
Schein and Gee Adv. Model. and Simul.
in Eng. Sci.           (2021) 8:18 
https://doi.org/10.1186/s40323-021-00203-7

RESEARCH ART ICLE Open Access

Greedy maximin distance sampling based
model order reduction of prestressed and
parametrized abdominal aortic aneurysms
Alexander Schein and Michael W. Gee∗

*Correspondence:
gee@tum.de
Mechanics & High Performance
Computing Group, Technical
University of Munich, Parkring 35,
85748 Garching b. München,
Germany

Abstract

This work proposes a framework for projection-based model order reduction (MOR) of
computational models aiming at a mechanical analysis of abdominal aortic aneurysms
(AAAs). The underlying full-order model (FOM) is patient-specific, stationary and
nonlinear. The quantities of interest are the von Mises stress and the von Mises strain
field in the AAA wall, which result from loading the structure to the level of diastolic
blood pressure at a fixed, imaged geometry (prestressing stage) and subsequent
loading to the level of systolic blood pressure with associated deformation of the
structure (deformation stage). Prestressing is performed with themodified updated
Lagrangian formulation (MULF) approach. The proposed framework aims at a reduction
of the computational cost in a many-query context resulting from model uncertainties
in two material and one geometric parameter. We apply projection-based MOR to the
MULF prestressing stage, which has not been presented to date. Additionally, we
propose a reduced-order basis construction technique combining the concept of
subspace angles and greedy maximin distance sampling. To further achieve
computational speedup, the reduced-order model (ROM) is equipped with the
energy-conservingmesh sampling and weighting hyper reduction method. Accuracy of
the ROM is numerically tested in terms of the quantities of interest within given bounds
of the parameter domain and performance of the proposed ROM in the many-query
context is demonstrated by comparing ROM and FOM statistics built from Monte Carlo
sampling for three different patient-specific AAAs.

Keywords: Abdominal aortic aneurysm, Nonlinear model order reduction,
Prestressing, Finite element method

Introduction
The potential of computational analysis to support clinical decision making is of great
value for both physicians and patients. In particular the possibility to gain spatially and
temporally resolved informationon the patient-specific pathology atminimal intervention
with the patient’s body is driving this field of research.
The human cardiovascular system is a specific example for the application of computa-

tionalmodels [1] for risk assessment [2,3], planing ofmedical intervention and assessment
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of its effect [4–6] or general understanding of disease progression. More specifically, the
pathology under consideration in this work is the abdominal aortic aneurysm (AAA).
An AAA corresponds to a dilatation of the aorta, which shows degraded mechanical

properties in the widened segment [7] and is prone to rupture with highly-probable lethal
outcome [8]. Given that aortic wall degradation and rupture is related to material fail-
ure, mechanical analysis of AAAs has been used for understanding and quantifying the
development and progression of the disease [3,9–11].
The AAA finite element models in this work are patient-specific, large-scale, stationary

as well as materially and geometrically nonlinear. AAA geometries are extracted from
medical screening images following the protocol in [12]. Given that imaged geometries
are under blood pressure, an accurate computationalmodel needs to impose ameaningful
stress state, keeping the imaged configuration fixed. This is achieved in amodified updated
Lagrangian formulation (MULF) [13,14] prestressing stage, wherein a physiological stress
state is imprinted for an assumed diastolic blood pressure load. The vessel is subsequently
deformed under further loading up to an assumed systolic blood pressure.
A common factor in most if not all works related to accurate state-of-the-art com-

putational analysis of AAAs is a lack of knowledge on essential parameters related to
mathematical modeling. This lack of knowledge results from the high inter- and intra-
patient variety of AAA properties [15,16] and the limited accessibility to patient-specific
data, given that the object of interest is located within the human body. From a computa-
tional perspective, this lack of knowledge typically results in the application of statistical
methods, which attempt to propagate uncertainty through the computational model and
involve sampling. Since the computational full-ordermodels (FOMs) under consideration
are nonlinear and large-scale, sampling with a high number of model evaluations quickly
becomes too expensive to be practical in terms of computing power.
Awell known approach to overcome the burden of impracticable requirements on com-

puting power is projection-based model order reduction (MOR), which typically includes
the following steps [17]. In a computationally expensive offline stage, the FOM is evaluated
and a low-dimensional subspace is extracted from resulting solution snapshots in terms
of the column span of an orthogonal matrix (the so-called reduced-order basis (ROB)).
The ROB in turn is used to diminish the number of model degrees of freedom (DOFs)
(also referred to as dimension or order in the current context). If constructed accurately,
the reduced-order model (ROM) can replace the FOM in the given context of application.
The objective of the current work is to:

1. present a framework for the construction of a dimensionally reducedmodel (DROM)
as well as a both dimensionally reduced and hyper reduced model
(DHROM) for prestressed AAAs applying the Galerkin projection [18] for dimen-
sional reduction and the energy-conserving mesh sampling and weighting (ECSW)
method [19,20] for hyper reduction. The AAA models are parametrized in two
material (low-strain range and high-strain range stiffness) and one geometric (AAA
wall thickness) parameter.

2. demonstrate the applicability of both ROMs for assessment of the von Mises stress
and the von Mises strain field in the aortic wall within bounds for the model
parametrization. These quantities of interest are relevant in AAA rupture strati-
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fication and are therefore of essential importance for the progression of the disease
[3,9,10].

3. demonstrate the robustness of the presented framework by investigating three
patient-specific computational examples which differ in geometry, parameter
domain bounds as well as the number of DOFs.

Several techniques in the realm of the mechanical analysis of aneurysms have been
proposed in the past to overcome the burden of limiting computing power. One example
is the application of a computationally cheap intermediate mapping, which is utilized for
sampling in place of the FOM. An example can be found in [3], wherein the authors fitted
an inverse power-law function to represent the relation between aneurysm wall thickness
and peak wall stress. In [21] a polynomial chaos expansion is built in order to investigate
aneurysm wall stress assuming uncertainty in twomaterial parameters, the wall thickness
as well as the arterial pressure. A stochastic collocation method can be found in [22],
wherein the authors interpolate the Navier-Stokes flow solution in order to evaluate the
mean shear stress over the vessel wall.
Alternatively, the application of a cheap and possibly inaccurate model in terms of a

multi-fidelity approach is presented in [10,23]. Therein, the cheap model is not supposed
to replace the high-fidelity model, instead it rather serves as a means to decrease the
number of high-fidelity model evaluations by providing additional information. A similar
stochastic structure of the high-fidelity and the low-fidelity model is a prerequisite.
Also the applicability of projection-based MOR for computational feasibility of large-

scale aneurysm models has been demonstrated in the past. In [24], the authors address
variable inflow angles and build a ROM for AAA hemodynamics. In [25], a ROM for the
prediction of periodic regime hemodynamics of a cerebral aneurysm is derived.
We motivate the application of projection-based MOR for the following reasons. A

surrogatemodel constructedbyprojection-basedMORwill recover theFOM, if thedegree
of reduction is reversed. In this sense, projection-based MOR is consistent with FOM
physics and contrasts the idea of an intermediate mapping as described above, given that
suchamappingonly exploits local FOMphysics by sampling.Thementionedmulti-fidelity
approach incorporates the contribution of inaccurate information to specific quantities
of interest. As opposed to projection-based MOR, a surrogate model producing high-
dimensional information and being able to serve as inexpensive FOM replacement is not
created.
To the authors knowledge, no parametrized projection-based ROM has been presented

for prestressed, large-scale, patient-specific and nonlinear solid mechanics AAA models
to date. In particular, application of projection-based MOR to a MULF prestressing stage
is a challenging task, which is investigated in thiswork. This involves amathematical refor-
mulation of ourMULF prestressing stage, given that the original formulation accumulates
an imprinted deformation gradient instead of computing displacement modes and there-
fore is not suitable for snapshot collection. Additionally, a sampling strategy combining
greedy maximin distance sampling on parameter space subdomains and the concept of
subspace angles is presented for snapshot collection and subsequent construction of the
ROB.
The remainder of this paper is organized as follows. We first introduce the patient-

specific AAA computational model. Special interest in view of projection-based MOR is
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devoted to the prestressing stage. Next, we present the DROM as well as the DHROM,
assuming a given ROB and ECSW displacement modes and continue by describing the
approach for construction of the ROB and ECSW displacement modes. For this purpose,
a greedymaximin distance sampling approach and a stopping criterion based on subspace
angles is applied. Finally, we present numerical experiments on three patient-specificAAA
models and conclude.

