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Abstract

Multi-scale processes governed on each scale by separate principles for evolution or
equilibrium are coupled by matching the stored energy and dissipation in line with the
Hill-Mandel principle. We are interested in cementitious materials, and consider here
the macro- and meso-scale behaviour of such a material. The accurate representations
of stored energy and dissipation are essential for the depiction of irreversible material
behaviour, and here a Bayesian approach is used to match these quantities on different
scales. This is a probabilistic upscaling and as such allows to capture, among other
things, the loss of resolution due to scale coarsening, possible model errors, localisation
effects, and the geometric and material randomness of the meso-scale constituents in
the upscaling. On the coarser (macro) scale, optimal material parameters are estimated
probabilistically for certain possible behaviours from the class of generalised standard
material models by employing a nonlinear approximation of Bayes’s rule. To reduce the
overall computational cost, a model reduction of the meso-scale simulation is achieved
by combining unsupervised learning techniques based on a Bayesian copula
variational inference with functional approximation forms.
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Introduction
The predictive modelling of highly nonlinear and damaging material behaviour such as
occurs in cementitious-likematerials which are heterogeneous over a large range of scales
requires realistic mathematical models. As a detailed description on the desired macro-
scopic level is not computationally feasible for large-scale structures, some kind of multi-
scale approach is called for. In this paper simple prototypical models of macro- andmeso-
scale descriptions of cementitious materials will be considered. However, smaller scales
can be introduced as well in order to explicitly describe heterogeneities characterising the
material structure of aggregates, the mortar matrix, or the interfacial zone.
Conceptually, the prevalent computational methods to tackle multi-scale problems can

be classified into concurrent and non-concurrent approaches. Concurrent schemes con-
sider both the macro- and meso-scales during the course of the simulation e.g. the FE2

method [12,13], whereas the non-concurrent ones are based on a scale separation idea,
by which the desired quantity of interest (QoI), e.g. average stresses or strains, are esti-
mated given numerical experiments on a representative volume element (RVE), see [17]

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

0123456789().,–: volV

http://crossmark.crossref.org/dialog/?doi=10.1186/s40323-020-00185-y&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Matthies et al. Adv. Model. and Simul. in Eng. Sci.           (2020) 7:50 Page 2 of 35

for a recent overview on related techniques. Although the non-concurrent method has
proven to work very well for elastic properties, i.e. homogenisation especially under the
assumption of scale separation, problems appear when this is not satisfied, or the material
is loaded into a range where irreversible material changes occur under complex load-
ing paths, possibly with induced localisation effects, which are of crucial concern when
dealing withmaterial non-linearities such as plasticity and damage. In [22,41,44] a combi-
nation of concurrent and non-concurrent approaches is proposed. In case heterogeneity
is present over a larger range of scales, the so-called size-effect problem appears and has
to be resolved [9]. This is difficult to handle with standard local material models in the
FE2 method [12,13] as integration points loose any size information. In [22,36,37,44] this
problem is approached by considering the mesh in element approach (MIEL) [24,25,41],
inwhich themeso-scale structure is embedded in amacro-scale finite element. This allows
the precise transfer of size-information between the scales.
In this paperwe take theMIEL approach, and focus on the stochasticmultiscale problem

in which the meso-scale information is described by variations reflecting aleatoric uncer-
tainties describing the geometry, the spatial distribution and the material properties of
the individual meso-scale material constituents and their mutual interaction. The idea is
to design an appropriate stochastic macro-scale model and to estimate its corresponding
stochastic parameters such that the aleatoric meso-scale information is preserved.
In the literature stochastic homogenisation is usually performed on an ensemble of

RVEs in order to extract the relevant statistical QoI [32–35,52,53,58–60]. For example, in
[19,29], the moving-window approach is used to characterise the probabilistic uni-axial
compressive strength of random micro-structures. Another active direction of research
is to develop stochastic surrogate models for strain energy of random micro-structures
as in [6–8,57]. The main goal is to mitigate the effect of the curse of dimensionality
due to a large number of stochastic dimensions. With the rapid expansion of machine
learning and data driven techniques, the current trend is to train neural network based
approximate models [28,30,48,65,66] as a cheaper computational alternative in multi-
scale methods. Preserving mechanical invariance properties in such settings is a difficult
task, which is why energy and dissipation based scale transfer methods were proposed
[41]. Furthermore, to obtain a probabilistic description of macro-scale characteristic by
incorporating micro-scale measurements, Bayesian methods have been applied to such
problems with promising success, please see [5,14–16,26] for recent applications in the
formulation of high dimensional probabilistic inverse problems generally, and estimating
distribution of material parameters specifically. Moreover [11,27,50,54] demonstrate the
application of the Bayesian framework to multi-scale problems.
In this paper we assume that the stochastic macro-scale continuum model can be

