constraining network
FVM	� Finite volumes method
PDE	� Partial differential equation
DNN	� Deep Neural Network
PCA	� Principal Component Analysis
ROM	� Reduced Order Method
POD	� Proper Orthogonal Decomposition
FCNN	� Fully connected neural network
GAPINN	� Geometry aware physics informed neural network
AD	� Automatic differentiation
FCNN	� Fully connected neural network

Acknowledgements
Not applicable.

Author contributions
MS and FB made substantial contributions to the design of the experiments, helped interpreting the results of used
analysis methods and helped drafting the manuscript and also substantively revised the manuscript and also perform
CFD-simulations. AÖ and KPS made substantial contributions to the conception of the work. JO made substantial
contributions to the conception and design of the work. He invented the network architecture used in this work. JO
performed neural network training and analysis and interpretation of data. He also drafted the manuscript. All authors
read and approved the final manuscript.

Page 15 of 15Oldenburg et al. Adv. Model. and Simul. in Eng. Sci. (2022) 9:8	

Funding
Open Access funding enabled and organized by Projekt DEAL. This project has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement No 101017578.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable
request.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 18 March 2022 Accepted: 24 May 2022
Published: 21 June 2022

References
	1.	 Lassila T, Manzoni A, Quarteroni A, Rozza G. Model order reduction in fluid dynamics: challenges and perspectives.

In: Quarteroni A, Rozza G, editors. Reduced order methods for modeling and computational reduction. Cham:
Springer International Publishing; 2014. p. 235–73. https://​doi.​org/​10.​1007/​978-3-​319-​02090-7_9.

	2.	 Sun L, Gao H, Pan S, Wang J-X. Surrogate modeling for fluid flows based on physics-constrained deep learning with‑
out simulation data. Comput Methods Appl Mech Eng. 2020;361(4): 112732. https://​doi.​org/​10.​1016/j.​cma.​2019.​
112732.

	3.	 Chaturantabut S, Sorensen DC. Nonlinear model reduction via discrete empirical interpolation. SIAM J Sci Comput.
2010;32(5):2737–64. https://​doi.​org/​10.​1137/​09076​6498.

	4.	 Lee H, Kang IS. Neural algorithm for solving differential equations. J Comput Phys. 1990;91(1):110–31. https://​doi.​
org/​10.​1016/​0021-​9991(90)​90007-N.

	5.	 Lagaris IE, Likas AC, Papageorgiou DG. Neural-network methods for boundary value problems with irregular
boundaries. IEEE Trans Neural Netw. 2000;11(5):1041–9. https://​doi.​org/​10.​1109/​72.​870037.

	6.	 Raissi M, Perdikaris P, Karniadakis GE. Physics informed deep learning (part I): data-driven solutions of nonlinear
partial differential equations. 2017. http://​arxiv.​org/​pdf/​1711.​10561​v1.

	7.	 Nabian MA, Meidani H. Physics-driven regularization of deep neural networks for enhanced engineering design and
analysis. J Comput Inf Sci Eng. 2020;20(1):436. https://​doi.​org/​10.​1115/1.​40445​07.

	8.	 Gao H, Sun L, Wang J-X. PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solv‑
ing parameterized steady-state PDEs on irregular domain. J Comput Phys. 2021;428(5): 110079. https://​doi.​org/​10.​
1016/j.​jcp.​2020.​110079.

	9.	 Kingma DP, Welling M. Auto-encoding variational Bayes. 2013. http://​arxiv.​org/​pdf/​1312.​6114v​10.
	10.	 Qi CR, Su H, Mo K, Guibas LJ. PointNet: deep learning on point sets for 3D classification and segmentation. 2016.

http://​arxiv.​org/​pdf/​1612.​00593​v2.
	11.	 Kullback S, Leibler RA. On information and sufficiency. Ann Math Stat. 1951;22:79–86.
	12.	 Fan H, Su H, Guibas L. A point set generation network for 3D object reconstruction from a single image. 2016. http://​

arxiv.​org/​pdf/​1612.​00603​v2.
	13.	 Heaton J. Ian Goodfellow, Yoshua Bengio, and Aaron Courville: deep learning. Genet Program Evolvable Mach.

2018;19(1–2):305–7. https://​doi.​org/​10.​1007/​s10710-​017-​9314-z.
	14.	 Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: a deep learning framework for solving

forward and inverse problems involving nonlinear partial differential equations. J Comput Phys. 2019;378:686–707.
https://​doi.​org/​10.​1016/j.​jcp.​2018.​10.​045.

	15.	 Elfwing S, Uchibe E, Doya K. Sigmoid-weighted linear units for neural network function approximation in reinforce‑
ment learning. 2017. http://​arxiv.​org/​pdf/​1702.​03118​v3.

	16.	 Kingma DP, Ba J. Adam: a method for stochastic optimization. 2014. http://​arxiv.​org/​pdf/​1412.​6980v9.
	17.	 Berg J, Nyström K. A unified deep artificial neural network approach to partial differential equations in complex

geometries. Neurocomputing. 2018;317(9):28–41. https://​doi.​org/​10.​1016/j.​neucom.​2018.​06.​056.
	18.	 Weller HG, Tabor G, Jasak H, Fureby C. A tensorial approach to computational continuum mechanics using object-

oriented techniques. Comput Methods Appl Mech Eng. 1998;12(6):620. https://​doi.​org/​10.​1063/1.​168744.
	19.	 van der Maaten L. Barnes-Hut-SNE. 2013. http://​arxiv.​org/​pdf/​1301.​3342v2.
	20.	 Jin X, Cai S, Li H, Karniadakis GE. NSFnets (Navier–Stokes flow nets): physics-informed neural networks for the incom‑

pressible Navier–Stokes equations. J Comput Phys. 2021;426: 109951. https://​doi.​org/​10.​1016/j.​jcp.​2020.​109951.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/978-3-319-02090-7_9
https://doi.org/10.1016/j.cma.2019.112732
https://doi.org/10.1016/j.cma.2019.112732
https://doi.org/10.1137/090766498
https://doi.org/10.1016/0021-9991(90)90007-N
https://doi.org/10.1016/0021-9991(90)90007-N
https://doi.org/10.1109/72.870037
http://arxiv.org/pdf/1711.10561v1
https://doi.org/10.1115/1.4044507
https://doi.org/10.1016/j.jcp.2020.110079
https://doi.org/10.1016/j.jcp.2020.110079
http://arxiv.org/pdf/1312.6114v10
http://arxiv.org/pdf/1612.00593v2
http://arxiv.org/pdf/1612.00603v2
http://arxiv.org/pdf/1612.00603v2
https://doi.org/10.1007/s10710-017-9314-z
https://doi.org/10.1016/j.jcp.2018.10.045
http://arxiv.org/pdf/1702.03118v3
http://arxiv.org/pdf/1412.6980v9
https://doi.org/10.1016/j.neucom.2018.06.056
https://doi.org/10.1063/1.168744
http://arxiv.org/pdf/1301.3342v2
https://doi.org/10.1016/j.jcp.2020.109951

	Geometry aware physics informed neural network surrogate for solving Navier–Stokes equation (GAPINN)
	Abstract
	Introduction
	Network architecture
	Physical background
	GAPINN framework
	Shape encoding network (SEN)
	Physics informed neural network (PINN)
	Boundary enforcing

	Experiments
	Results and discussion
	Conclusion and future work
	Acknowledgements
	References

