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Abstract

In this article we propose an inverse analysis algorithm to find the best fit of multiple
material parameters in different coupled multi-physics biofilm models. We use a
nonlinear continuummechanical approach to model biofilm deformation that occurs
in flow cell experiments. The objective function is based on a simple geometrical
measurement of the distance of the fluid biofilm interface between model and
experiments. A Levenberg-Marquardt algorithm based on finite difference
approximation is used as an optimizer. The proposed method uses a moderate to low
amount of model evaluations. For a first presentation and evaluation the algorithm is
applied and tested on different numerical examples based on generated numerical
results and the addition of Gaussian noise. Achieved numerical results show that the
proposed method serves well for different physical effects investigated and numerical
approaches chosen for the model. Presented examples show the inverse analysis for
multiple parameters in biofilm models including fluid-solid interaction effects,
poroelasticity, heterogeneous material properties and growth.
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Introduction
Microorganisms tend to live in aggregates rather than dispersed single cells and surround
themselves with a network of extracellular polymeric substances (EPS) as a survival strat-
egy. This is called the biofilmmatrix [1]. Amongst others it provides themwithmechanical
resistance against external forces acting on them through a surrounding fluid flow. There
is a broad variety of biofilm occurrence. Depending on whether they are intentionally
grown or unwillingly observed there are opposing interests when it comes to biofilm con-
trol in engineered systems. The prerequisite in all cases however is to have good knowledge
about their behavior. In engineering good knowledge is represented by the availability of
accurately parameterized models that allow the generation of reliable model predictions.
There has been a variety of efforts to estimate relevant material parameters of biofilms.

The reader is referred to [2,3] and [4] as they all give an overview of practiced testing
methods for parameter estimation for different physical aspects. Therein a variety of
mostly intrusive test strategies and results can be found.
As it is still unknown how much influence the environment of the biofilm has on its

mechanical properties [5], an effort towards improved in situ testing methods has been
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made. The long term goal of the methods developed in this work is to develop a non-
destructive testing protocol for biofilms to estimate material parameters that can later be
used to predict biofilm behavior and develop strategies to control their appearance and
growth. Optical coherence tomography (OCT) currently seems to be the prime option to
scan the geometrical representation of biofilms in flow cell experiments under variable
load [6]. This has led to new insights into biofilmmechanics research [7,8]. The advantage
is, that automated growth and test protocols [9] can be developed with this technique and
therein the biofilm can be kept in the same environment for the whole test cycle.
First parameter estimation approaches are described in [10]. A common scalar approach

for determining stiffness and shear resistance is first presented therein. This type of anal-
ysis, if it is applicable, is quick to use and serves with estimates of the values in the relevant
order of magnitude. While such approaches in the end might not be sufficient for pre-
dictions with suffient accuracy, they can favorably be used to assess good initial guesses
for more advanced approaches like the presented inverse analysis algorithm. It has been
shown in [8] that fully resolved fluid-solid interaction (FSI) simulations can be used to
determine one material parameter from modeling flow cell experiments with linear solid
mechanics. This has the advantage that in general no specific shape characteristics of the
biofilm are required for the parameter estimation.
Thepresentwork proposes an inverse analysis algorithm incorporating different numer-

ical models for non destructive experiments with in situ measurement via OCT. The
intuitive approach followed in this work is to model the experimental setup as accurately
as possible and then try to find the set of parameters that fits experimental data best,
in present case via a Levenberg-Marquardt optimization. In order to best analyze and
present the properties of the approach, we create a well defined, i.e. clean environment
and hence use artificially generated results via forward numerical analysis and the addi-
tion of Gaussian noise as a first step and to particularly isolate important effects arising in
this kind of analysis. The honest analysis and discussion of strengths and weaknesses of
this type of inverse analysis approach is the main motivation to present this as standalone
work.
The focus in this work is specifically set on flow cell experiments, like the ones presented

in [7] and [11]. In this type of experiments a biofilm is situated in a transparent channel,
the flow cell. The biofilm is grown on the channel floor and supplied with a solution of
nutrients in the fluid. Once a substantial patch of biofilm has formed, it can be exposed to
varying loads in order to observe its deformation. The mechanical load on the biofilm is
controlled exclusively via the fluid volume inflow rate into the flow cell and for growth the
composition of solutes in the fluid supply. OCT provides precise measurements of biofilm
geometries, but it is limited in the image capturing speed, especially when it comes to three
dimensional scans [6]. Empty flow cells were designed as channels with rectangular profile
with cross sections in the millimeter range in recent experiments. Exemplarily those had
the dimensions of 50mm × 5mm × 0.45mm in [9] or 124mm × 2mm × 1mm in [7].
Experimental results show different shapes of biofilms for different flow rates through

flow cells [11]. Even under automated cultivation and measurement, a certain level of
variability can be found [9]. The appearing nearly arbitrary shapes of biofilm surfaces
pose the question in which way the model results should be compared to experimental
results. The variety in biofilm appearance impedes the accessibility to simple or even
scalar comparisons for parameter estimation. When it comes to quantifying flow cell
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experiments, the load on the biofilm is sometimes represented by the fluid shear stress
next to the wall of the empty flow cell. It is known [8,12] and quite obvious that this shear
stress is not fully representative for the load on the biofilm, as the analyzed biofilm patches
in published analyses take up a significant portion of the height of the flow channel. The
flow rate itself is a more representative quantity. It can also be represented by average
inflow velocity or Reynolds number in the fluid flow through the empty channel. Because
of the irregular shapes of biofilms, an interplay of forces and local effects in the fluid flow
is affecting biofilm deformation in flow cells significantly. This is addressed in this work
by full geometrical resolution of flow cell experiments and a consideration of fluid-biofilm
interaction at the interface.
In order to be self contained, this article provides a very brief introduction to physi-

cal models applicable to different aspects of biofilm mechanics and a brief summary on
numerical approximations. In the next step a method for comparing different surfaces is
presented and the optimization used to minimize the deviation of model predictions and
experimental results is demonstrated. Then the presented algorithm is tested on different
cases and the results are discussed. Finally general remarks and the interpretation of the
informative value of results achieved with the presented algorithm are discussed. The
article is then brought to a conclusion.

Biofilmmodeling
Properties and performance of inverse analysis approaches depend strongly on the model
used to represent the experiments that are used to drive the inverse analysis. Results of
an inverse analysis can never be better than the physical model incorporated. In the given
setting of inverse analysis the numerical model of the experiment is referred to as the
forward model. The forward model must include all physical aspects that are relevant. In
the same sense all the aspects a model covers should be represented in the experimental
data used. The choice of a suitable forward model therefore depends on the type of data
used and the type of application for parameters to be determined. The best case is that
the model used for modeling the experiment in an inverse analysis is the same as the one,
the parameters are aimed to be used with to make valid predictions for biofilm behavior
in the future.
In the following we briefly sketch models and methods that we have developed in the

past and that are used in this work. Modeling approaches to fluid-solid interaction with
scalar transport have been proposed in [13] and have been extended to include biofilm
growth in [14]. Porous properties of biofilms and porous flow through them are known
for a long time [15]. For solving fluid-poroelasticity interaction (FPI) a novel method was
developed in [16] and applied to a kind of finger shaped biofilm example therein. The
presented workflow works independent of the material model. We exemplarily choose
Saint-Venant Kirchhoff or Neo-Hookean material models in our examples.
The inverse analysis algorithmproposed in this paper is obviously not limited to the kind

of models presented here. It can also be applied for other models, like one that describes
damage in the sense of detachment [17] or viscoelastic behavior [18].
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Physical models

The analyzed type of fluid-biofilm interaction includes significant deformations and
potentially rotations of subdomains. Therefore the application of nonlinear kinemat-
ics is essential. In addition the observations made include a variety of effects of biofilm
physics and the according equations for fluid-poroelasticity interaction, scalar transport
of potential nutrients and growth are summarized in the following subsections. For the
sake of brevity the presentation is limited to the strong field equations. The respective
boundary conditions are implicitly assumed to be well defined. Details can be found in
the referenced specific literature.