Methods
The framework presented in this work includes a large-scale finite elementmodel forAAA
simulation, a projection-basedMOR process and a sampling strategy for the construction
of the ROM. These building blocks are described in the following.

Computational modeling of abdominal aortic aneurysms
In this section, we introduce the computationalmodel in terms of its governing equations.
We differentiate between the prestressing stage and the deformation stage, which, when
combined, yield a mechanical state of the aortic segment under systolic blood pressure.
Particular focus is placed on the prestressing stage, given that special treatment is required
for the purpose of snapshot collection.

Patient-specific computational model

Our computational model consists of an aortic segment, which fully includes the AAA as
well as short segments of the iliac arteries, see [12] for a detailed description of the work-
flow from imaging to finite element simulation. The aortic vessel is treated as an elastic
solid consisting of an intraluminal thrombus (ILT) and the aortic wall. Pressure is exerted
on the luminal (i.e. inner) surface of the ILT and the aneurysm is loaded to an assumed
systolic blood pressure, which is the mechanical state of interest. The proximal and distal
end surfaces of the model are constrained by a zero-displacement Dirichlet condition for
vessel fixation. Figure 1 exhibits an example of a patient-specific computational domain.

Model equations

The governing equations read

∇ · P = 0 in �0 (1)

P · N = T on �p,0 (2)

u = 0 on �D (3)

with

T = T (u, p) = −pJ (u)F−T (u) · N . (4)

The weak form of the governing equations is given by the principle of virtual work (PVW)

δW = δWint − δWext =
∫

�0
P : ∇δu dV −

∫
�p,0

T · δu dA = 0 ∀δu. (5)

δW, δWint and δWext denote the total, internal and external virtual work, P denotes the
first Piola-Kirchhoff stress tensor,N is the outward normal vector in the reference config-
uration and�p,0 denotes the reference configuration pressure load surface (i.e. the luminal
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Fig. 1 Example of a patient-specific computational domain �0 (left) and cut through the computational
domain (right) exposing the separation of �0 into the vessel wall and the intraluminal thrombus (ILT). �p

denotes the pressure load boundary condition surface, �D denotes Dirichlet boundary condition surfaces

ILT surface). We emphasize that the traction boundary condition T depends on the dis-
placement field u, see Eq. (4). Therein F (u) = I + ∂u

∂X is the deformation gradient with
respect to the reference configuration, X ∈ �0 denotes reference configuration material
coordinates, J (u) is the deformation gradient determinant and p is the pressure.
We make use of hyperelastic constitutive relations

P = ∂�

∂F
(6)

introducing the strain-energy function � and apply an isochoric-volumetric split for ILT
as well as the vessel wall strain-energy

�ILT(Ī1, Ī2, J ) = �ILT
iso (Ī1, Ī2) + �ILT

vol (J ), (7)

�wall(Ī1, J ) = �wall
iso (Ī1) + �wall

vol (J ), (8)

wherein

Ī1 = tr(C̄), (9)

Ī2 = 1
2
(tr(C̄)2 − tr(C̄2)) (10)

are the first and second principal invariant of the modified right Cauchy Green tensor
C̄ = FT

isoF iso with F iso = J− 1
3 F . In more detail, we model the isochoric strain-energy

contribution of the ILT as given in [12,26]

�ILT
iso (Ī1, Ī2) = c(Ī21 − 2Ī2 − 3) (11)

and the isochoric strain-energy contribution of the vessel wall as given in [9,12]

�wall
iso (Ī1) = α(Ī1 − 3) + β(Ī1 − 3)2. (12)
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The parameter c is a stiffness parameter of the ILT, while α (referred to as α-stiffness in
the following) and β (referred to as β-stiffness in the following) can be interpreted as low-
strain range and high-strain range stiffness of the vessel wall, respectively. The volumetric
parts �wall

vol ,�
ILT
vol of the strain-energies are chosen as given in [12,27]

�x
vol(J ) = κx

4
(J2 − 2ln(J ) − 1), (13)

with x ∈ {ILT,wall} and κwall, κ ILT being sufficiently large to reflect almost incompressible
material behavior.

MULF prestressing

AAA geometries obtained from computed tomography imaging are exerted to blood
pressure. From a continuum mechanics perspective, this corresponds to a non stress-
free reference configuration [14,28,29]. Our simulations are therefore divided in two
stages: The prestressing stage, which aims at imprinting a physiological stress-state into
the imaged (i.e. fixed) geometric configuration at assumed diastolic blood pressure, is
performed first. At second, the vessel is loaded to an assumed systolic blood pressure at
evolving geometry in the deformation stage.
We apply the Modified Updated Lagrangian Formulation (MULF) [14] prestressing

approach in the first stage. MULF is an efficient prestressing method which especially was
validated for the simulation of AAAs [10,12,13,30]. In the MULF prestressing approach
an imprinted prestress deformation gradient Fp is built up incrementally with boundary
conditions evaluated at the imaged configuration.
Snapshot collection as required for data-driven construction of a ROB (cf. section “Con-

struction of reduced-order model components”) is not possible for MULF prestressing,
given that displacement modes are not generated. To overcome this problem, we present
a reformulation of MULF prestressing, shifting the wanted quantity from the prestress
deformation gradient Fp to a virtual prestress displacement field up.
For consistency, we briefly review the original MULF prestressing formulation from a

continuum mechanics perspective (details on implementation in the realm of the finite
element method can be found in [14]) and state the mentioned reformulation in direct
comparison with the original.
As starting point we recall the following kinematic relations. Given a virtual displace-

ment field ũ, from a virtual configuration �̃ � X̃ to the current configuration � � x, a
displacement field u from �0 � X to �, a deformation gradient F = ∂x

∂X and a virtual
deformation gradient F̃ = ∂X̃

∂X , we state

x = X̃ + ũ = X + u, (14)

F = I + ∂u
∂X

= ∂(X + u)
∂X

= ∂(X̃ + ũ)
∂X

= ∂(X̃ + ũ)
∂X̃

∂X̃
∂X

=
(
I + ∂ũ

∂X̃

)
· F̃ . (15)

As a result, the identical first Piola-Kirchhoff stress field P can be expressed as

P = PF (F ), (16)

P = Pu(u), (17)
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P = Pu,F (ũ, F̃ ), (18)

defining

PF : F �→ ∂�

∂F
(F ), (19)

Pu : u �→ ∂�

∂F

(
I + ∂u

∂X

)
, (20)

Pu,F : (ũ, F̃ ) �→ ∂�

∂F

((
I + ∂ũ

∂X̃

)
· F̃

)
. (21)

