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Abstract

This paper proposes a new finite-element modelling of a recent layerwise model for
multilayered plates. This layerwise model is built from a specific 3D stress-field
expansion along the thickness direction and involves, in particular, interlaminar
transverse shear and out-of-plane stresses as generalized stresses. Its main feature is
that 3D equilibrium equations and free-edge boundary conditions are directly taken
into account into the stress-based construction of the model. A dual
displacement-based finite-element discretization is implemented using the FEniCS
software package and a remeshing strategy is proposed based on a novel error
indicator. The error indicator is built based on the 3D stress field directly deduced from
the layerwise generalized stresses and compared to a reconstructed stress field based
on the model generalized displacements. The proposed error indicator is shown to
identify the most critical parts of a laminate structure associated with complex 3D stress
fields such as boundaries or stress concentration/singularity regions (near free-edges or
delamination fronts). Through the combination of thickness discretization and in-plane
mesh refinement in regions of interest, the proposed framework therefore offers an
attractive alternative to 3D solid finite elements for an accurate prediction of stress
states in composite laminates.

Keywords: Multilayer, Layerwise model, Interlaminar stresses, Free-edge, Finite
element

Introduction
Multilayered plates have very interesting mechanical properties that make them widely
used in aerospace, automotive, telecommunication structures and civil engineering. A
multilayered plate is represented as a pile of homogenized anisotropic plies made of fiber-
reinforced composites. However, the highly anisotropic and heterogeneous nature of such
laminates, the prediction of their overall properties is a challenging task. One of the major
issues in design and analysis of such plates is related to free-edge effects. It has been proved
that the differences in the elastic properties of adjacent layers generally result in a highly
concentrated interlaminar stresses near free edges [1–5]. Many models were derived to
accurately capture these free-edge effects. Highly detailed three-dimensional (3D) finite-
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element models are computationally expensive and will only result in accurate stress
predictions for sufficiently refined meshes since they rely on displacement interpolations.
Two-dimensional plate models have therefore been introduced in order to simplify these
computations while trying to keep a sufficiently accurate description of local 3D stress
fields.
Equivalent single layer (ESL) models represent the laminate as an equivalent homo-

geneous plate. Many ESL models based on higher order theories have been proposed
in the literature [6–14] and are usually derived using two main approaches: asymptotic
approaches and axiomatic approaches. The first class derives the platemodel from the full
3D formulation of the problem, assuming the thickness of the plate goes to zero and using
asymptotic expansion in which the leading order leads to Kirchhoff-Love plate theory
[15]. The second approach is based on assuming a priori 3D fields, and the plate theory is
derived by integration through the thickness and variational tools [16–18]. Although ESL
models can provide acceptable results for the laminate global response, they may lead to
very inaccurate estimations of local response especially near free-edges.
Layerwise models, in which each layer is considered as an independent plate, have

therefore been proposed to improve the local stress representation [19–24]. Layerwise
models have been proved to a very good alternative to 3D models since interpolation
choices along the z-direction take into account the specificities of the laminate. The
interested reader can refer to [25,26] for a general overview of such models and to [27,28]
for a recent comparison between ESL, zig-zag and layerwise models.
Following the ideas of Pagano’smodel [29], a layerwisemodel named LS1was developed

in [30–40]. In thismodel, the laminate is considered as a superpositionofReissner-Mindlin
plates linked together by interfacial stresseswhich are considered as additional generalized
stresses. Themain difference between LS1models and othermodels is that LS1 is a stress-
based approach, while othermodels are either displacement ormixed stress/displacement
approaches.
However, the LS1 model presents some conceptual drawbacks since, for instance, 3D

stress-free boundary conditions cannot be exactly fulfilled. Second, the model is derived
by means of the Hellinger-Reissner mixed variational principle, so that there is no the-
oretical guarantee of the convergence to the 3D model as the number of mathematical
layers per physical layer increases. Generalizing upon the same ideas, a layerwise model
called statically compatible (SCLS1), was introduced in [41] in which the divergence of
the interlaminar transverse shear stresses is introduced as an additional generalized stress.
Doing so, the SCLS1 model produces 3D stress field satisfying the local 3D balance equa-
tions and boundary conditions provided that their 2D plate counterparts are satisfied.
The model can therefore be derived by means of the complementary potential energy
minimum principle ensuring the convergence of its refined version to the exact 3Dmodel
as the number of mathematical layers per physical layer increases. Aiming at providing
an operational tool for stress analysis in multilayered plates, this paper is concerned with
the development of a mesh adaptation strategy based on an error indicator built from the
local 3D stress field and a reconstructed 3D displacement field.
The paper is organized as follows: the SCLS1model equations and finite-element imple-

mentation are discussed in section . Section is dedicated the reconstruction of the 3D
displacement and to error indicator computation used in the mesh adaptation. Finally,
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section illustrate the method efficiency in capturing regions of interest in various config-
urations.