described as a stochastic generalised standard material model [18,20,24], characterised
by the specification of the stored energy and the dissipation. By using physics based
principles and Bayesian inference, we employ these two thermodynamics functions as a
coupling constituent between the stochastic meso- and macro-scales as previously sug-
gested in [25,41,49–51] for one specific realisation of a representative volume element
(RVE). Hence, the stochastic stored energy and dissipation on the meso-scale are cap-
tured, and further used as measurements in the Bayesian estimation of the stochastic
macro-scale properties of the generalised model. In this regard, the focus of the paper is
two-fold: on one handwe suggest theBayesian approach for upscaling the uncertainmeso-
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scale information to the macro-scale, and on the other we suggest a novel approach for
reducing the dimension of the stochastic meso-scale measurement. By repeating exper-
iments on several RVEs we collect the meso-scale measurement samples, i.e. instances
of measurement data that represent aleatoric uncertainty. Furthermore, we assume that
the distribution of measurement uncertainty is not known, and search for the minimally
parametrized model that represents the stochastic meso-scale data via an unsupervised
learning algorithm. The goal is to represent the meso-scale measurement as a nonlinear
function of simpler independent random variables (e.g. Gaussian random variables), and
hence indirectly determine the distribution of themeso-scale data.Here this is achieved by
employing a copula based Bayesian variational inference on a generalised mixture model.
Once themeasurement data are quantifiedwe use them in a Bayesian upscaling procedure
to estimate the stochastic macro-scale properties.
The paper is organised as follows: a generalisedmodel problem is presented in “Abstract

model problem” section, and the research questions are discussed. “Bayesian upscaling of
random meso-structures” section describes a Bayesian framework for upscaling random
meso-scale information with a particular focus on the approximate posterior estimation.
From a computational point of view this is done through unsupervised learning. The
energy-like observations used to map the information between the scale is described in
concrete terms using an example material model in “Bayesian upscaling of randommeso-
structures” section and its algorithm performance is analysed on two different numerical
examples in “Numerical results” section. “Conclusion” section concludes the discussion
on the proposed approach.

Abstract model problem
Building on earlier work [22,25,41,47,49–51], a stochastic multi-scale formulation is
developed which allows stochastic upscaling in order to have simpler macro-scale mate-
rial models and thus save expensive meso-scale evaluations. We concentrate here on
isothermal and quasi-static but irreversible material behaviour at small strains. In the
linear (elastic) case when the meso- and macro-scale are well separated, homogenisation
approaches can be successfully used, in which themacro-scale properties such as the stiff-
ness matrix are evaluated, given the meso-scale structural response of a representative
material element. If the scale separation criterion is not satisfied, the upscaling becomes
more difficult. This is even more pronounced in the nonlinear and irreversible case, as
the upscaling of meso-scale information to the macro-scale is not as straightforward. The
so-called size-effect problem appears [9], as the size relation of meso-scale features to the
macro-scale has an influence on the macro-scale response. To overcome this issue, in this
paper the focus is put on the so-called the mesh in element approach (MIEL) [24,25,41],
in which the meso-scale structure is embedded in a macro-scale finite element.
As will become clear later, the meso-scale model actually does not have to be a contin-

uum model, e.g. [22,23], but for the macro-scale we assume a continuum model, which
obeys the usual quasi-static iso-thermal equilibrium equations