Fluid field

For the fluid field the general Navier-Stokes equations for incompressible flow of a New-
tonian fluid are appropriate. In order to allow for deforming domains, that are essential for
fluid-solid interaction, they are given in arbitrary Lagrangean-Eulerian (ALE) formulation
as

ρF ∂vF
∂t

+ ρF(cF · ∇)vF − 2μF∇ ·ε(vF) + ∇pF = ρFb̂F in �F × (0, T ) (1a)

∇ ·vF = 0 in �F × (0, T ). (1b)

These equations relate fluid velocity vF, ALE convective velocity cF, fluid pressure pF, fluid
density ρF, fluid dynamic viscosityμF and a body force b̂F in the fluid domain�F × (0, T ).
Herein the strain rate tensor ε(vF) is a short expression for

ε(vF) = 1
2

(
∇vF +

(
∇vF

)T)
. (2)

The ALE formulation is one popular approach to model fluid-solid interactions with
a moving mesh to ensure the continuity between fluid and solid in case of a moving
interface and therein the ALE convective velocity cF is the fluid velocity relative to the
moving mesh.

Solid field

For modeling the nonlinear behavior of solids also allowing for large deformations, the
general balance of momentum in reference configuration

ρS
0aS = ∇0 ·(F · S) + ρS

0 b̂
S
0 in �S

0 × (0, T ) (3)

applies. It relates the solid density in reference configuration ρS
0 , solid displacement dS,

deformation gradient F , second Piola-Kirchhoff stress tensor S and the body force in
reference configuration b̂S0 in the solid domain �S

0 × (0, T ). The solid acceleration aS is

the second material time derivative of the displacement aS = d2dS

dt2
.

Fluid-solid interface

On the fluid-solid interface �F,S × (0, T ) balance of tractions hS� and the equality of
velocities, stemming from a no slip condition between fluid and solid, need to hold. The

solid velocity vS is the first material time derivative of the displacement vS = ddS

dt
.

hS� = −hF� on �F,S × (0, T ) (4a)
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vS� = vF� on �F,S × (0, T ) (4b)

Scalar transport

A scalar transport model in the coupled fluid-solid model is used for nutrient distribution
during the flow cell experiment. The solution of this type of systems has been presented
in [13] and [14]. The scalar transport equation is stated for the fluid (5a) and the solid (5b)
domain.

∂�F

∂t
+ cF · ∇�F − ∇ ·

(
DF∇�F

)
= 0 in �F × (0, T ) (5a)

d�S

dt
+ �S

(
∇ ·vS

)
− ∇ ·

(
DS∇�S

)
+ RS = 0 in �S × (0, T ) (5b)

For the domains the concentration of the solute is described as �K in fluid and solid
domains. The respective diffusion coefficients are described as DK, with K ∈ F, S being
the index for quantities in one of the phases. RS is the reaction rate. In this work a Monod
kinetic relates to nutrient consumption of the biofilm which therefore only appears in the
solid domain.

RS,M = KR
1

�S

KR
2 + �S (6)

This kinetic includes two coefficients, which are the reaction rate KR
1 and the half satura-

tion KR
2 . The negative normal flux on the interface is computed as

hK� = DK∇�K · nK� (7)

for phases K with the respective unit normal nK� . On the fluid-solid interface the concen-
trations and fluxes of the phases K must be equal.

�S = �F on �F,S × (0, T ) (8a)

hS = hF on �F,S × (0, T ) (8b)

In this formulation (8b) the fluxes on the interface must be related to the same normal
direction on the interface. The scalar transport is only one way coupled to the fluid-
solid interaction as the deformation of the solid and the fluid velocity will influence the
concentration solution, but the concentration does not really influence solid or fluid field
solutions.

Surface growth

We introduce growth or erosion according to [14]. It is assumed that growth or erosion
is localized on the biofilm surface and influenced by nutrient flux and surface tractions.

dS
g = �tg

(
K g
1 h

S − K g
2

∣∣∣(σS · nS
)

· nS
∣∣∣ − K g

3

∣∣∣∣∣
2∑

i=1

(
σS · nS

)
· tSi

∣∣∣∣∣
)
nS (9)

With nS being the outward pointing normal on the biofilm surface and tSi two respective
orthogonal unit tangents. This is a relatively simple phenomenological model wherein
stress inhibits growth or erodes the biofilm [14] and the nutrient flux into the biofilm
domain is the cause for growth. The normal flux contributes to growth with the factor K g

1
and the erosion is determined with the factors K g

2 due to the normal stress component
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and K g
3 due to the tangential stress components. �tg describes the timespan the biofilm

is exposed to given growth conditions and dS
g the resulting displacements of the surface

because of growth.

Poroelasticity field

The poroelasticitymodel, that is used, relies on the assumption of a homogenizedmixture
between a fluid phasewithDarcy flow and a solid structure. Porosityφ acts as volume ratio
of void that is filled with a fluid phase. This is well described in [19] and a fully coupled
numerical model for the field equations was developed in [20]. The coupled system of
equations for the poroelastic mixture is derived as

∂φ

∂t

∣∣∣∣
XP

+ φ∇ ·vPS + ∇ ·
[
φ

(
vPF − vPS

)]
= 0 in �P × (0, T ) (10a)

ρPF ∂vPF

∂t

∣∣∣∣∣
XP

− ρPFvPS · ∇vPF + ∇pP
F − ρPF b̂P

F

+μPFφk−1 ·
(
vPF − vPS

)
= 0 in �P × (0, T ) (10b)

ρ̃0
PSaPS − ∇0 ·

(
F · SP

)
− ρ̃0

PS b̂P0 − JφF−T · ∇0pP
F

−μPF Jφ2k−1 ·
(
vPF − vPS

)
= 0 in �P

0 × (0, T ). (10c)

In (10) the indices (•)PS for the porous structure phase, also called skeleton and (•)PF
for the fluid phase are used. J = det F is generally known as the Jacobian determinant

being the determinant of the deformation gradient F . The time derivates
∂(•)
∂t

∣∣∣∣
XP

in (10)

are evaluated in the reference configuration of the porous domain with the reference
coordinate XP held constant. The skeleton velocity vPS and skeleton acceleration aPS are
the first and second material time derivatives of the skeleton displacement dPS . With
the presented formulation the porosity needs an initial value φ0 for each material point
and then changes according to the skeleton displacement field of the fully coupled model
during deformation. ρ̃0P

S = (1 − φ0)ρPS
0 represents the macroscopic averaged initial

density of the skeleton and k = (J )−1F · K · (F )T is the spatial permeability computed
from the permeabilityK in reference configuration, which is determinedwith theKozeny-
Carman formula.

K = IK 1 − φ2
0

φ3
0

(Jφ)3

1 − (Jφ)2
(11)

The porous composite strain energy function is

ψP(E, J (1 − φ)) = ψP,skel(E) + ψP,vol(J (1 − φ)) + ψP,pen(E, J (1 − φ)). (12)

Therein ψP,skel is the contribution from the skeleton, ψP,vol accounts for the volume
change due to changing fluid pressure and the penalty part ψP,pen guarantees positive
porosity. Those are

ψP,vol = κ [J (1 − φ) / (1 − φ0) − 1 − ln (J (1 − φ) / (1 − φ0))] , (13a)

ψP,pen = η [− ln (Jφ/φ0) + Jφ/φ0 − 1/φ0] (13b)

as in [20] with the initial porosity φ0. This formulation allows usage of any hyperelastic
material model for the skeleton part of the strain energy function ψP,skel. We choose the
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scaling parameters as penalty parameter η = 1.0 and bulk modulus κ = 100 accoring to
[20] for the presented example.

Fluid-poroelastic solid interaction

A consistent approach to tackle the interaction of a Newtonian fluid and a poroelastic
solid is presented in [16]. The method presented therein is directly applied in this work.
On the interface

σF · nF − σP · nF = 0 on �F,P × (0, T ) (14a)

nF · σF · nF + pP
F = 0 on �F,P × (0, T ) (14b)[

vF − vPS − φ
(
vPF − vPS

)]
· nF = 0 on �F,P × (0, T ) (14c)[

vF − vPS − βBJφ
(
vPF − vPS

)
+ κnF · σF

]
· tFi = 0 on �F,P × (0, T ) (14d)

must hold. The conditions describe a balance of tractions between the porelastic mixture
and the pure fluid (14a), equality of fluid pressure in the poroelastic and fluid domain
(14b), the continuity equation for the normal fluid flow (14c) and the so called Beavers-
Joseph conditions [21] for the coupling of the tangential components i = 1, 2 in directions
tFi of the fluid velocities (14d). Therein the interface permeability κ

κ =
(
αBJμ

F√3
)−1 √

tr (k) (15)

is used. TheBeavers-Joseph constantsαBJ,βBJ regulate this tangential velocity dependency
in (14d). They are both chosen to αBJ = βBJ = 1 in the presented example.