Applying the introduced notation into the PVW, we review the original MULF pre-
stressing and subsequent deformation stage as

In prestressing stage, find Fp such that :∫
�0

Pu,F (0,Fp) : ∇δu dV −
∫

�p,0
T (0, pdia) · δu dA = 0 ∀δu, (22)

In deformation stage, find ud (with given Fp) such that :∫
�0

Pu,F (ud,Fp) : ∇δu dV −
∫

�p,0
T (ud, psys) · δu dA = 0 ∀δu. (23)

Equation (22) implicitly defines the prestress deformation gradient Fp, which is eval-
uated applying an assumed diastolic blood pressure load T (0, pdia) at the known imaged
geometry. Equation (23) utilizes the precomputed deformation gradient Fp in order to
evaluate the deformation stage displacement field ud applying an assumed systolic blood
pressure load T (ud, psys) at the deformed geometry.
Recalling Eqs. (20) and (21), we can equivalently state the prestressing and deformation

stage PVW as

In prestressing stage, find up such that :∫
�0

Pu(up) : ∇δu dV −
∫

�p,0
T (0, pdia) · δu dA = 0 ∀δu, (24)

In deformation stage, find ud (with given up) such that :∫
�0

Pu(ud + up) : ∇δu dV −
∫

�p,0
T (ud, psys) · δu dA = 0 ∀δu. (25)

A comparison of (22), (23) with (24), (25) reveals the following. Instead of seeking a
prestress deformation gradient Fp, we solve for a virtual prestress displacement field up
fulfilling the PVW at a diastolic blood pressure load of the imaged geometry T (0, pdia). up
is then used in the deformation stage to account for the stress in the imaged configuration
at a systolic blood pressure load of the deformed configuration T (ud, psys).
We emphasize that the reformulation from (22), (23) to (24), (25) corresponds to a

mathematical transformation of variables, physics remains unchanged. We also empha-
size that both formulations are a well-posed approximation to the ill-posed inverse design
problem as further detailed in [14]. From the perspective of projection-based MOR how-
ever, formulation (24), (25) enables a collection of virtual prestress displacement mode
snapshots, an essential step in the data-driven construction of the ROB.
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Finite element discretization

Applying the usual finite element discretization to the PVW for the MULF prestressing
and deformation stage gives

In prestressing stage, find up =
∑

e∈E u(e)
p such that :

∑
e∈E

∫
�
(e)
0

Pu(u(e)
p ) : ∇δu(e) dV

−
∑
e∈F

∫
�
(e)
p,0

T (0, pdia) · δu(e) dA = 0 ∀δu(e), (26)

In deformation stage, find ud =
∑

e∈E u(e)
d (with given u(e)

p ) such that :
∑
e∈E

∫
�
(e)
0

Pu(u(e)
d + u(e)

p ) : ∇δu(e) dV

−
∑
e∈F

∫
�
(e)
p,0

T (u(e)
d , psys) · δu(e) dA = 0 ∀δu(e), (27)

wherein u(e) = �(e)d(e), δu(e) = �(e)δd(e) are the continuous element-wise displacement
field and weighting function, which are interpolated by finite element shape functions
contained in �(e) and the element-wise displacement and weighting degree of freedom
(DOF) vectors d(e), δd(e), respectively. Furthermore, we introduced the computational
domain mesh element set E as well as the set F of elements loaded by the pressure load
boundary condition.
Given element-wise internal and external force vectors such that

f (e)int(d
(e)) · δd(e) =

∫
�
(e)
0

Pu(�(e)d(e)) : ∇(�(e)δd(e)) dV ∀δd(e), (28)

f (e)ext(d
(e), p) · δd(e) =

∫
�
(e)
p,0

T (�(e)d(e), p) · (�(e)δd(e)) dA ∀δd(e), (29)

Eqs. (26) and (27) in assembled form read

In prestressing stage, find dp such that :

f int(dp) · δd − f ext(0, pdia) · δd = 0 ∀δd (30)

⇒ f int(dp) − f ext(0, pdia) = 0, (31)

In deformation stage, find dd (with given dp) such that :

f int(dd + dp) · δd − f ext(dd, psys) · δd = 0 ∀δd (32)

⇒ f int(dd + dp) − f ext(dd, psys) = 0. (33)

Thereby the global internal force vector f int = ∑
e∈E L(e)f (e)int, global external force vector

f ext = ∑
e∈F L(e)f (e)ext, global displacement DOF vector d = ∑

e∈E L(e)d(e) as well as global
weighting DOF vector δd = ∑

e∈E L(e)δd(e) result from an assembly of the corresponding
element-wise vectors, while L(e) is the usual finite element assembly operator towards the
global system.
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Summarizing, we denote the high-fidelity finite element model residual as

r :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

R
N → R

N

for prestressing stage :
dp �→ f int(dp) − f ext(0, pdia)
for deformation stage (with given dp) :
dd �→ f int(dd + dp) − f ext(dd, psys)

, (34)

wherein the deformation stage only can be evaluated after the prestressing stage, which
yields the virtual prestress displacement fielddp as a solution. Thenonlinear finite element
system of equations in residual form reads

r(d) = 0 (35)

and is solved applying Newton-Raphson iterations.

Reduction of the full-order model
In this section we briefly review the well knownGalerkin projection, which yields a dimen-
sionally reduced computational model. For nonlinear problems, the Galerkin projection
is usually not sufficient to gain substantial computational speedup, given that the full-
order residual still needs to be assembled. For this reason, we additionally review the
energy-conserving mesh sampling and weighting [19,20] hyper reduction method, which
approximates the full-order residual with only a small subset of assembledmesh elements.

Galerkin projection on linear subspaces

The Galerkin projection has proven its applicability in structural mechanics problems
[19,31,32]. Assuming a given orthogonal ROB V (its construction will be discussed in
section “Construction of reduced-order model components”)

V ∈ VN,n := {W ∈ R
N×n : W TW = I}, (36)

the dimensionally reduced model (DROM) retrieved from the Galerkin projection reads

V T r(V d̂) = 0, (37)

with d̂ ∈ R
n assuming n 
 N . The argument of the residual is restricted to the column

span of the ROBV d̂ ∈ span(V ), which corresponds to a reduction of the number ofDOFs.
Consistently, the number of equations is reduced by multiplication with the transposed
ROB V T r(V d̂) ∈ R

n. As a result, application of the Newton-Raphson iteration scheme
leads to

V T J r(V d̂i)V
d̂i+1 = −V T r(V d̂i) (38)

d̂i+1 = d̂i + 
d̂i+1, (39)

wherein J r is the residual Jacobian with respect to the displacement field d. Equations
(38), (39) reveal that only low-dimensional linear systems of equations have to be solved.