− div σ(u) = f in G, u = u0 on Γd ⊂ ∂G, σ · n = g on Γn ⊂ ∂G, (1)

plus appropriate essential boundary conditions u0 for the displacement u of the macro-
scale body on the Dirichlet boundary Γd ⊂ ∂G, where G ⊂ R

d is the domain occupied
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by said body, under volume load f and boundary tractions g on the Neumann boundary
Γn ⊂ ∂G, equilibrated by the Cauchy stress σ(u) in the body, which depends on the
displacement through constitutive relations, which we turn to next.
As this is to be a model for possibly more complex behaviour of the meso-scale, we

assume that themacro-scale continuummodel can be described as a generalised standard
material model [18,20,24]. These materials obey the maximum dissipation hypothesis,
and are thus in a sense optimal in fulfilling the requirements of the second law of thermo-
dynamics. They have the additional advantage that thesematerials are completely charac-
terised by the specification of two scalar functions, the stored energy resp. Helmholtz free
energy densityW , and the dissipation pseudo-potential density F . In our view this descrip-
tion is also a key for the connection with the meso-scale behaviour. No matter how the
physical and mathematical/computational description on the meso-scale has been cho-
sen, in all cases where the description is based on physical principles it will be possible to
define the stored (Helmholtz free) energy and the dissipation (entropy production). These
two thermodynamic functions will thus be employed as “measurements” resp. coupling
quantitites in the Bayesian inference used to identify the macro-scale model parameters
given the meso-scale response stored energy and dissipation. This approach is also a good
start for computational procedures (e.g. [10,24,40,55]), and has for some specific subset
of materials been given a fully variational formulation in a Hilbert space context [21].
This description has been subsequently extended tomuchmore general cases for the here
interesting case of rate-independent behaviour [43].
To summarise the generalised standard material model in a nutshell [18,20,24,40,42],

for an isothermal small-strain situationwith strain ε, from theClausius–Duhem inequality
it follows that the stress σ at some material point x ∈ G is

σ(x) = DεW (ε,w,Q, x), with ε(x) = ∇su(x), (2)

where ∇s is the symmetric part of the gradient, w are the internal phenomenological
variables [18,20,24,40,42] describing possibly irreversible changes in the material, Dε is
the partial derivativew.r.t. ε, the collectionQ of tensors of even order describes the specific
material (and has to be identified later), and ζ = −DwW (ε,w,Q) are “thermodynamic
forces” conjugate to the “thermodynamic fluxes” v := ẇ —the inner product 〈ζ, ẇ〉 is a
rate of (dissipated) energy.
The evolution of w—i.e. v = ẇ—is then [18,20,24,40,42] defined by the dissipation

pseudo-potential F through a variational inclusion:

ζ ∈ ∂vF (ε,w, ẇ,Q) ⇔ ẇ ∈ ∂ζF∗(ε,w, ζ,Q), (3)

where ∂vF is the subdifferential of F w.r.t v, which is by definition equivalent with the
variational inequalities

∀υ : F (ε,w,υ,Q) ≥ F (ε,w, ẇ,Q) + 〈ζ,υ − ẇ〉 (4)

⇔ ∀ξ : F∗(ε,w, ξ,Q) ≥ F∗(ε,w, ζ,Q) + 〈ξ − ζ, ẇ〉 ; (5)
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here F∗ is the Legendre–Fenchel dual of the dissipation potential F (ε,w, v,Q) w.r.t. v = ẇ,
where F is assumed as a convex and lower semi-continuous function w.r.t. that vari-
able. Convex analysis and variational inequalities enter, as for rate-independent material
behaviour—which we are interested in here—the dissipation pseudo-potential F cannot
be smooth [20,24,40,42,43], in fact it is positively homogeneous of the first degree in
v = ẇ; thus it is appropriate to use the subdifferential ∂v w.r.t. v = ẇ resp. ∂ζ w.r.t. ζ in
(3)—this is a concise form of writing a variational inequality. Specific forms of W and F
will be shown and used later.
In [21,43] it is shown how, by collecting the state variables u and w as fields

z(x) = (u(x),w(x)) ∈ ZM for the whole body as elements of a spaceZM = UM ×WM , the
relations Eq. (1)—with the help of Eq. (2)—andEq. (3)may be used to define a global energy
like functionWM—fromW in Eq. (2) and f , g in Eq. (1)—and a global dissipation like func-
tion FM from F in Eq. (3), which describe the equilibrium Eq. (1) and evolution Eq. (3)
of z globally. Let (ZM,WM, FM) be such an abstract structure of a general deterministic
rate-independent small-strain homogeneousmacro-model, inwhichZM denotes the state
space,WM : [0, T ] × ZM → R is a time-dependent energy-like functional which encom-
passes the loading, and FM : ZM × ZM → R+ is an in the second variable s = ż convex
and lower-semicontinuous dissipation pseudo-potential—i.e. ∀z ∈ ZM : s �→ FM(z, s)—
satisfying the homogeneity property ∀z, s ∈ ZM : FM(z, λs) = λFM(z, s) for all λ ≥ 0 for a
rate-independent system [20,21,40,42,43]—something inherited from the local function
F in Eq. (3). Then the evolution of the state z ∈ ZM of the macro-mechanical system
can be described mathematically in an abstract variational manner by the subdifferential
inclusion