Numerical approximation

For all numericalmodels a nonlinear finite elementmethod (FEM) based approach is used.
For time integration a one-step-theta approach is used. For the pure FSI examples we use
a monolithic arbitrary Langrangean-Eulerian (ALE) approach just as in [13] and [14]. For
the mesh deformation the ALE fields can be treated as a quasi-elastostatic pseudo solid.
Monolithic methods are preferable for FSI problems in many biological applications as
they might contain fields with similar density with soft solids, represented here by low
Young’s modulus [22].
ALE Methods can be problematic when it comes to a change in the topology or large

mesh displacements. An alternative approach to overcome difficulties associated with
these cases are fixed grid methods. For the fluid-poroelasticity interaction examples pre-
sented, a CutFEMbased approach [16] is used. For FSI problems an approach based on the
so called CutFEM has been developed in recent years [23]. It is capable to solve FSI prob-
lems with a fixed fluid grid. For a fixed fluid grid the fluid equation (1a) must be replaced
by the Euler formulation with zero grid velocity. Thus, the ALE convective velocity cF is
replaced by the fluid velocity vF for the fixed grid. The idea is to cut out the parts of the
fluid mesh that are covered by the solid and solve the fluid field on the remaining dis-
cretization including partially cut elements at the interface. To sustain a proper fluidmesh
with uncut elements in the interface vicinity also a hybrid method of ALE and CutFEM
was developed in [24]. CutFEM based FSI approaches enable the treatment of cases when
it comes to a change in topology like for partial or full detachment or on the other side
self contact [25,26].
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For the growth algorithm there is the need for multiple time scales as the FSI dynamics
acts in the range of seconds and the growth processes take place in the range of days. For
this multi-scale approach in time a quasi steady or periodic state for the fluid-solid-scalar
interaction is reached with smaller time steps. Based on the FSI and scalar transport
solution the nutrient flux and interface tractions are evaluated and surface growth is
applied with themuch longer growth time step. This procedure is then advanced until the
full growth time period is reached. After the growth step an ALE relaxation of the mesh
is necessary for the domains on both sides of the interface fluid and biofilm, to distribute
the displacements smoothly on the whole domains and thereby reduce mesh distortion
[14].

Surface distancemeasure
We set inverse analysis as a special optimization problem and in the application of opti-
mizers the quantity that is minimized is called objective function [27]. In inverse analysis
the objective function somehow describes the difference between experimental observa-
tion and forward model output. In this context it turns out that the measure that is used
to quantify this difference is a key question in inverse analysis. The result of an inverse
analysis always depends on the approach used for this measure. Hence, detailed informa-
tion about the measurement approach need to be combined with the achieved results for
presentation and interpretation. This also makes it obvious that the selection or design of
a suitable measure is crucial and must be well considered. One important contribution of
this work is to propose a simple geometric measurement for the objective function in this
kind of experimental settings for biofilm parameter estimation problems, that is suitable
for any optimizer.
As OCT measurements of experiments only contain information if a point in space is

likely covered by biofilm or not, there is no pointwise displacement information available.
Comparable pointwise displacements from the observed experiment would need to be
somehow computed first. But in order to do so, some additional assumptions would need
to be introduced, which in turn spoil or bias the outcome. In addition those assumptions
- being more or less physical - might even substantially complicate the inverse problem or
they might point to “unphysical” scenarios. Because of this we argue that it is not the best
idea to compare the forward model evaluations to a field of selected point displacements,
which are themselves the result of a postprocessing operation, but rather refer to some
primary information, which, in the case of flow cell experiments and OCT, is the surface
shape. Evaluating this information is performed as depicted in Fig. 1.
Given an observed result of an OCT measurement the first step is to determine a

representation of the fluid-biofilm interface �obs, by some sort of image segmentation.
Image segmentation is a topic on its own and not the focus of this work. For the purpose
of this paper, it is enough to assume that the data is already suitably segmented, which
can also mean a segmentation done by hand. On the observed interface �obs the analyst
is to choose significant points, meaning points where the interface underwent significant
displacements during the experiment. These measurement points are depicted as crosses
in Fig. 1. The distribution and number of measurement points is up to the choice of the
analyst as it depends on many aspects. The number should at least be greater than the
number of parameters, that are to be determined in the inverse analysis for the optimizer
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ΓM

Γobs
di
mp

rays

Fig. 1 Prototype sketch for pointwise distances dimp from measurement points on the deformed interface
�obs, observed from experiment, to �M resulting from forward model evaluation, in given measurement
directions depicted as rays

to work well. The actual choice of measurement points should in our impression be made
towards regions, where the validity of all model assumptions is trusted the most. That
means it should favor points away from potentially uncertain boundary conditions and
potentially uncertain flowconditions in the channel and towards regions, where the spatial
resolution of OCT and the quality of the captured images is trusted the best. Secondly,
given the forward model and the parameters analyzed, the measurement points should be
chosen in away that all the different parameters can show significant effect in the resulting
distances.
For every point selected, an individual search direction for the intersection with the

result for the displaced fluid-biofilm interface from the forward model evaluations �M

must be decided. These are depicted as rays in Fig. 1. A general recommendation is the
normal direction. Nevertheless again the quality of the image decides if a confident guess
for that normal can be made. Given the fact, that OCT scans are generated from above
the experiment, the vertical direction is another reasonable choice.
With both the measurement points and the associated directions at hand the thereby

defined rays must be intersected with the deformed interface resulting from forward
model evaluations �M. As the resulting distance for every measurement point dimp is
based solely on a geometrical measure, it has no inherently conclusive sign. Therefore it is
defined positive if the intersection point is on the side of the biofilm with respect to �obs
and negative if it lies towards the outside. In the case of multiple intersection points the
lowest resulting distance is used.
The presented choice of comparative measure for the interfaces including both mea-

surement point location and measurement direction circumvents known drawbacks of
the closest point projection described in [28]. With the proposed method the distance
measurements are uniquely defined as the search direction is predefined. This can be very
useful as, if two or more candidates for the closest point on �M to a measurement point
exist, a gradient based optimization with a finite difference approximation as the one
presented, can be heavily deteriorated. The capturing of irrelevant shape characteristics
must be prevented by a good choice of measurements points by the user.
Overall the presented measurement method is considered rather hands-on, as the

observed interface location must only be determined for the measurement points. For
our type of problems, this is also a clear advantage compared to the usage of global surface
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comparisons as for example the ones presented in [29] and [30]. For global approaches
for surface comparison a full representation of the surface must be available and therefore
must be constructed from the data. A global measurement approach also poses higher
demands on the image segmentation than the presentedmethod. Nevertheless in the case
of optimal data acquisition and the assumption that the experiment is modeled optimally,
the presented measurement is also fully automatable using factual normals e.g. for every
triangle of a triangulation of the observed deformed biofilm surface �obs.