Hyper reduction of internal force contribution

The Galerkin Projection (37) leads to a dimensionally reduced model, however the FOM
residual r(V d̂) still needs to be evaluated together with its Jacobian J r(V d̂) throughout
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Newton-Raphson iterations (38). Especially assembly of the internal force component of
the residual (cf. Eq. (34)) is time consuming, given that every element of the computational
mesh needs to be evaluated.
To reduce the cost of evaluation and assembly of the residual and its Jacobian, we apply

the energy-conserving mesh sampling and weighting (ECSW) hyper reduction scheme
[19,20] and give a brief review in the remainder of this section for completeness and
adaption to the current context of application.
The idea is to replace the internal force vector f int ∈ R

N with a surrogate f̃ int ∈ R
N ,

which will result in an accurate approximation after projection, that is

V T f̃ int(V d̂) ≈ V T f int(V d̂). (40)

f̃ int is retrieved by a weighted assembly of a small mesh element subset and is derived
from the requirement of an accurate approximation of the internal virtual work, which
can be written as

δWint(d, δd) = δdT f int(d) (41)

or for a dimensionally reduced model d, δd ∈ span(V )

δŴint(d̂, δd̂) = δd̂TV T f int(V d̂). (42)

Applying a sum over all element internal force contributions we can rewrite

δŴint(d̂, δd̂) =
∑
e∈E

δd̂TV TL(e)f (e)int(L
(e)TV d̂) (43)

using L(e)T to extract DOFs of element e from a vector with global DOF numbering into
a smaller vector with element DOF numbering.
We now seek for an approximation W̃int(d, δd) of the internal virtual work such that

δW̃int(d̂, δd̂) ≈ δŴint(d̂, δd̂) ∀δd̂ ∈ R
n (44)

with

δW̃int(d̂, δd̂) =
∑
e∈Ẽ

w(e)δd̂TV TL(e)f (e)int(L
(e)TV d̂). (45)

In contrast to (43), (45) only contains a summation over a reduced element set Ẽ . Addi-
tional non-negative element weights w(e) ∈ R+ are introduced for approximation (44) to
become feasible with a small cardinality of the reduced element set.
A remaining question is the actual choice of elements in Ẽ as well as the element weights

w(e). For this reason, (44) is turned into an optimization problem by restriction to a finite
set of displacement modes Ŝ

Ŝ = {V Td : d ∈ S} (46)

with

S = {dp(0),dp(0) + dd(0), . . . ,dp(m2 −1),dp(m2 −1) + dd(m2 −1)} (47)

being a set of known displacementmodes (referred to as ECSWdisplacementmodes here,
the actual selection of modes will be discussed in section “Construction of reduced-order
model components”). Note that S consists of m (even number) modes corresponding to
virtual prestress displacement modes dp(i) and the sum of virtual prestress displacement
and deformation stage displacement modes dp(i) + dd(i) with i ∈ {0, . . . , m2 − 1}.
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In its unassembled shape, the restriction of Eq. (44) to ∀d̂ ∈ Ŝ reads
∑
e∈Ẽ

w(e)δd̂TV TL(e)f (e)int(L
(e)TV d̂) ≈

∑
e∈E

δd̂TV TL(e)f (e)int(L
(e)TV d̂)

∀d̂ ∈ Ŝ , ∀δd̂ ∈ R
n.

(48)

In order to keep the cardinality of the reduced element set Ẽ low, approximation (48) has to
be accurate with aminimal number of non-zero weights. The corresponding optimization
problem is

minimize
w∈R|E|

‖w‖0
subject to ‖Aw − b‖2 ≤ εh ‖b‖2

min(w) ≥ 0.

(49)

The zero-norm
∥∥(•)∥∥0 counts the number of non-zero entries and is used as the objec-

tive function applied to the vector of element weights w, which is constrained to have
non-negative values expressed by its minimum entry min(w) being non-negative. This
constraint is required in order to ensure a positive semi-definite Jacobian of the inter-
nal force vector [19]. The other constraint is a fulfillment of Eq. (48) up to the relative
tolerance εh. Consequently,

A =

⎡
⎢⎢⎣

a(0,0) . . . a(0,|E|−1)
...

. . .
...

a(m−1,0) . . . a(m−1,|E|−1)

⎤
⎥⎥⎦ ∈ R

n∗m×|E| (50)

with vector valued entries

a(i,j) = V TL(j)f (j)int(L
(j)TV d̂i) (51)

and

b =

⎡
⎢⎢⎣

b0
...

bm−1

⎤
⎥⎥⎦ ∈ R

n∗m (52)

with vector valued entries

bi =
∑
e∈E

a(i,e) (53)

wherein i ∈ {0, . . . , m − 1}, j ∈ {0, . . . , |E | − 1} and d̂i are vectors from the set Ŝ .
Optimization problem (49) can be approximately solved with a sparse non-negative

least-squares solver. Thereby sparse refers to the solution vector w, in the sense that the
number of non-zero entries is kept minimal. For details on the iterative solver the reader
is referred to [19].
An (approximate) solution to (49) returns the element weights as well as the reduced

element set by an extraction of elements with non-zero weights. As a consequence, the
hyper reduced internal force vector and its Jacobian read

f̃ int(d) =
∑
e∈Ẽ

w(e)L(e)f (e)int(L
(e)Td), (54)

J̃ int(d) =
∑
e∈Ẽ

w(e)L(e)J (e)int(L
(e)Td)L(e)T , (55)
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with the element stiffness J (e)int = ∂f (e)int
∂d(e) .

We denote the dimensionally reduced as well as hyper reduced model (DHROM) as

V T r̃(V d̂) = 0 (56)

and state the corresponding Newton-Raphson iterations

V T J̃ r(V d̂i)V
d̂i+1 = −V T r̃(V d̂i) (57)

d̂i+1 = d̂i + 
d̂i+1, (58)

wherein r̃ is a residual approximationusing f̃ int and J̃ r is the correspondinghyper reduced
residual Jacobian.

Construction of reduced-order model components
In the given many-query context, the residual (34) depends on a modifiable set of model
parameters. Introducing a parameter vector

μ ∈ P = [lb0; ub0] × . . . × [lbnP−1; ubnP−1] ⊂ R
nP (59)

with [lbi; ubi] � μi being the lower and upper bounds for parameter μi, we extend the
notation of Eq. (35) to

r(d(μ);μ) = 0, (60)

and attempt to find a ROB V and a set of ECSWmodes S such that the resulting DROM
as well as DHROM will accurately approximate the FOM solution for all μ ∈ P .
A prerequisite for an accurate ROM is that the FOM solution d(μ) can be accurately

represented within the column span of the ROB∥∥∥d(μ) − VV Td(μ)
∥∥∥
2


 ∥∥d(μ)∥∥2 . (61)

This motivates a data-driven approach for construction of ROBs by a collection of FOM
solution snapshots at different parametric configurations and subsequent orthogonaliza-
tion with or without data compression [33].
In case of the presented stationary AAA computational model two snapshots per para-

metric configuration (virtual prestress displacement and deformation stage displacement)
are retrieved and organized in the so-called snapshot matrix

S = [dp(μ0),dd(μ0), . . . ,dp(μm
2 −1),dd(μm

2 −1)] (62)

with S ∈ R
N×m.

Two data-driven approaches for the construction of the ROB have gained special inter-
est in projection-based MOR. Proper orthogonal decomposition (POD) can be used to
orthogonalize S yielding a ROB V pod ∈ R

N×m such that [17]
∥∥∥S − V n

podV
nT
podS

∥∥∥2
F

= min
W∈VN,n

∥∥∥S − WW TS
∥∥∥2
F
, (63)

wherein V n
pod corresponds to a selection of the first n columns of V pod with n ≤ m and∥∥(•)∥∥F is the Frobenius norm. Consequently, POD is used whenever solution snapshots

can be accurately represented by a low-dimensional subspace.
The second approach for construction of the ROB are greedy methods [34]. The idea

herein is to successively build the ROB by evaluating selected configurations within the
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parameter domain and enrich the span of the ROB by the span of the newly computed
snapshots. Based on an (hopefully inexpensive and sharp) a posteriori error estimator,
greedy methods attempt to find solution snapshots which are represented worst by the
ROB constructed up to this point. However, even this local optimization problem quickly
becomes too expensive. Several approaches [35–37] have been presented to date to over-
come this computational bottleneck.
In order to avoid evaluating a posteriori error estimates in every greedy iteration, we

apply a selection of solution snapshots from a greedymaximin distance sampling together
with a stopping criterion based on subspace angles and an exclusion of subdomains. We
dedicate section “Maximin distance design” and “Subspace angles for the comparison of
subspaces” to the notion of maximin distance design and subspace angles, respectively.
Section “A greedy maximin distance sampling approach for the construction of solution
subspaces” introduces the actual sampling algorithm.