The SCLS1model
In this section, the equations of the SCLS1 model for elastic multilayered plates are
recalled. This model is derived from the 3D continuum equations by considering Stati-
cally Compatible Layerwise Stresses with first-ordermembrane stress approximations per
layer in the thickness direction. The generalized stresses of the proposed model are actu-
ally those of a Reissner-Mindlin plate per layer in addition to the inter-laminar shear and
normal stresses at the interfaces between layers and the divergences of these inter-laminar
shear stresses. The plate kinematics is then obtained through duality arguments.

Problem description and notations

We consider a linear elastic multilayered plate composed of n monoclinic elastic layers.
The plates occupies the 3D domain � = ω×]h−

1 , h
+
n [ where ω ⊂ R

2 is the middle surface
of the plate. In the following, x and y are the in-plane coordinates and z is the out-of-plane
coordinate. The following notations are introduced:

• The superscript i and j, j+1 indicates layer i and the interface between the layer j and
j + 1 with 1 ≤ i ≤ n and 1 ≤ j ≤ n − 1, respectively. By extension, the superscript
0,1 refers to the lower face ω− = ω × {h−

1 } and the superscript n, n + 1 refers to the
upper face ω+ = ω × {h+

n }.
• In each layer i, h−

i , h
+
i , and hi are, respectively, the bottom, the top and the mid-plane

z coordinate of the layer, and ei = h+
i −h−

i is the thickness. Hence we have h+
i = h−

i+1
for all 1 ≤ i ≤ n − 1. By convention, we set h+

0 = h−
1 and h−

n+1 = h+
n .

• Greek subscripts α,β , γ , . . . ∈ {1, 2} indicates the in-plane components.
• Latin subscripts k, l, m, n, . . . ∈ {1, 2, 3} indicates the 3D components.
• t [X] is the transpose of [X].
• (Si = (Siklmn)) is the fourth-order 3D compliance tensor of layer i with the minor

and major symmetries: Siklmn = Silkmn = Siklnm = Simnkl and it is positive definite. Its
inverse is the 3D elasticity stiffness tensor and is denoted by (Ci

klmn) for layer i. The
tensor (Ci

klmn) possesses the same symmetries as (Siklmn) and it is also positive definite.
• Si is monoclinic in direction z : Siαβγ 3 = Siα333 = 0
• σαβ (x, y, z) are the in-plane stress components, σα3(x, y, z) are the transverse shear

stresses and σ33(x, y, z) is the normal stress.
• εαβ (x, y, z) are the in-plane strain components, εα3(x, y, z) are the transverse strain

stresses and ε33(x, y, z) is the normal strain.
• uα(x, y, z) are the in-plane 3D displacement components, u3(x, y, z) is the normal 3D

displacement component.

The plate is loaded on its upper face ω+ and lower face ω− with the distributed surface
forcesT+ = (T+

k ) andT− = (T−
k ), respectively. The lateral boundary is decomposed into

two complementary parts: a free part ∂�T = ∂ωT×]h−
1 , h

+
n [ where T = (Tk ) = (σklnl) is

set to zero, and a restrained part ∂�u = ∂ωu×]h−
1 , h

+
n [ where the displacement u = (uk )

is set to zero. Here, the subsets ∂ωT and ∂ωu are the partition of ∂ω, and n = (nk ) is the
outer normal to ∂ωT .
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Equations of the 3Dmodel

The 3D elastic problem is to find in � a statically compatible stress field σ = (σkl), a
kinematically strain field ε = (εkl) which comply with the constitutive equation:

εkl(x, y, z) = Sklmn(z) : σmn(x, y, z) on �, (1)

where a stress field σ is said to be statically compatible if it complies with the equilibrium
equations:

σkl,l = 0 on �, (2)

and the stress conditions on the lower and the upper faces:

σk3 = −T−
k on ω−, σk3 = T+

k on ω+, (3)

and on the lateral boundary:

σklnl = 0 on ∂�T . (4)

A strain field ε is kinematically compatible if there exists a displacement field u = (uk )
complying with the displacement conditions on the lateral boundary:

uk = 0 on ∂�u, (5)

and such that :