Levenberg-Marquardt optimization
For the minimization of the objective function defined by a suitable comparison of
observed experiments and a forward model we use a Levenberg-Marqaurdt approach
for optimization. Levenberg-Marquardt optimizers go back to the works of Levenberg
[31] and Marquardt [32]. A good overview of the actual algorithm is shown in [33].
A Levenberg-Marquardt optimizer is in general a deterministic method. As a gradient
based method it represents a local optimizer and is applicable for inverse analysis if the
dimension of the inverse problem is low enough and the initial guess is good enough.
In the selected numerical examples we will shed some light on the applicability for dif-
ferent numbers of parameters and initial guesses for our target applications. In the past
we have already succesfully applied such algorithms for identification of constitutive laws
and parameters of hyper- and visco-elastic biomechanical problems (see e.g. for problems
with single type of experiments [34,35] and also the combination of different experiments
on the same specimen [36]).
In order to have a rather self contained paper we will briefly sketch the algorithm in the

following. The Levenberg-Marquardtmethod is used tominimize a least squares objective
function

f (x) = 1
2

nr∑
j=1

r2j (x) = 1
2

nr∑
j=1

(
M (x)j − (yobs)j

)2
(16)

with forward model results M (x)j at potentially different times for nx unknown param-
eters in the parameter vector x and nr observed experimental measurements (yobs)j . The
algorithm uses the regularization parameter μ and is started from an initial guess x0,μ0.
The core algorithm is to iterate the update rule for the parameter vector

xk+1 = xk + �xk+1 (17)

with the parameter step computed by

�xk+1 = −
(
J T · J + μdiag

(
J T · J

))−1
J Tr (18)

until predefined convergence criteria are met. The iteration index k is omitted in J k , μk

and rk from here, as it is clear that terms should be computed exclusively at current
step k . We propose that the vector of punctual distances dimp, potentially also collected
over different time steps, between the forward model result surface and the observed
experimental surface measured in the way presented should be directly used as residuals
and arranged in the residual vector r of length nr. In the least squares formulation of the
objective function (16) this means rj = M (x)j − (yobs)j = djmp.

r =
[
d1mp . . . dnrmp

]T
(19)
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The Levenberg-Marquardt method makes good use of the vector shape of the residual
for finding the parameters for the next step. The algorithm uses the partial derivatives of
the residual components with respect to the parameters as the Jacobian

J =

⎡
⎢⎢⎢⎢⎢⎣

∂r1
∂x1

. . .
∂r1
∂xnx

...
. . .

...
∂rnr
∂x1

. . .
∂rnr
∂xnx

⎤
⎥⎥⎥⎥⎥⎦
.

(20)

In absence of actual gradient information, the Jacobian is approximated by finite differ-
ences. For that, nx +1 simulations per iteration are necessary to be computed. Onemodel
evaluation is conducted with the current parameter set x (= xk ) . nx further model
evaluations are computed with the ith parameter perturbed to

x̃i = xi + α + βxi ⇒ δxi = x̃i − xi = α + βxi. (21)

Resulting nx perturbations of the parameter are written as vectors xi. The approximations
of the partial derivatives

∂rj
∂xi

≈ δrj
δxi

= rj(xi) − rj(x)
α + βxi

(22)

are then arranged into the approximation of the Jacobian

J ≈

⎡
⎢⎢⎢⎢⎢⎣

δr1
δx1

. . .
δr1
δxnx

...
. . .

...
δrnr
δx1

. . .
δrnr
δxnx

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

r1(x1) − r1(x)
α + βx1

. . .
r1(xnx ) − r1(x)

α + βxnx
...

. . .
...

rnr (x1) − rnr (x)
α + βx1

. . .
rnr (xnx ) − rnr (x)

α + βxnx

⎤
⎥⎥⎥⎥⎥⎦
.

(23)

To assess how much the current step has improved the result, the gradient based error
errkgrad(∥∥∥J Tr

∥∥∥
2

)k
:= errkgrad (24)

can be used. In order to simply evaluate how close the current model solution is to the
experiment, the residual error errkres can be computed as

(‖r‖2√nr

)k
:= errkres. (25)

The regularization parameter is updated according to

μk+1 = μk
(∥∥J Tr∥∥2)k(∥∥J Tr∥∥2)k−1 (26)

only if the current step is closer than the previous step.

errkgrad < errk−1
grad, err

k
res < errk−1

res (27)

Treating the regularization parameter in this adjustingway is the only formof adaptivity in
the algorithm. In general it helps to find a suitable step size by reducing the regularization
especially close to the optimum.
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So far the presented Levenberg-Marquardt method shares the property with its family
of optimizers to be unbounded. No information about the validity of parameters is intro-
duced so far. Often material parameters come with a valid interval, or constraints, that
need to be fulfilled. The pure algorithmpresented so far is not constrained, so potentially if
the Jacobian indicates further decrease of the residual into a given direction, the algorithm
suggests parameters xk+1, that cannot be used in the model. On top of the Levenberg-
Marquardt algorithm we want to be able to set constraints on every parameter.

xmin < xk < xmax (28)

To achieve this property an additional check is introduced. If any suggested parameter
in xk+1 is out of bounds, the step is declined, the regularization parameter is doubled
μk = 2μk and a new step xk+1 is proposed. To avoid useless model evaluations the
algorithm is terminated if μk grows unreasonably high μk > μ0 · 106. In that case no
parameter result can be found.
The algorithm is terminated if a certain convergence criterion is met or if a maximum

number of iterations is nmax reached

εgrad > errkgrad (29a)

εres > errkres (29b)

k > nmax . (29c)

For real experimental data, comparison to εgrad is the better suited criterion, because the
residual error in the data is unknown. This way iterations are stopped, when the gradient
does not indicate significant decent in the residual measure. As errgrad has by definition
(24) no unique physical unit as it depends on different parameters in x, physical units are
omitted for this quantity. Overall the algorithm is deterministic and a local optimizer.
So, if more than one local optimum exists within or outside of the bounds, there is no
guarantee to find a global optimum even for a continuous and bounded problem.

Numerical examples
In the following numerical examples we want to show that given inverse problems in
biofilm physics are well solvable with the presented measure for the similarity of surfaces
and the Levenberg-Marquardt approach. The general setup is representing a prototype
flow cell experiment, wherein a solid representing the biofilm is exposed to a certain
volume flow rate from the left and is therefore deformed towards the right. As already
stated above, the performance of an inverse analysis depends on a number of things beside
the method itself, like the question howwell the numerical model represents reality in the
experimental setup. Hence in order to get a better impression of the quality of a specific
method for a certain type of application, it is advantageous to test suchmethods on “clean
data” first. A common approach to generate such data is to use the numerical model in
a forward analysis with some chosen parameters and potentially add some noise to the
results, in order to generate artificial experimental or measurement data to be used in the
following inverse analyses.
The numerical examples were computed using the referencedmethods implemented in

the inhousemulti-physics C++ codeBACI [37] and a tailored python frameworkQUEENS
[38]. The presented inverse analysis algorithmwas newly implemented inQUEENSduring
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this work. QUEENS is used to run andmanage forwardmodel evaluation and conduct the
inverse analysis. The intersections of the rays representing the measurement directions
and the mesh based forward model results have been found with the python package for
vtk [39].
Although themethods are implemented and fully capable of handling three dimensional

geometries, for the sakeof presentation the examples are limited to twodimensional effects
in purely 2Dandquasi 2D (i.e. 3Dwith just one layer of elements in the thirddimension and
according boundary conditions) examples. For the finite difference scheme (21)α = 10−5,
β = 10−3 are chosen for all examples. The fluid is modeled with μF = 10−3 Pa s and
ρF = 103 kg/m3 for water. The material models for biofilms share the density of water.
The flow cell experiments are modeled to last several seconds. The focus is set on the
quasi static case, meaning that the biofilm is free of oscillatory or inertia effects in the
observed reference results from forward model evaluation. For that, the inflow rate is
applied smoothly with a cosine based function in multiple steps of an increasing volume
inflow and then held constant. The inflow is assumed to be the result of laminar channel
flow and therefore chosen to have a parabolic profile. This is how the inflow boundary
condition can be reduced to a single quantity, the volume inflow rate. On the right hand
side boundary a horizontal outflow is enforced, to reflect, that it is no free outflow, but
the channel continues downstream from the modeled region.