Maximin distance design

Space-filling designs is a topic from design of experiments. Maximin distance (MMD) is
introduced in [38] as a criterion which can be used to rate the space-filling property of
a design or to construct space-filling designs by optimization of that criterion. A greedy
version with reduced computational complexity is presented in [39] under the name
“Coffee-House Design” and a recent review on maximin distance sampling can be found
in [40]. In contrast to a globally optimal MMD design, the greedy MMD design can be
evaluated iteratively.
We apply the following terminology. A point is a specific instance of the parameter vec-

tor μ, also referred to as parametric configuration. Points are distributed by the sampling
algorithm in the parameter domain. A sample corresponds to FOM solution snapshots at
a given point.
Algorithm 1 depicts the steps for the selection of a greedy MMD point. Given an input

grid�i ⊂ P as subset of the parameter space and a set of previously chosen points�c ⊂ P ,
the next point μ ∈ �i is chosen such that the minimal distance to a neighboring point
p ∈ �c is maximized in a reference hypercube. Thereby χ and χ−1 map from physical
domain to reference hypercube and vice versa, respectively.

Algorithm 1MaxiMinPoint(�i,�c) (select a greedy MMD point)
Input: input grid �i ⊂ P , previously chosen points �c ⊂ P
Output: selected grid point μ

1: �̃i = χ (�i), �̃c = χ (�c) � transform grids to reference hypercube
2: μ = arg maxq∈�̃i

(
minp̃∈�̃c

‖q − p̃‖2
)

� get next point in reference hypercube
3: return χ−1(μ) � return point in physical domain

The steps for a greedy MMD design on a training grid �t ⊂ P are depicted in Algo-
rithm 2. Figure 2 illustrates a greedy MMD design, wherein the first parametric configu-
ration was chosen at random.
The idea of MMD sampling for the purpose of surrogate modeling in general is dis-

cussed broadly in literature [41–44]. Specific applications for instance can be found in
[45], wherein the authors use the notion of MMD in their algorithm to sample cut lines
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Algorithm 2MaxiMinDesign(�t ,μ, nμ) (construct greedy MMD design)
Input: training grid �t ⊂ P , starting point μ ∈ �t , number of points to select nμ

Output: chosen points �c

1: �c = {μ}
2: for i ∈ (1, . . . , nμ − 1) do
3: μ = MaxiMinPoint(�t ,�c)
4: �c ← �c ∪ μ

5: end for
6: return �c

Fig. 2 Greedy MMD design for a 2D parameter space with nμ points. The first point is chosen at random

and planes of the parameter domain in order to construct a radial-basis-function approx-
imation surrogate. In [46], MMD sampling is used to distribute points in Voronoi cells
for multifidelity radial-basis-function metamodeling.

Subspace angles for the comparison of subspaces

Subspace angles (or principal angles) are a concept frommatrix computations [47]. Given
two matrices Y ∈ R

N×n,Z ∈ R
N×m with n ≤ m, subspace angles can be defined recur-

sively as the minimum value

θk = min
y∈Y⊥

k ,z∈Z⊥
k

arccos(yT z) with k ∈ {0, . . . , n − 1}, (64)

while the corresponding principal vectors follow from the minimization arguments

yk , zk = arg min
y∈Y⊥

k ,z∈Z⊥
k

arccos(yT z) with k ∈ {0, . . . , n − 1}. (65)

The sets

Y⊥
k = {y : y ∈ span(Y ),

∥∥y∥∥ = 1}
Z⊥
k = {z : z ∈ span(Z), ‖z‖ = 1}

for k = 0

(66)
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Fig. 3 Geometrical interpretation of subspace angles between 2D subspaces of a 3D space. The subspaces
are defined by the column span of Y ,Z ∈ R

3×2 in the current illustration. θ0 and θ1 are the two subspace
angles, y0 , y1 ∈ span(Y ) and z0 , z1 ∈ span(Z) are the corresponding principal vectors

and
Y⊥

k = {y : y ∈ span(Y ),
∥∥y∥∥ = 1, yT yj = 0}

Z⊥
k = {z : z ∈ span(Z), ‖z‖ = 1, zT zj = 0}
for j ∈ {0, . . . , k − 1}, k ∈ {1 . . . n − 1}

(67)

depend on the minimization arguments yj and zj of the previous k iterations.
A maximum subspace angle of 0◦ indicates that span(Y ) ⊆ span(Z), while a maximum

subspace angle of 90◦ indicates that there is at least one direction in span(Y ) which is
orthogonal to span(Z). More general, the maximum subspace angle can be interpreted as
a distancemeasure fromspan(Y ) to span(Z). In the followingwewill refer to themaximum
subspace angle as the subspace angle distance (SAD). Figure 3 illustrates subspace angles
for 2D subspaces embedded in a 3D space. Algorithm 3 [47] states the computation of
subspace angles applying a singular value decomposition.

Algorithm 3 SSA(Y ,Z) (computation of subspace angles)
Input: Y ∈ R

N×n, Z ∈ R
N×m with n ≤ m

Output: subspace angles α

1: Y = QYRY , Z = QZRZ � perform thin QR factorization [47]
2: QT

YQZ = Udiag(σ)QT � perform thin singular value decomposition [47]
3: α = arccos(σ) � transform to angle
4: return α

In projection-based MOR, subspace angles have been used for the purpose of interpo-
lation and sampling. In [48–50], the authors present and apply a subspace angle interpo-
lation of ROBs for flow problems. In [51], subspace angle interpolation is performed with
respect to the diffusion coefficient for a Diffusion-Convection-Reaction problem. The
application of subspace angles as a stopping criterion for sampling has been presented in
[52–54].
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A greedy maximin distance sampling approach for the construction of solution subspaces

We expand the greedy MMD design with a stopping criterion based on the SAD and
introduce adaptivity to the sampling by a division of the parameter domain into subdo-
mains. Those subdomains are subsequently excluded from sampling and the algorithm
stops, when all subdomains have been excluded.