εkl = 1
2
(uk,l + ul,k ) on �. (6)

The static of SCLS1 model

The SCLS1 model assumes the following form of the 3D stresses in layer i: for 1 ≤ i ≤ n,

σ 3D
αβ (x, y, z) = Ni

αβ (x, y)
Pi
0(z)
ei

+ 12
ei2

Mi
αβ (x, y)P

i
1(z) (7)

σ 3D
α3 (x, y, z) = Qi

α

Pi
0(z)
ei

+
(
τi,i+1

α (x, y) − τi−1,i
α (x, y)

)
Pi
1(z)

+
(
Qi

α(x, y) − ei

2

(
τi,i+1

α (x, y) + τi−1,i
α (x, y)

)) Pi
2(z)
ei

(8)

σ 3D
33 (x, y, z) =

(
1
2

(
νi,i+1(x, y) + νi−1,i(x, y)

)
+ ei

12

(
π i,i+1(x, y) − π i−1,i(x, y)

))
Pi
0(z)

+
(
6
5

(
νi,i+1(x, y) − νi−1,i(x, y)

)
+ ei

10

(
π i,i+1(x, y) + π i−1,i(x, y)

))
Pi
1(z)

+
(
ei

12

(
π i,i+1(x, y) − π i−1,i(x, y)

))
Pi
2(z)

+
(
ei

2

(
π i,i+1(x, y) + π i−1,i(x, y)

)
+

(
νi,i+1(x, y) − νi−1,i(x, y)

))
Pi
3(z)

(9)

where Pi
k , k = 0, 1, 2, 3, are the orthogonal Legendre-like polynomial basis defined on

layer i by: for h−
i ≤ z ≤ h+

i ,
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pi
0(z) = 1

Pi
1(z) = z − hi

ei

Pi
2(z) = −6

(
z − hi
ei

)2

+ 1
2

Pi
3(z) = −2

(
z − hi
ei

)3

+ 3
10

(
z − hi
ei

)

(10)

and where Ni
αβ ,M

i
αβ and Qi

α are, respectively the classical membrane forces, bending
moments and shear forces in layer i, and τ

j,j+1
α and ν j,j+1 are the transverse shear and

out-of-plane normal stresses at the interface j, j + 1. π j,j+1 is an additional variable whose
interpretation will appear later.

Equilibrium equations

The σ3D stress field will comply with 3D equilibrium equations (2), if and only if, the
following equations hold true for all (x, y) in ω and for all i = 1, . . . , n and j = 0, . . . , n :

Ni
αβ ,β + τi,i+1

α − τi−1,i
α = 0.

Mi
αβ ,β − Qi

α + ei

2
(τi,i+1

α + τi−1,i
α ) = 0.

Qi
β ,β + νi,i+1 − νi−1,i = 0.

τ
j,j+1
β ,β − π j,j+1 = 0.

(11)

The last equation gives the interpretation of π j,j+1 which is equal to the divergence of
the interlaminar shear stress vector τj,j+1 =

(
τ
j,j+1
α

)
. Now stress boundary conditions

also have to be enforced in addition to Eq. (11). The lateral boundary conditions σ 3D
ij nj =

0 on ∂�T are equivalent to the following equations for i = 1, . . . , n and j = 0, . . . , n :

Ni
αβnβ = 0, Mi

αβnβ = 0, Qi
αnα = 0, τ

j,j+1
α nα = 0, on ∂ωT . (12)

And the boundary conditions (3) on the upper an the lower faces write, respectively,
⎧⎪⎪⎨
⎪⎪⎩

τ0,11 (x, y) = −T−
1 (x, y),

τ0,12 (x, y) = −T−
2 (x, y),

ν0,1(x, y) = −T−
3 (x, y).

and

⎧⎪⎪⎨
⎪⎪⎩

τn,n+1
1 (x, y) = T+

1 (x, y),

τn,n+1
2 (x, y) = T+

2 (x, y),

νn,n+1(x, y) = T+
3 (x, y).