Homogeneous biofilm

As a first and most simple example the presented inverse analysis algorithm is performed
for a fully homogeneous solidmodel of a biofilm interacting with the fluid flow. The shape
of the biofilm domain in the simulated model is arbitrary and inspired by experiments
shown in [7,8]. The modeled biofilm patch is held in place on the channel floor with
a no-slip condition on its lower, straight boundary. A parabolic fluid flow profile with
flow rate 100mm2/s from the left boundary of the purely two-dimensional channel with
2mm × 1mm is ramped up for 10 s. After 15 s a quasi steady deformation state was
observed and thus the deformed state is regarded at that time.
For the presented FSI examples a Saint-Venant-Kirchhoff material is used like in other

biofilm related works [17,40]. Its behavior is governed by two parameters, namely Young’s
modulus E and the Poisson’s ratio ν. Thismaterial is linear in theGreen-Langrange strains
and second Piola-Kirchhoff stresses and for cases with small deformations can be related
to the classical Hooke constitutive law, which is standard in linear continuummechanics
and also used in other biofilm mechanics studies [8]. The biofilm is obviously three-
dimensional and it is assumed that its behavior is not changing much in the out of plane
direction, which is reflected by using a plain strain assumption for the reduction to two
dimensions.
First, the reference resultwith parameters E = 400 Pa and ν = 0.3 in the biofilmmodel is

computed and the field solutions shown in Fig. 2 are obtained. The biofilm domain fills the
volume between the channel floor and its upper surface, that is the fluid-biofilm interface.
In Fig. 2b additionally the interface tractions acting on the biofilm, resulting from the
fluid-solid coupling, are displayed as arrows. The simplistic assumption commonly used
in biofilm mechanics of a constant tangential force on the whole fluid biofilm interface
would be distinctively inaccurate in this example, as it can be observed that the interface
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Fig. 2 Field solutions of the reference simulation illustrating the deformed geometry. a Fluid velocity
magnitude and structure displacement magnitude. b Fluid pressure solution and interface tractions on the
biofilm as black arrows

Fig. 3 Measurement points and directions as arrows indicating the positive directions for homogeneous FSI
example on the edges of the deformed geometry of the reference result (black) and initial geometry (gray)

Table1 Initial guesses for different inverse analysis runs in homogeneous example

Color E0[Pa] ν0[−]

Blue 200 0.4

Orange 200 0.0

Green 400 0.45

Red 400 0.0

Purple 600 0.4

Brown 600 0.0

Pink 400 −0.3

Gray 400 −0.6

Olive 400 −0.9

Cyan 1000 0.0

Black 1000 0.4

tractions are predominantly normal to the interface. The tangential component of the
interface tractions varies strongly at the interface. The resulting change in biofilm shape
is illustrated in Fig. 3 by the edges of the biofilm domain.
To apply the inverse analysis algorithm, pairs of significant points and themeasurement

directions on the deformed interface must be chosen. Those are chosen as shown in Fig.
3 on the deformed interface of the reference solution. The points where the rays (dotted
lines) cut the interface in Fig. 3 represent the location of the measurement points and the
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Fig. 4 Path in parameters space towards optimum for data sets a without noise and b with Gaussian noise
with standard deviation σ = 10−2 mm added to the measurements with one marker per iteration

arrows indicate the direction in which the distance measure is evaluated as positive for
respective forward model outputs �M. The points are evenly distributed in regions with
significant displacement on the upstream and downstream side of the biofilm. Directions
are chosen to be normal on the displaced geometry.
With the given prerequisites the inverse analysis of the twomaterial parameters Young’s

modulus E and the Poisson’s ratio ν is conducted with different initial guesses listed in
Table 1. The cases with negative Poisson’s ratio are included as there is some speculation
in the literature wether biofilms are so called auxetic materials. Resulting search paths in
the parameter space are shown in Fig. 4 with the associated colors, which are consequently
used throughout this example. In Fig. 4 and all following plots eachmarker represents one
Levenberg-Marquardt iteration.
To assess the impact of noise in the data on the inverse analysis result, different scales of

normally distributed (Gaussian) noise with standard deviations σ of 10−4 mm, 10−3 mm
and 10−2 mm have been added to the measured points representing the experimental
data. As compared to the displacement field of the reference result shown in Fig. 2a with
a maximum displacement Magnitude ≈ 5.3 · 10−2 mm, that is about a fifth of that or
lower. For all data sets the algorithm has been run for the same initial guesses. The results
are summarized in Table 2 for statistics over all algorithm runs with all different initial
guesses for the individual noise levels and the noise free case. With increasing noise on
the data the remaining residual error errres increases. Means of the parameter results drift
away from the ones used for the reference forward model evaluation and the respective
standard deviations in the parameter results increase.
The actual resolution of OCTmeasurements is in the range ofμm [6,9]. In this simplest

of the presented examples and this primitive uncertainty estimation in Table 2 it appears
that the expected accuracy for the inverse analysis with this level of noise reaches at best
the first two digits of the parameter results.
From the residual and gradient based errors over the iterations, plotted in Fig. 5, it can

be seen that those quantities decrease steeply for the noise free case, when the parameters
come close to the local optimum. Only the step size used in (21) for the finite difference
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Table 2 Mean values and standard deviations (std) over all runs with different initial guesses per
data set with added Gaussian noise with standard deviation σ

σ [mm] mean errres [mm] std errres [mm] mean E [Pa] std E [Pa] mean ν [−] std ν [−]

0.000e+00 7.122e-08 3.120e-08 4.000e+02 1.226e-03 3.000e-01 6.889e-06

1.000e-04 1.478e-04 6.576e-09 3.999e+02 8.615e-03 3.015e-01 6.881e-05

1.000e-03 9.296e-04 2.686e-09 4.080e+02 1.168e-02 3.782e-01 1.153e-04

1.000e-02 8.208e-02 5.892e-09 5.062e+02 5.044e-01 2.998e-01 3.591e-03
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Fig. 5 Development of a residual error errres, b gradient based error errgrad and c regularization parameter μ
for inverse analysis runs with different initial guesses over iterations
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Fig. 6 Development of a residual error errres, b gradient based error errgrad and c regularization parameter μ
for inverse analysis runs with different initial guesses over iterations, with Gaussian noise with standard
deviation σ = 10−4 mm added to the measurements

approximation limits the accuracy in this setting. For the noisy data it can be seen in Fig.
6 that there is a clear limit to the achievable residual errors errres and some diffuse barrier
for the gradient based errors errgrad already for the slightest noise. To show this effect
the convergence criteria were intentionally not adapted, although it is obvious from Fig.
7 for σ = 10−3 mm that εgrad = 10−6 would have been a good choice, because there is a
distinct level for errgrad that cannot be reached even with many more iterations due to a
low convergence criterion εgrad. For the data set with largest noise level shown in Fig. 8 the
gradient based error couldn’t be reduced to a tight convergence criterion of εgrad = 10−8,
but an adapted value of εgrad = 10−6 did lead to convergence for all initial guesses. It can
be further observed that the numbers of iterations until a feasible level of errgrad is reached
does not vary much for the same initial guesses. From the third column of graphs in Figs.
5, 6, 7, 8, that show the regularization parameter, it can be observed, that as expected the
regularization adapts towards low values close to the result, to accelerate the progress of
the iterations for all inverse analysis runs.
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Fig. 7 Development of a residual error errres, b gradient based error errgrad and c regularization parameter μ
for inverse analysis runs with different initial guesses over iterations, with Gaussian noise with standard
deviation σ = 10−3 mm added to the measurements
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Fig. 8 Development of a residual error errres, b gradient based error errgrad and c regularization parameter μ
for inverse analysis runs with different initial guesses over iterations, with Gaussian noise with standard
deviation σ = 10−2 mm added to the measurements

The path in parameter space and therefore the assumed overall shape of the residual
error errres in parameter space does not change significantly for higher noise levels, as seen
in Fig. 4, although the level of remaining residual error changes in orders of magnitude.
Nevertheless, the reached optimum changes significantly for the Young’s modulus E =
506.2 Pa instead of 400 Pa for the maximal noise level, but is rather insensitive for the
Poisson’s ratio. It is obvious and also shown in Fig. 8 that for the data set with the highest
noise the level of remaining error is also the highest, but the algorithm still converges to the
same local optimum for all chosen initial guesses. Mind that error plots are all presented
in logarithmic scaling. So although there is far less progress in the residual error for noisy
data, the algorithm finds the shifted optimum repeatedly for all initial guesses.
Looking at the “olive” green and gray lines in Figs. 4 and 5 it can also be observed, that

the residual error is low and rather immobile in a local vicinity of the starting points with
low Young’s moduli and significantly negative Poisson’s ratios. Especially for the initial
guess of E = 400 Pa, ν = −0.9, i.e. the “olive” green line, convergence is inhibited by this
indifferent shape of the residual error for low Young’s modulus E and negative Poisson’s
ratios ν < 0. But there is a physical explanation for this as with this type of interface
location based measurement, quite similar surfaces can be obtained via large bending due
to a low value for E or by lateral deformation resulting from negative ν.
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Ω1Ω2

Ω3

Fig. 9 Subdomains for heterogeneous example

Fig. 10 Measurement points and directions as arrows indicating the positive directions for heterogeneous
FSI example on the edges of the deformed geometry of the reference result (black) and initial geometry (gray)