Algorithm 4 SDMaxiMinSampling(�sd ,μ,αm) (greedy MMD sampling on subdomains)
Input: subdomain set �sd = {�sd,0 . . . ,�sd,nsd−1}, starting point μ ∈ �sd,0, threshold SAD αm
Output: chosen grid points �c = {μ0, . . . ,μnμ−1}, ROB V , snapshot matrix S
1: s(μ) = QR � thin QR factorization [47] of initial snapshot matrix
2: V = Q
3: S = s(μ)
4: �c = {μ}
5: � = (�sd,1, . . . ,�sd,nsd−1,�sd,0) � define subdomain tuple for iteration
6: while True do
7: for �sd,i ∈ � do � iterate over subdomains
8: μ = MaxiMinPoint(�sd,i,�c)
9: �c ← �c ∪ μ

10: α = SSA(V , s(μ))
11: α = max(α)
12: if α < αm then � in case of small SAD
13: � ← �\�sd,i � exclude subdomain from sampling
14: end if
15: [V , s(μ)] = QR � add new modes and perform thin QR factorization
16: V = Q
17: S ← [S, s(μ)]
18: end for
19: if � = ∅ then � if no subdomain left
20: break � stop algorithm
21: end if
22: end while
23: return �c,V , S

Algorithm 4 exposes the individual steps. After having calculated an initial ROB (line
2:) from the local snapshot matrix s at the initial parametric configuration μ (line 1:),
the algorithm iterates over a (predefined) tuple � (line 5:) of subdomains �sd,i ⊂ �t for
i ∈ {0, . . . nsd − 1} (nsd consequently is the number of subdomains), wherein �sd,i ∩i �=j
�sd,j = ∅ for i, j ∈ {0, . . . , nsd − 1} and ∪nsd−1

i=0 �sd,i = �t . In every iteration, a parametric
configuration is chosen within �sd,i by a greedy MMD step (line 8:). Note that in line 8:
distances to all previously selected points �c are taken into account, although the new
point is selected exclusively from �sd,i. Subdomains are excluded from sampling (line
13:) depending on the threshold αm (line 12:). The algorithm stops, if all subdomains
have been excluded (line 19:,20:). On output, Algorithm 4 returns a set of selected grid
points �c, a global orthogonal ROB V as well as a globally collected snapshot matrix S.
We use the ROB for dimensional reduction by the Galerkin projection (37), while the
snapshot matrix is used to compute the set S (47). Consequently, the number of ECSW
displacement modes |S| coincides with the dimension of the subspace span(V ).
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Note that the ROB enrichment strategy of Algorithm 4 (line 15:,16:) extends the span
of the ROB by the span of the current snapshot matrix s(μ) in every greedy maximin
iteration. As a consequence, we can state that span(V i) ⊆ span(V j) for j ≥ i, wherein V i
and V j denotes the ROB after greedy maximin iteration i and j, respectively.
Following the terminology in [43], we classify the proposed approach as global, sequen-

tial / adaptive and fine-grained. Additionally, the MMD criterion as well as initial itera-
tions over subdomains introduce the property of domain exploration, while subsequent
sampling of a subset of subdomains amounts to local exploitation.
In more detail, by introducing subdomains the sampling algorithm can evaluate more

samples in specific parameter domain regions as compared to others, if this need is iden-
tified by the subspace angle criterion. As a result, the purely explorative greedy maximin
sampling receives a feedback from the parameter domain and sampling is refined. Refer
to section “Application of greedy maximin distance sampling” for a demonstration in the
given context of prestressed and parametrized AAAs.
A stopping criterion for sampling based on subspace angles already has been presented

in [52–54]. In [52,53] the authors present adaptive sampling of a linear time-invariant
state-space system, while in [54] adaptive selection of linearization points in trajectory
piecewise linear approximation is in the focus of interest. In contrast to [52–54] the
approach in this work aims at the construction of a global ROB instead of interpolation
between parametric configurations. Additionally, the notion of MMD yields to finely
granular sampling applicable to parameter domains with multiple dimensions.

Results and discussion
The proposed framework is applied to three patient-specific computational examples of
AAAs. The ROB is constructed by greedy subdomainMMD sampling with 8 subdomains
following Algorithm 4. The accuracy of the resulting DROMs and DHROMs is evaluated
in terms of the quantities of interest (von Mises stress field and von Mises strain field in
the aortic vessel wall) and wall clock timings are reported. The choice of von Mises type
quantities of interest is based on preceding numerical studies on AAAs with emphasis
on solid mechanics and rupture risk (e.g. as presented in [9,55,56]). Nonetheless, other
quantities of interest could have been selected, given that AAApathological progression is
still subject to research. Finally, accuracy of the proposed MOR framework in a statistical
sense is demonstrated by comparing maximum von Mises stress and von Mises strain
probability distributions gained from FOM and DHROM sampling.

Patient-specific computational models

Figures 4, 5 and 6 visualize the computational mesh, a cut through the computational
domain depicting a separation between the ILT and the aortic wall and exemplary von
Mises stress distributions for patient 1, patient 2 and patient 3, respectively.
The ILT is discretized using linear tetrahedral and pyramid elements, wherein pyramids

are introduced to connect the ILT to the aortic wall, which is discretized using linear
hexahedral elements with F-bar element technology [57]. Table 1 depicts information on
the model discretization.
Referring to section “Computational modeling of abdominal aortic aneurysms”, we

quantify boundary conditions by a diastolic blood pressure of pdia = 87 mmHg (11.6kPa)
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Fig. 4 Patient 1 mesh (a), cut exposing the ILT (b), exemplary von Mises stress distribution (c)

Fig. 5 Patient 2 mesh (a), cut exposing the ILT (b), exemplary von Mises stress distribution (c)

Table 1 Number of degrees of freedom N and number of elements Ne for patient-specific
computational models

Patient 1 Patient 2 Patient 3

N [-] 109587 189504 479487

Ne [-] 140019 149499 776106
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Fig. 6 Patient 3 mesh (a), cut exposing the ILT (b), exemplary von Mises stress distribution (c)

Table 2 Patient-specific bounds for parameter domain

Patient 1 Patient 2 Patient 3

[αl ;αu] [kPa] [28.23; 345.22] [18.15; 344.07] [26.46; 503.16]

[βl ;βu] [kPa] [541.46; 6164.14] [543.15; 9686.14] [450.97; 7986.08]

[tl ; tu] [mm] [1.09; 2.66] [0.94; 2.46] [1.03; 2.73]

and a systolic blood pressure of psys = 121 mmHg (16.1 kPa). The ILT stiffness c is
interpolated linearly from a luminal stiffness of c = 2.62 kPa to a medial stiffness of
c = 1.98 kPa and from the medial stiffness to an abluminal stiffness of c = 1.73 kPa [26].
Together with the aortic wall thickness t the model parametrization is given as

μ =
⎡
⎢⎣

α

β

t

⎤
⎥⎦ ∈ P = [αl ;αu] × [βl ;βu] × [tl ; tu] ⊂ R

3, (68)

with the subscripts l and u denoting the lower and upper bound.
Table 2 exhibits parameter domain lower and upper bounds for the three models. The

bounds were computed from patient-specific Log-normal probability distributions from
[58] for each entry of the parameter vector μ. In more detail, the parameter domain
bounds are chosen as

(γl , γu) = (Qlog(0.025;μγ , σγ ), Qlog(0.975;μγ , σγ )) for γ ∈ {α,β , t} (69)

with

Qlog(p;μγ , σγ ) = exp(μγ + √
2σγ erf−1(2p − 1)) (70)

being the p-percentile value for a Log-normal distribution with expectation μγ and stan-
dard deviation σγ . erf denotes the error function. Consequently, the range within the
chosen parameter domain bounds covers 95% of realizations of μ.
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We perform 15 equally spaced load steps for the prestressing stage and 10 equally
spaced load steps for the deformation stage. Multiple thousands of simulations were
performedandpostprocessed for the results presented in the following sections. Individual
unconverged simulations were dropped from analysis.
For linear systems of equations arising in FOM simulations, we use an iterative, parallel

GMRES solver with algebraic multigrid preconditioning implemented in Trilinos [59].
For the ROM linear systems of equations we apply a direct solver [60], given that arising
linear systems have less than 100 unknowns.