(13)

It should be noticed that the boundary conditions (12) and (13) cannot be simultaneously
verified unless T±

α nα = 0 on ∂ωT , which will be assumed in the sequel. Moreover, from
the last equations of (11) for j = 0 and j = n, we see that:

π0,1 = −T−
α,α and πn,n+1 = T+

α,α . (14)

Finally, the stress field σ3D is statically compatible when it complies with the generalized
equilibrium equations on ω: (11) for i = 1, . . . , n and j = 1, . . . , n − 1, (13) and (14), and
with the generalized stress free boundary conditions on ∂ωT : (12) for i = 1, . . . , n and j =
1, . . . , n − 1.
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Generalized displacements and strains

The SCLS1 generalized displacements are Ui
α(x, y), Ui

3(x, y),�i
α(x, y) and V j,j+1(x, y),

respectively the two in-plane displacements, the vertical displacement, the two bend-
ing rotations, and V j,j+1 is a kinematical variable having the dimension of an area. The
following expressions for i = 1, . . . , n and j = 1, . . . , n − 1 give the relation between the
generalized displacements and the 3D displacement field.

Ui
α(x, y) =

∫ h+
i

h−
i

Pi
0(z)
ei

uα(x, y, z)dz (15)

�i
α(x, y) =

∫ h+
i

h−
i

12
ei2

Pi
1(z)uα(x, y, z)dz (16)

Ui
3(x, y) =

∫ h+
i

h−
i

(
Pi
0(z)
ei

+ Pi
2(z)
ei

)
u3(x, y, z)dz (17)

Wi±(x, y) =
∫ h+

i

h−
i

(
Pi
1(z) ± Pi

2(z)
2

)
u3(x, y, z)dz (18)

and,

V j,j+1(x, y) = Wj
−(x, y) − Wj+1

+ (x, y) (19)

The generalized strains dual of the generalized stressesNi
αβ ,M

i
αβ , Qi

α , τ
j,j+1
α , νj,j+1,π j,j+1

for i = 1, . . . , n and j = 1, . . . , n− 1 are respectively expressed in terms of the generalized
displacements as:

εiαβ = 1
2

(
Ui

α,β + Ui
β ,α

)
,

χ i
αβ = 1

2

(
�i

α,β + �i
β ,α

)
,

γ i
α = �i

α + Ui
3,α ,

Dj,j+1
α = Uj+1

α − Uj
α − ej

2
�

j
α − ej+1

2
�i

α + V j,j+1
,α ,

Dj,j+1
ν = Uj+1

3 + Uj
3,

λj,j+1 = V j,j+1.

(20)

The SCLS1model constitutive equations

The constitutive equations of the SCLS1 model are derived using the stress energy asso-
ciated to σ3D. They are given by : for 1 ≤ i ≤ n and for 1 ≤ j ≤ n − 1

• Membrane constitutive equation of layer i:

εiαβ = 1
ei
Siαβγ δN

i
γ δ + Siαβ33

(
1
2

(
νi,i+1 + νi−1,i

)
+ ei

12

(
π i,i+1 − π i−1,i

))
.

• Bending constitutive equations of layer i:

χ i
αβ = 12

ei3
Siαβγ δM

i
γ δ + 1

ei
Siαβ33

(
6
5

(
νi,i+1 − νi−1,i

)
+ ei

10

(
π i,i+1 + π i−1,i

))
.
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• Transverse shear constitutive equation of layer i:

γ i
α = 24

5ei
Siα3β3Q

i
β − 2

5
Siα3β3(τ

i,i+1
β + τi−1,i

β .

• Shear constitutive equation of interface j, j + 1:

Dj,j+1
α = −2

5
Sjα3β3Q

j
β − 2

5
Sj+1
α3β3Q

j+1
β − 2

15
ejSjα3β3τ

j−1,j
β

+ 8
15

τ
j,j+1
β

(
ejSjα3β3 + ej+1Sj+1

α3β3

)
− 2

15
ej+1Sj+1

α3β3τ
j+1,j+2
β .

• Normal constitutive equation of interface j, j + 1:

Dj,j+1
ν = 9

70
ejSj3333ν

j−1,j + 13
35

(
ejSj3333 + ej+1Sj+1

3333

)
ν j,j+1

+ 9
70

ej+1Sj+1
3333ν

j+1,j+2 − 13
420

(
ej

)2
Sj3333π

j−1,j

+ 11
210

((
ej

)2
Sj3333 −

(
ej+1

)2
Sj+1
3333

)
π j,j+1

+ 13
420

(ej+1)2Sj+1
3333π

j+1,j+2 + 1
2
Sjαβ33N

j
αβ .

+1
2
Sj+1
αβ33N

j+1
αβ + 6

5ej
Sjαβ33M

j
αβ − 6

5ej+1 S
j+1
αβ33M

j+1
αβ .