Heterogeneous biofilm

As indicated in the literature [12,41,42] biofilm material properties depend on growth
regimes, age and on induced flow rates. This implicates a layer like structure that a biofilm
might develop under varying conditions. An arbitrary showcase example model, with
subdomains as depicted in Fig. 9, is used to show that the presented method is applicable
to determine different material parameters for different subdomains.
The material parameters in this reference solution are: E1 = 500 Pa, ν1 = 0.2, E2 =

200 Pa, ν2 = 0.1, E3 = 1000 Pa, ν3 = 0.3 in a Saint-Venant-Kirchhoffmaterial model. The
geometry used for the homogeneous biofilmmodel is reused here. The channel geometry
and fluid volume inflow are controlled in the same way. The deformation of the biofilm
under given load due to the interacting fluid forces can be seen in Fig. 10.
Measurement points and directions are also introduced in Fig. 10 on the deformed

geometry. It must be taken care to measure all the influences of all subdomains and
therefore two measurement points were chosen on the interface of the stiffer footing
layer. Measurement was conducted normal to the observed interface.
At first it is verified that with the noise free artificial measurement data, the method

allows recovering the correct material parameters. For that a short summary of algorithm
runs with different initial guesses listed in Table 3 is plotted in Fig. 11 with the respec-
tive colors. Resulting search paths for number of parameters nx > 2 can no longer be
interpreted visually with respect to the response surface in errres. Therefore search paths
are plotted individually for the parameters. For these plots one color codes one inverse
analysis run. In Fig. 11 it can be observed that the inverse analysis is able to find the
reference parameters for noise free data for different initial guesses. It was observed that
this problem converges faster if Young’s modulus E is underestimated in the initial guess.
These algorithm runs are the ones with the highest number of parameters presented. It is
obvious in the plots, that the search paths for all parameters are interdependent. This is
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Table3 Initial guesses for different inverse analysis runs in heterogeneous example

Color E0{1,2,3}[Pa] ν0{1,2,3}[−]

Blue 300 0.0

Orange 500 0.3

Green 600 0.0
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Fig. 11 Result of Inverse analysis for noise free data. Development of a residual error errres, b Young’s
modulus E, c Poisson’s ratio ν over iterations for different initial guesses

also expected from the algorithm as for every iteration a finite difference approximation
of the partial derivatives in all parameters is used to find the next step. The great increase
in convergence speed seen in Fig. 11a below errres = 10−4 mm is a hint, that a very local
optimum is found, as also the parameters do not change much for those respective last
iterations.
Real OCT resolution is in the range of μm [6,9], so the following examples will be

run after Gaussian noise with standard deviation 10−3 mm was added to the generated
artificial measurement data.

Remark 1 (Estimation of initial guess) For this setting several arbitrary initial guesses
did not lead to convergence of the method for the noisy data. That is why the problem
is first run with a reduced set of parameters. To do so and set an application oriented
scenario, where the heterogeneous character is unknown and the individual parameters
are unknown, the domain is assumed to be homogeneous and the material parameters
that fit that assumption are searched for. This also helps to loosen the strong one-to-
one relationship between generated data and forward model evaluations. The results are
displayed in Fig. 12.
In Fig. 13 it shows that the convergence criterion of errgrad < 10−9mm could not be

met. So the result must somehow be concluded from the iterations. It is recommended to
judge by an adjusted, but still objective convergence criterion. Therefore the data criterion
is adjusted to errgrad < 10−6mm.With adjusted convergence criterion the averaged result
for two different initial pairs of values, listed in Table 4, is E = 323 Pa and ν = 0.0656. For
E that is well in between the parameters used for the reference data and for ν that is below
all the original values. From this simple numerical experiment we can already conclude
that the achievable level of gradient based error errgrad cannot be predicted and hence
the convergence criteria must be tuned to the data used. Nevertheless the result achieved
with the algorithm is conclusive even if the algorithm did not converge under too strict
criteria.
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Fig. 12 Result of inverse analysis for added Gaussian noise with σ = 10−3 mm. a Young’s modulus E b
Poisson’s ratio ν for two different initial guesses
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Fig. 13 Errors for inverse analysis with homogeneous assumption on heterogeneous reference results with
added Gaussian noise with σ = 10−3 mm. a residual error errres, b gradient based error errgrad for two
different initial guesses

Table 4 Initial guesses for different inverse analysis runs in heterogeneous example with simplificat-
ion to homogeneous assumption

Color E0[Pa] ν0[−]

Blue 200 0.0

Orange 400 0.2

In the next step it can be assumed that the domain is in fact heterogeneous and ν is
equal for all subdomains. To set this example ν1 = ν2 = ν3 = 0.1 is rounded from
the result with the assumption of a homogeneous domain in Remark 1 and E = 300 Pa
is picked as an initial guess for an inverse analysis for E in the three subdomains. This
results in a distribution of E1 = 497 Pa, E2 = 226 Pa, E3 = 510 Pa. The correct tendency
in stiffness in the subdomains is apparent. Only in the footing layer the result is far off
the reference value. Most likely the influence of the stiffness of the footing layer is not
conclusive enough towards the shape based surface comparison. The remaining residual
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error is errres = 8.98 · 10−4 mm. That is lower than the solution with the homogeneous
approach and even lower than the residual for a model evaluation with the parameters
used for the noise free reference result. This means the added noise has altered the data in
a way, that it does no longer represent the reference result in the position of the optimum.
If as a further step this result is used as an initial guess for a new optimization for all
six Parameters, the residual error can be lowered to errres = 7.43 · 10−4 mm with the
result E1 = 273 Pa, ν1 = − 0.60, E2 = 192 Pa, ν2 = − 0.10, E3 = 491 Pa, ν3 = 0.39. It
appears this type of problem and the measurement only via interface deformation favors
the assumption, that the material is auxetic, i.e. ν < 0.0. It appears that in this numeric
experiment the field of residual error has flipped and the optimum has shifted towards
softer, auxeticmaterials. It is a further conclusion that optimizing for Eonly ismore robust,
than the combination of both E and ν at once because a negative ν can compensate a E
that is too low in the surface measure. That means that lateral expansion will fill the gap
to the optimum for too much bending. Auxetic materials are very rare and mostly occur
in specially designed materials with very unique microstructures. As long as that is not
proven for the material of interest it is a valid assumption that ν is positive. If nevertheless
an optimization result is obtained, that does not seem trustworthy, e.g. negative Poisson’s
ratio, different initial guesses or even different type of optimizers should be applied and
resulting optima compared by their respective residual value errres and plausibility. If the
noise in the measurement was too high, or the data not conclusive enough, an increase in
data for the specimen might be necessary.
It is known that inverse analysis not only depends on the physical problem at hand as

well as on the forward models used, but also on the type and amount of measurement
information. For the above type of problems, simply more and other measurement input
would be needed in order to allow for identification of all values for Young’s modulus and
Poisson ratio at the same time.More data could be gathered in form of different snapshots
in the same experiment with different load levels or an increase in measurement points.
Basically that can bemeasurements for different settings of the experiments with different
load (inflow volume rate) states and developments or different measurement points based
on the presented shape comparison. If available, that can also be different measurements
from potentially different imaging techniques.