Application of greedy maximin distance sampling

In our first numerical experiment, we create a one-shot (i. e. no adaptation) design dis-
tributing 200 points in the parameter domain (Algorithm 4 with �sd = {�sd,0},αm = 0.0
and stopping at |�c| = 200). If a simulation fails to converge, a neighboring point is taken
in the set of selectedpoints�c instead and theFOMis recomputed.Theparameter domain
grid is created from all combinations of 100 equidistantly placed points in each direction
of the parameter domain axes. The initial point is chosen as the “minimum-value” point
μ = [αl ,βl , tl]T (see Table 2) for each patient-specific example.
As a result, the greedyMMDdesign returns identical points (except for few individually

shifted points due to convergence failure) in the reference cube for all three computa-
tional examples. The corresponding MMD in the reference cube is depicted in Fig. 7d.
Simultaneously, the SAD (Algorithm 4 (line 11:)) is depicted in Fig. 7a–c, wherein we
highlight SADs corresponding to (−−−)-octant configurations of the parameter domain
(i.e. α < αm,β < βm, t < tm) in blue and SADs corresponding to (+ + +)-octant con-
figurations of the parameter domain (i.e. α > αm,β > βm, t > tm) in dark red (given
αm = 1

2 (αl + αu), βm = 1
2 (βl + βu) and tm = 1

2 (tl + tu) as the axes mid values).
The resulting distribution of SADs is affected by two contributions. The first contribu-

tion is theMMD for a newly set point. As one can observe from Fig. 7d, theMMD strongly
decreases initially, while a stagnation occurs with an increasing number of samples. This
behavior also reflects in the SAD, which shows a pronounced decay in the beginning
and increased scattering with ongoing stagnation of the MMD. The second contribution
are different sensitivities of FOM snapshots with respect to the parameter domain. For
instance, (+ + +)-octant value parametrizations (dark red points) yield lower subspace
angles than (− − −)-octant value parametrizations (blue points), such that the (+ + +)-
octant of the parameter domain can be said to show lower sensitivity in solution snapshots.
For practical reasons (see numerical examples presented next), we are only interested in
the region of pronounced decay of the SAD. As a consequence, distance in the reference
parameter space is a suitable and efficient sampling criterion for the problem at hand.
We include adaptivity to the greedy MMD design by introducing subdomains as pre-

sented in section “A greedy maximin distance sampling approach for the construction
of solution subspaces”. In more detail, we create eight equally shaped subdomains by
splitting each parameter domain axis in 2 intervals and run Algorithm 4 with αm = 0.1,
�sd = {�sd,0 . . . ,�sd,7} and the initial configuration μ = [αl ,βl , tl]T . Figure 8 depicts
the decay of SADs for each patient-specific computational model. As one can observe,
sampling runs until the last sample in each subdomain yields a SAD below αm.
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Fig. 7 a–c Decay of the SAD. Dark red points correspond to parametric configurations in the (+ + +)-octant
of the parameter domain, while blue points correspond to parametric configurations in the (− − −)-octant of
the parameter domain. d Decay of MMD with every newly set point

Table 3 Number of points distributed in the individual subdomains. The corresponding decay of
subspace angles is depicted in Fig. 8, the point distributions in Fig. 9

Subdomain 0 1 2 3 4 5 6 7

Patient 1 4 4 4 4 3 3 3 2

Patient 2 6 5 4 4 3 5 3 3

Patient 3 6 4 4 4 3 3 2 2

Table 3 depicts the number of distributed points in the individual subdomains. Note the
differences in the point distributions, especially prominent for patient 3. Figure 9 depicts
the selected parametric configurations in the 3D parameter domain. As one can see, the
most sensitive subdomain 0 (compare Table 3) corresponds to the low-stiffness and thin
vessel wall range of the parameter domain. This is plausible from a physical perspective,
given that soft and thin-walled tissue will deform more than stiff and thick-walled tissue.

Patient-specific reduced-order models

We compute ROBs from greedy subdomain MMD sampling with parametric configura-
tions as depicted in Fig. 9. A Galerkin projection (37) yields the patient-specific DROMs.
Hyper reduction is achieved via ECSW (cf. section “Hyper reduction of internal force
contribution”) parallelized on 4 processors with global tolerance set to εh = 10−4, see Eq.
(49). The parallelization is implemented in terms of a domain decomposition as described
in [20].
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Fig. 8 Decay of SAD throughout parameter domain sampling. The parameter domain is subdivided into
eight subdomains. The stopping criterion is a SAD below 0.1 in each subdomain. Corresponding point
distributions in the parameter domain are depicted in Fig. 9

Fig. 9 Parametric configurations selected throughout greedy subdomain maximin distance sampling. The
parameter domain is subdivided into eight subdomains
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Fig. 10 Reduced meshes gained from ECSW. Only the colored mesh elements are evaluated and assembled
in patient-specific DHROMs

Table4 Number of degrees of freedom n and number of elements ne of constructed DHROMs

Patient 1 Patient 2 Patient 3

n [-] 54 66 56

ne [-] 1994 3193 2975

Figure 10 illustrates selected mesh elements, while Table 4 shows the number of DOFs
and selected mesh elements. Inspecting Fig. 10, note the increasingly accurate sampling
in the neighborhood of vessel fixation (proximal and distal vessel ending) and in regions
with increased curvature of the vessel wall (compare with Figs. 5 and 6).

Accuracy of the reduced-order model

We evaluate accuracy in terms of the relative error in the quantities of interest (vonMises
stress field σvM and von Mises strain field evM in the aortic wall). The relative error is
given as

RE(x̃, x) = ‖x̃ − x‖2
‖x‖2 , (71)

wherein x ∈ {σvM, evM} corresponds to FOM quantities and x̃ ∈ {σ̃vM, ẽvM} corresponds
to ROM approximations.
A validation grid with 1000 points in the parameter domain is used. The grid results

from all combinations of 10 equidistantly placed points in each direction of the parameter
domain axes. Note that the resulting grid corresponds to a full factorial design being
created independently of the points used for the construction of the ROB by greedy
subdomain MMD sampling.
Figures 11 and 12 depict the corresponding errors. The majority (> 98%) of relative

errors are below 1%, while individual runs show a relative error above 1%. We conclude,
that DROM as well as DHROM are accurate models for the von Mises stress and von
Mises strain field in the aortic wall in a statistical sense. Individual simulationsmight show
increased relative errors, caution is required when applying the ROMs for the prediction
of point estimates.
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Fig. 11 Relative l2-error of the DROM in term of the von Mises stress and von Mises strain fields in the aortic
wall. The test grid corresponds to a full factorial and equidistant 10 × 10 × 10 grid in the parameter domain.
The results state individual simulations showing errors above 1%, while the majority (> 98%) of simulations
shows errors below 1%

We investigate the influence of αm and εh, i.e. the maximum subspace angle defining
the stopping criterion in Algorithm 4 and the relative tolerance for the ECSW algorithm
introduced in Eq. (49). On the introduced validation grid with 1000 points, we evaluate

REx = 1
nsim

nsim−1∑
i=0

REi(x̃, x) (72)

as the mean value of all relative errors given the number of performed simulations nsim,
x ∈ {σvM, evM} denoting von Mises stress or von Mises strain as the quantity of interest
and REi(x̃, x) being the relative error (71) of sample i.
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Fig. 12 Relative l2-error of the DHROM in terms of the von Mises stress and von Mises strain fields in the
aortic wall. The test grid corresponds to a full factorial and equidistant 10 × 10 × 10 grid in the parameter
domain. The results state individual simulations showing errors above 1%, while the majority (> 98%) of
simulations shows errors below 1%