• Constitutive equation for the π generalized stress at interface j, j + 1:

λj,j+1 = 1
105

(
Sj3333

(
ej

)3 +
(
ej+1

)3
Sj+1
3333

)
π j,j+1 − 1

140
Sj3333

(
ej

)3
π j−1,j

− 1
140

(
ej+1

)3
Sj+1
3333π

j+1,j+2 + 11
210

νj,j+1
((

ej
)2
Sj3333 −

(
ej+1

)2
Sj+1
3333

)

+ 13
420

(
ej

)2
Sj3333ν

j−1,j − 13
420

(
ej+1

)2
Sj+1
3333ν

j+1,j+2

+ ej

12
Sjαβ33N

j
αβ − ej+1

12
Sj+1
αβ33N

j+1
αβ + 1

10
Sjαβ33M

j
αβ + 1

10
Sj+1
αβ33N

j+1
αβ .

Finite element discretization

A finite-element discretization of the SCLS1 model has been proposed in [41] using the
MPFEAP in-house software described in [36]. In our numerical study, the SCLS1multilay-
ered platemodel has been implemented in the open-source finite element FEniCS package
[42,43]. The FEniCs Project is a collection of free and open-source software components
with the common goal to enable automated solutions of differential equations. The com-
ponents provide scientific computing tools for working with computational meshes, finite
element variational formulationsof ordinary andpartial differential equations, andnumer-
ical linear algebra.We therefore benefit from FEniCS high-level domain-specific language
for implementing the variational formulation associated with the SCLS1 model. Building
upon the FEniCS implementation of a Reissner-Mindlin plate model [44], we define a
generalized function space for the SCLS1 generalized displacement degrees of freedom.
More precisely, the retained discretization is based on a mesh of triangular elements

with quadratic interpolation for all kinematical variables. As is the case for classical FE
discretization of Reissner-Mindlin plate models, FE discretization of the SCLS1 model
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leads to shear-locking in the thin plate limit. Selective reduced integration is then used on
the shear part of the strain [44].

Comparison with other layerwise models

In [41], the SCLS1 model has been compared with the LS1 model and reference 3D com-
putations. This work showed that the SCLS1 model is as accurate as the LS1 model and
is even closer to refined 3D solutions near free edges since it can correctly satisfy stress-
free boundary conditions. Besides, an intensive comparison between the LS1 model and
other layerwise models derived of the Carrera Unified Formulation (CUF) family has been
performed in [45]. The main conclusion of this work was that the LS1 model exhibits a
similar accuracy to LM4 (mixed fourth-order) and LD3 (displacement third-order) layer-
wise models. This conclusion therefore also holds for the SCLS1 model considered here.
Moreover, in contrast to these models, LS1 and SCLS1 exhibit much fewer degrees of
freedom per node. For instance for a laminate with n = 4, LS1 has 20 (5n) dofs/node,
SCLS1 has 23 (6n − 1) whereas LD3 has 39 and LM4 has 102. One important feature of
LS1 and SCLS1 is that no assumption is made on the displacement variations through the
thickness but rather on the stress. Therefore, obtaining a complete 3D displacement field
must be performed by a post-processing procedure which we will now describe.

Mesh adaptivity based on field reconstructions
Although being much cheaper than LM4 or LD3 CUF models, the SCLS1 model is still
quite expensive due to its high number of degrees of freedom per node. It can be seen
as specific, mechanically-based, discretization in the z direction and can therefore be
compared to a 3D discretization with amore accurate representation of the stress fields in
the z direction. It becomes therefore beneficial to optimize the in-planemesh for improved
computational efficiency. The purpose of this section is to fulfil this goal by building an
error indicator for mesh adaptation.
We propose to define this indicator as follows: from the finite-element computed gen-

eralized displacements (Ui
α , Ui

3,�i
α , V j,j+1) fields in the (x, y)-plane, we first aim at recon-

structing a 3D displacement field û(x, y, z). We then derive the associated 3D strain and
stresses using the local constitutive equation. The so-obtained reconstructed stress field
σ̂ is then compared to the initial 3D stress σ3D obtained from the generalized stresses
(Ni

αβ ,M
i
αβ , Qi

α , τ
j,j+1
α , νj,j+1,π j,j+1) via Eqs. (7)–(9). See the illustration of the scheme in

Fig. 1.