Two-phase poroelastic biofilm

The porous nature of biofilms is well documented. Measurements from OCT scans allow
an estimation of biofilmporosity [6]. In the following the attempt to determine porosity via
inverse analysis will be presented. The reference result that serves as dummy experiment
is set up in a similar manner to previous FSI examples. The biofilm and channel geometry
are the same. We switch to the quasi two-dimensional setting with thickness 0.01mm
and use the same inflow rate 100mm2/s · 0.01mm = 1mm3/s over the height of the
left boundary. All displacements and velocities in thickness direction are restricted to
zero. Further parameters to the fluid-poroelasticity interaction are arbitrarily chosen as
permeabilityK = 10−4 mm2 andPoisson’s ratio ν = 0.3.Thefluid phase in the poroelastic
domain alsohas theproperties ofwater. For the reference result theparameters E = 300 Pa
and a homogeneous initial porosity of φ0 = 0.25 are used in a Neo-Hookean material
model. As we are using a fully coupled two-phase poroelastic model, porosity changes
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Fig. 14 Solution of the reference simulation for the porous example. Fluid velocity magnitude and a
skeleton displacement and b porosity

Fig. 15 Results for a fluid velocity and b fluid pressure of reference simulation illustrated on the deformed
geometry both for “external” flow field and fluid inside the porous medium

due to deformations caused by interaction forces from the external flow field but also
due to pressure within the porous medium itself. The solution for the velocity magnitude,
displacement magnitude and porosity of the biofilm are shown in Fig. 14. It is observed
that the biofilm bends with the flow to the right. This is depicted in Fig. 16 where the edges
of the initial and deformed geometry ale plotted on top of each other. The porosity opens
up in the stretched upstream part and is reduced in compressed downstream regions (see
Fig. 14b). The results for velocity and pressure solution of the fluid, inside and outside of
the biofilm, are depicted in Fig. 15.
The measurement points used for the inverse analysis are displayed in Fig. 16 on the

deformed geometry. They are chosen where themost significant deformation of the inter-
face shape is expected. Knowing, that the varying porosity is coupled to the biofilm defor-
mation one measurement point is chosen on the lower right bump of the geometry. On
that basis the inverse analysis is conducted for different initial guesses listed in Table 5.
The paths in parameter space are shown in Fig. 17, wherein each marker represents one
Levenberg-Marquardt iteration. For two initial guesses, namely the blue and green line,
the algorithm converges to the reference parameters and for one initial guess, displayed
in orange, the algorithm had to be terminated without result.
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Fig. 16 Measurement points and directions as arrows indicating the positive directions for poroelastic
biofilm example on the edges of the deformed geometry of the reference result (black) and initial geometry
(gray)
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Fig. 17 Path in parameter space towards optimum for porous example

Table5 Initial guesses for different inverse analysis runs in two-phase poroelastic example

Color E0[Pa] φ0[−]

Blue 400 0.2

Orange 400 0.4

Green 300 0.6

It appears that themeasured deformation of the interface is not fully conclusive towards
the biofilm material porosity, as higher porosity, due to the interplay between porosity
and Young’s modulus, also lowers the effective stiffness of the porousmedium. And as the
porosity is naturally bounded φ ∈ [0, 1], the algorithm tends towards the upper bound.
Since the gradient indicates further improvement towards this bound, the algorithm gets
stuck in the applied upper bound of φmax = 0.9 and the upper limit for the adaptive reg-
ularization parameter terminates iterations. Nevertheless, if the initial guess for Young’s
modulus is good enough, the optimum can still be found, although it takes many steps. It
can be observed in Fig. 18, that also the convergence speed depends strongly on the path
in parameter space and therefore obviously also on the quality of the initial guess. Along
the first (blue) path the analysis converges in nine steps, whereas the one with a higher
starting value for the porosity (green) takes 27.
It would also be desirable to include more parameters into the inverse analysis and,

for example, to additionally optimize for permeability K or Poisson’s ratio ν in the same
algorithm. However this short example is only meant to serve as a proof of concept for the
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Fig. 18 Result of inverse analysis for porous setting a residual error errres b gradient based error errgrad over
iterations

suggested approach. In case many parameters and their interplay need to be considered,
it definitely makes sense to also include sensitivity analysis and probably also consider
probabilistic based (inverse) analysis approaches.

Surface growth of biofilm

This last example demonstrates that the method is also applicable to identify parameters
in growth models as the one developed and used in [14]. The inflow rate 0.1mm2/s ·
0.01mm = 10−3 mm3/s, that is induced from the left side, is much lower in this example
as it is applied over a long time period providing growth conditions for the biofilm.Growth
processes take place on a different time scale than dynamic FSI and this is accounted
for in the temporal multi-scale approach detailed in [14]. The geometry of the problem
is chosen as the one presented in [14] to sustain comparability. The flow channel has
the dimensions 0.6mm × 0.3mm × 0.01mm in a quasi twodimensional model with no
displacement or velocity in thickness direction. The biofilm is represented by a finger
like structure of 0.04mm width and 0.1mm height that ends up with a semi circular tip.
The inflow velocity profile is parabolic according to the other examples. The FSI time
period is 5 s and the fluid inflow rate is increased smoothly. The growth time period is
one day. Thematerial parameters for the Saint-Venant-Kirchhoffmaterial are E = 100 Pa
and ν = 0.3. They are assumed to be known from a deformation experiment. Like in
[14] the concentration of the scalar species at the inflow is chosen in the range of oxygen
dissolved in water as�F

in = 2.5 ·10−11 mol/mm3. The reaction rates in (6) are assumed as
KR
1 = 3.0 · 10−11 mol/(mm3 s), KR

2 = 3.0 · 10−12 mol/mm3. The Diffusion coefficient for
both phases is DS = DF = 2.5 · 10−3 mm2/s. The scalar in the scalar transport problem
represents a dummynutrient for the biofilmandwill be referred to as such in the following.
Model equation (9) shows that the used growthmodel depends on three different param-

eters, namelyK g
1 as the factor for growth on the domain boundaries scaling with the actual

nutrient flux,K g
2 as the factor for inhibition of growth due to normal stresses andK g

3 as the
factor for inhibition of growth due to shear stresses. They all appear linearly in the chosen
surface growth model. For the reference result the parameters K g

1 = 6 · 104 mm3/mol,
K g
2 = 5 · 10−2 mm2 s/g and K g

3 = 8 · 10−2 mm2 s/g were used. The reference solution is
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Fig. 19 Solution of the reference simulation illustrating the flow field and the deformed biofilm structure. a
Fluid velocity and solid displacement field, b Fluid pressure and growth magnitude on interface as well as ALE
displacements within biofilm domain

Fig. 20 Solution of the prototype nutrient concentration distribution

shown in Fig. 19 for the fluid velocity and pressure and displacements due to hyperelastic
deformation and growth and for the scalar transport species concentration in Fig. 20. The
edges of the deformed (bended and grown) biofilm and the initial shape are plotted in Fig.
21.
The changes in biofilm geometry due to displacements and due to growth range in the

same order of magnitude. In Fig. 19b surface growth is displayed at the interface along
with the solid ALE field on the biofilm domain. This gives a more intuitive overview of
the growth deformation, although the ALE field has no physical meaning and the plotted
growth stems from a pure surface growth model. The solid ALE displacement field is a
reaction to the displacements on the interface induced by growth (9). The displacements
are prescribed to the interface nodes of the solid ALE field which is subsequently solved.
Figure 19b shows the displacement solution of that solid ALE field which includes the
growth displacements on the interface. The nutrient that is transported through the flow
is consumed in the biofilm domain according to the reaction rate in (6). This produces
a gradient over the interface and therefore nutrient flux, that leads to growth. On the
upstream side the growth because of nutrient supply and the inhibition of growth because
of higher tractions are more balanced, whereas on the downstream side, where the fluid
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Fig. 21 Measurement points and directions as arrows indicating the positive directions for biofilm example
with surface growth on the edges of the actual grown and deformed geometry of the reference result (black)
and initial geometry (gray)

Table6 Initial guesses for different inverse analysis runs in growth example

Color
(
Kg1

)0 [
mm3

mol

] (
Kg2

)0 [
mm2 s

g

] (
Kg3

)0 [
mm2 s

g

]

Blue 104 10−2 10−2

Orange 105 10−1 10−1

Green 103 10−3 10−3

Red 3 · 104 8 · 10−2 5 · 10−2

induces lower tractions, a larger growth is observed at the interface, although the nutrient
flux is lower. Over the finger tip the erosive effects of the traction can be observed.
The interface deformations are measured in the points displayed in Fig. 21 on the

fully deformed geometry. The distribution of the measurement points is based on the
anticipated different regimes - for growth and FSI - on the upstream, downstream and
tip side. There must be points in regions with large growth resulting from high nutrient
flux or low interface tractions, in regions with high tangential components of the interface
tractions and regions with high normal components of the interface tractions.
Initial guesses used for the inverse analysis of the growth parameters are listed in Table

6 and results obtained are plotted in Fig. 22. The errors plotted in Fig. 23 decline over the
optimization iterations. It is observed that the search path depends on all growth parame-
ters at once. That means that the residual error errres, as the norm over surface distances,
does not measure the three contributions of the parameters to growth and erosion inde-
pendently in this analysis. This problem setting allows to have initial guesses further away
from the optimum, as long as growth is significantly smaller than the dimensions of the
biofilm domain. The parameters from the reference data are the result of the inverse
analysis for all analyzed initial guesses.