Figure 13 depicts results for patient 1 as exemplary model. In more detail, Fig. 13a
corresponds to DROM results with ROBs created by Algorithm 4 at different SADs, while
Fig. 13b corresponds to DHROM results with ECSW meshes at different tolerances and
an unchanged ROB at αm = 0.1. As can be observed from Fig. 13a, lower values for αm
yield larger ROBs, while at the same time the mean relative error decreases indicating a
more accurate DROM as expected. Figure 13b illustrates that stricter ECSW tolerances
εh lead to an increased number of selected mesh elements with decreasing mean relative
error indicating a more accurate DHROM. We conclude, that both αm and εh strongly
influence ROM accuracy.
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Fig. 13 Mean relative l2-error for DROM over varying threshold SAD αm (left plot) and mean relative l2-error
for DHROM over varying ECSW tolerance εh (right plot) are depicted in blue (curves and y-axes). Curves and
y-axes in orange depict the corresponding number of ROB modes n (left) and number of selected ECSW
elements ne (right)

Table 5 Mean values μvMmax
x and standard deviations σ vMmax

x with x ∈ {stress, strain} for maximum
von Mises stress and maximum von Mises strain in the aortic wall computed from Monte Carlo
sampling with 10000 identical (per patient) samples. The corresponding parametric configurations
are drawn from patient-specific probability distributions

Value Patient 1 Patient 2 Patient 3

MC FOM μvMmax
stress [kPa] 205.57 276.84 302.49

σ vMmax
stress [kPa] 44.950 65.926 71.761

μvMmax
strain [−] 0.17320 0.19404 0.19070

σ vMmax
strain [−] 0.038272 0.052792 0.049465

MC DHROM μvMmax
stress [kPa] 205.80 277.13 301.85

σ vMmax
stress [kPa] 45.0518 65.9210 71.8432

μvMmax
strain [−] 0.17361 0.19413 0.18946

σ vMmax
strain [−] 0.038483 0.052680 0.049128

Monte Carlo sampling on the reduced-order model

To demonstrate applicability of the constructed ROMs for approximation of probability
distributions in the quantities of interest, we compare the 99.9 percentile aortic wall von
Mises stress (referred to as maximum von Mises stress in the following) and the 99.9
percentile aortic wall von Mises strain (referred to as maximum von Mises strain in the
following) probability distributions retrieved from Monte Carlo sampling of the FOM
andMonte Carlo sampling of the DHROM. Bothmodels are evaluated on 10000 identical
(per patient) parametric configurations drawn from the corresponding patient-specific
Log-normal probability distributions.
Table 5 depicts mean and standard deviation of the quantities of interest. As one can

see, FOM and DHROM results are very close, relative errors are < 1%. Figure 14 depicts
kernel-density-estimated probability distributions gained from FOM and DHROM sam-
ples. We apply the Gaussian kernel-density-estimator scipy.stats.gaussian_kde available
in the SciPy [61] (version 1.3.0) ecosystem of the Python programming language. The
plots show negligible differences between probability distributions gained from FOM and
DHROM sampling.
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Fig. 14 Kernel-density-estimated (Gaussian kernel) probability distributions based on FOM and DHROM
evaluation of 10,000 identical (per patient) parametric configurations. The quantities of interest are the
maximum von Mises stress as well as the maximum von Mises strain in the aortic wall

Timing

We report wall clock timings of the patient-specific computational models as well as
corresponding speedups in Table 6. All simulations in this section were performed on a
workstation with Intel Xeon W-2133 (3.60GHz) processors.
The values in Table 6 are mean values corresponding to seven simulations (per patient)

evaluated at face mid-points as well as the mid-point of the patient-specific parametric
domains, compare with Table 2 for domain lower and upper bounds.
As the reader can observe, only slight speedup can be achieved with DROM models,

given that the full-order residual as well as its Jacobian need to be evaluated. A rather
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Table 6 Timing for patient-specific models. All computations were performed on 4 cores (Intel
Xeon W-2133 (3.60GHz)). The reported timings are mean values of seven simulations (per patient).
Speedup is computed using FOM timing as a reference

Model Computing time [s] Speedup [-]

Patient 1 FOM 199.5 1.0

DROM 128.1 1.6

DHROM 13.5 14.8

Patient 2 FOM 261.1 1.0

DROM 175.9 1.5

DHROM 20.9 12.5

Patient 3 FOM 1126.1 1.0

DROM 618.5 1.8

DHROM 31.8 35.5

Table 7 Timing for offline stage steps of patient-specific models performed on 4 cores (Intel Xeon
W-2133 (3.60GHz)). Timing is given as multiple of a single FOM evaluation time, which in turn is
estimated from the mean of seven simulations per patient

Reduction step Multiple of FOM evaluation time [-]

Patient 1 construction ROB 29.2

ECSW 5.4

Patient 2 construction ROB 38.4

ECSW 38.0

Patient 3 construction ROB 31.0

ECSW 16.7

substantial speedup can be achieved by DHROM models, recalling that only a small
portion of the computational mesh is evaluated and assembled.
Table 7 depicts offline stage timings, subdivided into the ROB construction stage by

greedy subdomain MMD sampling (as described in section “Application of greedy max-
imin distance sampling”) and the hyper-reduction by ECSW (as described in “Patient-
specific reduced-order models”). For details on theory please refer to section “A greedy
maximin distance sampling approach for the construction of solution subspaces” and
section “Hyper reduction of internal force contribution”.

Conclusions
We presented a framework for projection-based MOR of patient-specific AAA models.
A dimensionally reduced model was built by a Galerkin projection on a low-dimensional
subspace and a dimensionally reduced as well as hyper reduced model was built by the
Galerkin projection and energy-conserving mesh sampling and weighting. Specific atten-
tion was dedicated to theMULF prestressing stage, given that the originalMULF aims at a
calculation of an imprinted deformation gradient and therefore is not suited for snapshot
collection. A sampling algorithm relying on themaximin distance criterion was presented
for the construction of low-dimensional solution subspaces. Therein, a stopping crite-
rion based on subspace angles and an exclusion of subdomains was applied. Finally, three
patient-specific computational examples with different complexities were demonstrated.
The proposed sampling algorithm led to comparable results in terms of reduced-order

basis size aswell as number of sampledmesh elements for all three patient-specific compu-
tational models. Subsequent experiments on ROM accuracy revealed relative von Mises



Schein and Gee Adv. Model. and Simul. in Eng. Sci.           (2021) 8:18 Page 29 of 31

stress and von Mises strain field errors below 1% for more than 98% of all simulations
on a validation grid. We conclude that the proposed MOR framework is robust across
patient-specific AAA geometries and parameter domains.
Direct Monte Carlo sampling on the dimensionally reduced as well as hyper reduced

modelwas performed calculating themaximumvonMises stress andmaximumvonMises
strain in the vessel wall. Comparison with the corresponding FOM reference solution
revealed a very goodmatch between FOMand ROMkernel-density-estimated probability
distributions for the maximum von Mises stress and the maximum von Mises strain in
the aortic wall.
The proposed sampling algorithm led to appropriate dimensionally reduced (and hyper

reduced) models as a conclusion from numerical experiments. However, a certification in
terms of an upper bound for the error in the quantities of interest was not presented in this
work. Furthermore, motivated by practical reasoning, this paper investigated numerical
experiments on parametrizations in terms of two material and one geometric parameter.
Deviations from this setup need further validation. We did not include calcification and
did not distinguish between healthy and aneurysmatic sections of the simulated vessel
in terms of material behavior. These are two example features that would yield a more
realistic full-order model.
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