Field reconstructions

In this subsection, we propose to reconstruct û by considering a continuous piecewise
linear variation of its components ûi along the z direction. This interpolation will have
to be as close as possible to satisfying Eqs. (15)–(19). Let us mention that we tried other
interpolations (in particular of higher-order) or reconstruction strategies but the latter
gave the most satisfying results.
Let us first consider the in-plane displacement field. We first build an auxiliary in-plane

displacement
(
udα

)
, with α = 1, 2, as follows:

udα(x, y, z) = ei�i
α(x, y)P1(z) + Ui

α(x, y), for z ∈ [h−
i , h

+
i ], and i = 1, . . . , n. (21)
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Fig. 1 The reconstruction scheme

udα is piecewise-linear and complies with Eqs. (15), (16) but is not continuous at the
interfaces. To achieve our initial goal, ûα is obtained by performing an L2-projection of
udα over piecewise linear continuous functions over z.
Now, we aim to find the reconstructed out-of-plane displacement û3 as a continuous

piecewise linear function of z which is compatible with the generalized displacements
Ui
3 and V j,j+1 in the sense of the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ h+
i

h−
i

(
Pi
0(z) + Pi

2(z)
ei

)
û3(x, y, z) = Ui

3(x, y),
∫ h+

i

h−
i

(
Pi
1(z) − Pi

2(z)
2

)
û3(x, y, z)

−
∫ h+

i+1

h−
i+1

(
Pi+1
1 (z) + Pi+1

2 (z)
2

)
û3(x, y, z) = V i,i+1(x, y)

(22)

Introducing a continuous piecewise linear interpolation for û3(x, y, z) of the following
form:

û3(x, y, z) =
n∑

j=0
qj,j+1(x, y)ϕj,j+1(z) (23)

where φj,j+1 are linear shape functions and qj,j+1 are the corresponding nodal values, the
above equations become:

[B][q] = [F3] (24)

where t [q] = (
q0,1, . . . , qn,n+1), [B] is a matrix of dimension (2n − 1, n + 1) and [F3]

a vector of dimension (2n − 1). The solution to the above problem is computed in the
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least-squares sense and gives a direct characterization of the degrees of freedom [q] as a
function of the generalized displacements Ui

3 and V i,i+1.
Finally, from the previously reconstructed 3D displacement field ûi, the strain field ε̂ is

computed using the 3D compatibility equations and then the reconstructed stress tensor
σ̂ is computed using the 3D constitutive equations.

Error indicator andmesh adaptation

The error indicator which will be used for mesh adaptation is then computed based on
the difference between σ3D and σ̂ in terms of elastic energy. This error is computed for
each triangular element:

Ee =
∫

�e
e
(
σ3D − σ̂

)
d� (25)

where e(σ) = 1
2σ : S : σ and �e denotes a given element e.

Each mesh element is then ordered in a decreasing fashion based on its error indicator
value: E1 > E2 > . . . > EN whereN is the total number of elements. We then tag the first
K elements which contribute to at least a fraction η of the total error Etot =

∑N

e=1
Ee:

K∑
e=1

Ee > ηEtot ≥
K−1∑
e=1

Ee (26)

The tagged elements are then automatically refined by FEniCS mesh adaptation proce-
dures.

Illustrative applications
In this section, we investigate different illustrative applications assessing the quality of
the stress field approximation, error indicator and mesh refinement strategy. The last
examples consider more practical situations arising when designing composite laminates,
namely stress concentrations near holes with associated free-edge singularities and inter-
facial stress singularities in the presence of interface delamination.

Homogeneous laminate

This first example considers a homogeneous square plate of length l = 1 and thickness
h = 0.2.Theconstitutivematerial is assumed tobe isotropicwithE = 10 GPa and ν = 0.3.
The plate is fully clamped on its boundary and subject to a uniform loading of intensity
q = 8. Calculations are performed considering a uniform discretization of n = 3 and n =
5 layers across the thickness and have been compared to finite-element computations
using 3D solid elements on a very fine mesh. The initial mesh was a structured mesh with
two triangular elements on each side of the square plate.
First the case with n = 3 layers is considered. As expected, the multilayered plate

solution is of very good quality near the plate center after only one refinement step as
shown in Fig. 2.
We therefore investigate the quality of the computed stress field at a point of coordinate

(x = 0.01, y = 0.5) near the left edge. In Fig. 3a, we compare the multilayered stress field
σ3D with its reconstruction as described in section at the same point near the edge. It
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a b

Fig. 2 Energy densities across the plate thickness computed for σ3D and σ̂ at the plate center (n = 3)

a

b c

Fig. 3 Energy densities across the plate thickness computed for σ3D and σ̂ at the plate edge for n = 3

can be observed that the reconstruction does not agree with σ3D for the initial coarse
mesh, indicating that mesh size should be refined in this region. Figure 3b, c illustrate
the evolution of σ3D and σ̂ near the border when refining the mesh. It can be seen that
mesh refinement provides a much better agreement between both stress fields. The error
indicator therefore correctly identifies regions located near the clamped boundaries as
the most critical regions as evidenced by the final mesh layout of Fig. 4a obtained after 6
refinement steps.
Performing the same comparison in the case when the plate thickness is discretized in

n = 5 layers shows the same behaviour (Fig. 5). Although σ3D and σ̂ are a little closer
for the initial coarse mesh, the deviation is still significant indicating that in-plane mesh