Discussion
Beside the discussion on presented examples also some general remarks and discussions
regarding general aspects of the approach that cannot be shown in examples are added
for the completeness of the presentation. Further, anticipated general aspects regarding
the application of the method are summarized.
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Fig. 22 Result of inverse analysis over iterations for growth parameters a Kg1 , b Kg2 , c K
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Fig. 23 Errors over iterations for growth inverse analysis a residual error errres, b gradient based error errgrad

General discussion of the approach

Significance of parameters

We have looked at coupled models, that displayed different shapes of residual errors over
model iterations in parameter space with the given measure of the biofilm surface shape.
In several combinations, compensation effects in the parameters occurred (e.g. E and ν or
E and φ). The presented approach can only be used if the information to all parameters
analyzed are actually at least somehow represented in the data and also show effect in the
biofilm surface shape in at least partially independent patterns. For presented physical
biofilm models the key parameters could nevertheless be determined in example inverse
analyses.

Model response

Presented method is not designed to explore the full parameter space, which would be
interesting for the global view on the plausibility of combinations of parameters in the
whole parameters space for given data. For exploring the residual error on an interval in
the parameter space there is a great variety of randomor quasi random samplingmethods.
To efficiently get an global estimation of the objective function in the full parameter space
regression methods like for example Gaussian processes [43] on respective sample results
can be applied. The advantage of the presented method is, that it is not necessary to
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explore the whole parameter space but to find a local minimum with a limited number of
iterations and therefore limited amount of forward model evaluations.

Deterministic character

It should be emphasized that the Levenberg-Marquardt optimization is a deterministic
approach and there is a risk that thenumericalmodel used for an analysis is not stable along
the full search path and especially in the vicinity of the optimum. If the forward model
cannot be evaluated and therefore no measurable results retrieved, the finite differences
cannot be computed and the algorithm must be terminated, as there is no strategy for
following iterations. This drawback further restricts the choice of initial guesses to a set
of parameters with which the forward model can be solved.

Computational cost

The computational cost of the algorithm is dominated by the cost for the forward model
evaluations. Therefore it scales at least linearly with increasing number of parameters nx,
as more simulations are required per iteration for the finite difference approximation of
the Jacobian. Additionally, a higher dimension in parameters of the inverse problem leads
to more complex objective functions and therefore potentially longer search paths. In the
same sense a higher number of parameters nx will potentially lead to a smaller region
around the optimum for the individual parameters from which the initial guess has to be
chosen to be able to find an optimum. In presented examples the algorithm converged or
failed in 20-40 iterations.

High number of parameters

From all of the above points it becomes clear that the presented method does not scale
arbitrarily well for high number of parameters. The more parameters involved in the
model, the more likely it is, that they are differently significant to the forward model solu-
tions and possibly interact in their contribution to the objective function. The objective
function gets more complex with higher number of parameters and the probability, that it
becomes multimodal, i.e. more than one local optimum exists, increases. The more com-
plex the objective function is, the more likely it is, that the search path leads to parameter
regions, where the forward model cannot be evaluated and the inverse analysis yields no
result. Higher number of parameters also leads to higher computational cost of a finite
difference approximation and search paths grow longer in more complex objective func-
tions increasing the number of finite difference approximations necessary. Overall it is
expected that the cost and general applicability of the proposed method scale poorly for
high parameter dimensions. For example the inverse analysis of subdomain shapes and
therefore an element-wise definition of material parameters can be considered as very
high dimensional in general. To overcome the described problems with high dimensions
so called Patched Basis Functions can be defined to find the subdomain patches [44].

Comments on application

Importance of initial guess

Thepresented algorithm includes a local optimizer and it cannot find a reasonable solution
for every given combination of parameters as initial guesses. The availability of a good
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initial guess is crucial, as it decides if the method converges and also how many mostly
costly forwardmodel evaluations are required. Nevertheless the presented algorithm itself
can help to find a good initial guess, when it is used with a reduced set of parameters. In
the application with real experiments it is unknown if an optimum that was found with
one initial guess using the presented approach is a global optimum with regard to given
data. Hence inverse analysis results must always be carefully interpreted with respect to
plausibility of the results. In doubt it is always possible to validate results by using a second
and significantly different initial guess and compare the results.

Model selection

Deterministic inverse analysis is used to find a point estimate only, representing a local
best fit of parameters in a chosen forward model. It does not provide a general answer to
what type of measurement error is inherent in the data and also not if the forward model
used for optimization is itself a good choice or should be improved. This statement is not
restricted to the material model but also holds for the physical model and the boundary
conditions used for the forward model. In the case of raw flow cell experiment results for
example, the best choice for a specific hyperelasticmaterialmodel is unknown and a Saint-
Venant-Kirchhoff material model with its two parameters is just one very simple choice.
The selection of a suitable forward model is up to the analyst with presented approach,
but also could be included in the inverse analysis by identifying the best parameters for
differentmodels and comparing theoverall approximative error (like alsodone in e.g. [34]).
If one does that it is very important to relate the approximative quality to the number of
parameters in the model (e.g. by the Bayesian or the Akaike information criterion) as we
are seeking a predictive model and not just a fit to some data points (see e.g. [34] or [45]).

OCT imaging

The presented measure used for the objective function works independent of the physical
model and the spatial dimension of the model. An important feature is that it can easily
be used tailored to the data gained from OCT. For example, in the unloaded state a three
dimensional scan of a biofilm can be used to build a mesh for computational evaluation
and the objective function can be defined with so called B-Scans from the loaded and
therefore deformed biofilm, whenever speed of image acquisition is the limit to measure-
ment quality. B-Scans are two dimensional plane scans of the flow cell [7] and naturally
faster to acquire than three dimensional images which are just stacks of multiple B-Scans.

Combination of data

Only examples that include information of the initial non deformed geometry of the
biofilm incorporated in the forward model mesh and one quasi steady state solution are
shown for the sake of concise presentation. But obviously also applications with model
evaluations in different time steps or load steps to asses nonlinear material parameters in
more complex material models or viscous effects of the biofilm can be easily treated. In
such applications, questions of scales and weights of the contribution to the residual r in
the objective function must be answered, to not blindly weigh highest displacements the
highest. Nevertheless it has been shown in [36] that also results fromdifferent experiments
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on the same specimen can be scaled and used in a single Levenberg-Marquardt based
inverse analysis.

Time scales

In the application of themethod, the experiments and results should be grouped inmean-
ingful sets by the time scales involved. One use case can be to first analyze a deformation
experiment in the flow cell and determinematerial parameters in a simple material model
and as a second step use other experiments with a more extensive model like additional
growth and determine the growth parameters (like in the growth example). In this sce-
nario the growth and hyperelastic material parameters can be regarded as decoupled as
time scale for growth is orders of magnitude larger than the time scale for fluid-solid
interaction under constant fluid inflow rate.

Convergence criterion

A convergence criterion based on combined maximal number of algorithm iterations
and a maximum gradient based error presented itself as a good choice. Even with the
presented artificially generated data it was not easily predictable how low the remaining
residual error between measured deviation of forward model outcome and experiment
observation is. Especially if artificial noise was added to the data, it showed that there was
an individual distinct level of residual error, when no better set of parameters could be
found. This is also obvious as the noisy data does not define a real physical solution and
hence an error has to show up. This combination of convergence criteria can therefore
be recommended and needs to be tuned to the specific application depending on the
unknown structure of uncertainties in the experiment result data and the cost of forward
model evaluations.

Conclusion
An inverse analysismethod for biofilms has been presented and successfully tested on sev-
eral selections of significant parameters in different aspects andmodels of biofilm physics.
The algorithm works with a local best fit for parameter estimates in given forward models
related to experimental results in the sense of least squares. A simple hands-on measure
for the comparison of shapes of biofilms in deformation experiments has been presented
and tested. It has been shown for a variety of differentmeaningful models for biofilms, like
homogeneous, heterogeneous, poroelastic and biofilm models including surface growth,
that the presented approach allows the inverse analysis for multiple key parameters at
once. As the presented measure for the difference of a biofilm surface between experi-
ment and model evaluations is based purely on their shapes, the approach can without
restrictions be used for further different physical models, like ones for detachment, self
contact and viscoelasticity.
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