Salha et al. Adv. Model. and Simul. in Eng. Sci.            (2020) 7:2 Page 12 of 20

a b

Fig. 4 Final refined meshes for the homogeneous plate for different thickness discretization levels

a

b c

Fig. 5 Energy densities across the plate thickness computed for σ3D , σ̂ and σref at the plate edge for n = 5

resolution is not fine enough. The mesh refinement procedure yields a similar final mesh
layout, with fine cells concentrated along the borders (see Fig. 4b), and better agreement
between σ3D and σ̂ at the final stage. On both Figs. 3c and 5c, the reference solid FE
solution is also represented, showing a good agreement with the multilayered stress field
after mesh refinement.
The effect of mesh refinement is further illustrated when plotting the evolution of the

total relative error indicator in Fig. 6, defined as:
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Fig. 6 Total relative error evolution for 3 and 5 layers discretizations

Er = Etot
S

, with S =
∫

�

e(σ3D)d�.

It can be seen that the relative errors decrease when refining themesh and tend to stabilize
after a few iterations only. Besides, relative errors are larger for n = 3 than n = 5 which
may indicate that the mesh reconstruction if of higher quality for n = 5 layers than n = 3
layers. Let us point out that the value obtained for such errors cannot be considered
neither as a guaranteed level of error with respect to an exact solution nor as an upper
bound to the true error. It is however an error indicator, as showed by the previous results,
which can be used qualitatively to assess the solution accuracy.

Triple laminate

The second example considers a heterogeneous square plate of length l = 1 and total
thickness h = 0.2 made of a triple laminate consisting of a central core of thickness
e2 = 0.12 and two symmetric skins of thickness e1 = 0.04 each. The constitutive
materials are assumed to be isotropic with E = 50 GPa and ν = 0.2 for the skins and
E = 10 GPa and ν = 0.3 for the core. Loading and boundary conditions are the same as
for the homogeneous plate. Calculations are performed considering a discretization con-
sisting of one mathematical layer in both skins and in the core (total of n = 3 layers) and
a discretization consisting of one mathematical layer per skin and 3 layers for uniformly
discretizing the core thickness (total of n = 5 layers). Again the multilayered plate model
computations have been compared to reference 3D solid finite-element computations on
a fine mesh.
First, we considered the case with n = 3 layers. As before, the solution is of lesser

quality near the supports and stress fields are therefore compared at the same (x =
0.01, y = 0.5) location as before. Figure 7 shows the comparison of the stress field σ3D

with its reconstruction across the plate thickness for various mesh refinement steps. It
can be observed that σ3D and its reconstruction do not match for the initial coarse mesh,
indicating that the mesh size should be refined in this region. Mesh adaptation improves
the quality of the solution in such regions as evidenced by the good agreement with the
reference 3D FE solution.
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a

b c

Fig. 7 Energy densities across the plate thickness computed for σ3D and σ̂ at the plate edge for n = 3

Performing the same comparison using a more refined discretization with n = 5 layers
in the thickness exhibits a similar behaviour (Fig. 8). Although σ3D and σ̂ are a little closer
for the initial coarse mesh, the deviation is still significant indicating that in-plane mesh
resolution is not fine enough. A similar refined mesh layout is obtained with fine cells
concentrated along the borders (see Fig. 9), and better agreement between σ3D and σ̂ at
the final stage.
Finally, the evolutionof the total relative error indicator as a functionofmesh refinement

steps in Fig. 10 exhibits a similar behaviour as for the homogeneous plate.

Laminate with a circular hole

The third example considers a rectangular multilayered plate of length l = 6, width
w = 1 and total thickness h = 0.01. The plate is perforated by a circular hole of radius
R = 0.15 in its center (Fig. 11a). The laminate is made of a transversely isotropic mate-
rial of elastic properties ET = 14.48 GPa,EL = 137.9 GPa,νT = 0.21,νL = 0.21,μT =
5.86 GPa and μL = 5.86 GPa with L (resp. T ) denoting the fiber longitudinal direction
(resp. the perpendicular transverse direction). The laminate consists of 6 plies (one layer
per ply) with fibers oriented at [0◦, 90◦, 45◦,−45◦, 90◦, 0◦] with respect to the horizon-
tal direction. A tensile loading is applied to the plate through an imposed horizontal
displacement U i = ±Uex for all plies i = 1, . . . , 6.
Applying the proposed reconstruction and error estimation on this problem yields a

globally more refinedmesh with finer regions located near the top and bottom boundaries
of the circular hole, see Fig. 11b obtained after 4 refinement steps.
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a

b c

Fig. 8 Energy densities across the plate thickness computed for σ3D , σ̂ and σref at the plate edge for n = 5

a b

Fig. 9 Refined meshes for the triple laminate for different thickness discretization levels

More insight can also be gained at visualizing the individual layer contributions to the
total error. For instance, Fig. 12 plots the contribution of the 45◦ (layer 3) and−45◦ (layer
4) layers to the total error. These two contributions are the most dominant one as regards
stress concentrations near the hole. The effect of the material anisotropy on these two
contributions can also be clearly observed.
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Fig. 10 Total relative error evolution for 3 and 5 layers discretizations

a

b

Fig. 11 Mesh refinement for the plate with a circular hole

Double-Cantilever Beamwith delaminated interface

The final example we consider is that of a rectangular multilayered plate of the same
dimensions as before (without the circular hole) and the same lamination properties. We
model a portionof adelaminated interface located in themiddle interface ((i, i+1) = (3, 4))
in the region x ≤ 1 by forcing the interface stresses ν3,4 and τ 3,4α to be zero on this region.
This results in an appropriate modification of the constitutive equations of the SCLS1
model and the corresponding finite-element implementation.
The plate is clamped on its right boundary, and positive (resp. negative) vertical dis-

placements Ui
3 = +U (resp. Ui

3 = −U) are enforced on the left part for the top layers
i = 4, 5, 6 (resp. bottom layers i = 1, 2, 3), simulating a Double-Cantilever Beam test (see
Fig. 13).
As expected, the mesh adaptation procedure mainly concentrates the finer cells near

the delamination front at which interface stresses are the most singular, see Fig. 14.
The proposed procedure can therefore be considered to be coupled with a delamination
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Fig. 12 Error indicator maps in layers 3 and 4 (top and middle) and total error for all layers (bottom) on the
initial mesh

Fig. 13 The initial mesh for the DCB problem

propagation model for which stresses driving the delamination front propagation will be
well resolved.

Conclusions and perspectives
In this paper, a statically compatible layerwise stressmodel for laminated plates (SCLS1) is
considered for an accurate representation of 3D elastic fields. A mesh adaptation strategy
is then developed which relies on the reconstruction of 3D displacement fields from the
model generalized displacements, the error indicator being obtained by a constitutive
error between both fields. The obtained results indicate that:

• the error indicator is able to refine the mesh in regions with complex 3D stress fields
• these critical regions indeed correspond toplate edges, notches or delamination fronts
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Fig. 14 Top: out-of-plane interface stress σzz (z = 0) = ν3,4. Middle: final adapted mesh. Bottom: interface
shear stress σyz (z = 0) = τ

3,4
y

• the global error stagnates after a few mesh refinement steps and can serve as a con-
vergence indicator

• this adaptive method paves the way to further developments including interface
delamination propagation or damage at the ply level

The proposed methodology can be further improved by pointing out that refined lay-
erwise models such as the one considered here is appropriate in critical regions near
boundaries, free-edges, delaminated interfaces, etc. This point is indeed properly iden-
tified by the proposed remeshing procedure. In the bulk region away from these critical
zones, it would we sufficient to adopt an equivalent single-layer plate model based on
a Love-Kirchhoff kinematics for instance. Although the remeshing procedure favours
coarse cells in such regions, mitigating the number of unnecessary degrees of freedom,
an additional gain could then be obtained by mixing a layerwise model for critical regions
with an equivalent single-layer model for the remaining part.
A second potential line of work is concerned with the fact that, although the layerwise

model is built at the continuous level from a stress-based perspective complying with the
balance equations, its numerical resolution is performed through a displacement-based
approximation for the in-plane variations. As a consequence, the resulting generalized
stress fields, and therefore, the associated 3D stress field, do not satisfy strongly the balance
equations. Inorder tomaintain the initial philosophyof a stress-based statically compatible
construction, developing a stress-based finite-element discretization of the model would
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be an interesting approach, potentially paving the way to obtaining more rigorous error
estimators than the one considered here.
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