z : [0, T ] → ZM : ∂sFM(z, ż) + δzWM(t, z) 
 0 (6)

in which δz stands for the Gâteaux derivative w.r.t. the state variable z ∈ ZM , and the
derivative of FM is given in terms of the set-valued subdifferential ∂sFM w.r.t. the second
variable s in the sense of the convex analysis, e.g. see [40,43]—see also Eqs. (4) and (5)
for reference. Furthermore, we assume that the rate-independent system in Eq. (6) is
parameterised by a field Q representing the global form of the variables Q in Eqs. (2) and
(3), i.e. the specificmaterial characteristics. Thismeans that the full list of arguments looks
like

WM = WM(t, z;Q); and FM = FM(z, s;Q).

Given the mathematical description of the macro-scale model in Eq. (6), the goal is to
find the unknown variables Q such that the structural response of the macro-scale model
matches the response of the meso-scale model as well as possible. As remarked before,
the meso-scale could be any kind of model with the ability to produce values for stored
and dissipated energy. Here, for testing purposes and to show how the procedure works,
we take as meso-scale structure a more detailed and spatially resolved description of the
macro-scale counterpart—one that accounts formaterial and geometrical heterogenety at
a lower-scale level, and hence represents the system that we can evaluate at possibly high
computational cost. The macro-scale model is hence one that has to represent equivalent
physical behaviour at amuchcoarser spatial resolution.Thus themeso-scalemathematical
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model is formally equal to Eq. (6), and reads

∂smFm(zm, żm) + δzmWm(t, zm) 
 0, (7)

and is subjected to equivalent outside actions—incorporated into Wm—as the one in
Eq. (6). As before we assume that there are meso-scale parameters Qm which describe
possibly different meso structures. Hence the full list of arguments for the meso-scale
energy and dissipation is

Wm = Wm(t, zm;Qm); and Fm = Fm(zm, sm;Qm).

As ZM �= Zm, the states zM and zm cannot be directly compared, and the two models
are to be compared by some observables or measurements y ∈ Y , where Y is typically
some vector space like Rm. In other words, let

ym = Ym(zm(Qm, fm)) + ε̂, (8)

be the meso-scale observable (e.g. energy, stress or strain etc.) in which Ym describes the
measurement operator, fm is the external excitation and ε̂ is a random variable which
represents the measurement noise. On the other side, let

yM = YM(Q, zM(Q, fM)) (9)

be the prediction of the same observation on the macro-scale level, this time described
by the measurement operator YM and the external excitation fM of the same type as
fm. To incorporate the possible model error and other discrepancies between the meso-
and macro-scale, we model yM as a noisy variant of YM . For this purpose we introduce
a probability space (Ωε ,Bε ,Pε)—Ωε is the space of elementary events or realisations,
Bε is the σ -algebra of measurable events, and Pε is the probability measure—and add
to YM(Q, zM(Q, fM)) the random variable ε(ωε) ∈ L2(Ωε ,Bε ,Pε) that best describes our
knowledge about those discrepancies. Hence, Eq. (9) becomes stochastic and reads

yM(ωε) = YM(Q, zM(Q, fM)) + ε(ωε). (10)

Typically, ε(ωε) is modelled as a zero-mean Gaussian random variable ε ∼ N (0, Cε) with
covarianceCε . However, othermodels for ε(ωε) can also be introducedwithoutmodifying
the general setting presented in this paper.
This is now the point to discuss different possibilities and choices for identification.

Recall that Bayesian identification (e.g. [38,39]) proceeds such that the unknown object
is considered as uncertain in an epistemic sense—an uncertainty of our knowledge—
and modelled as a random variable. New information about that object is then obtained
through some connected observation or measurement via conditioning, which hopefully
will reduce the epistemic uncertainty. Now, if different observations or measurements
come from a fixed specimen, or fixed computational model—fixed values of Qm in Eq. (7)
in our case—for different external actions, then it is not an unreasonable interpretation to
say what one “really” wants to know is a fixed value of Q, and the uncertainty introduced
in the Bayesian modelling is purely epistemic.
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Trying to achieve a theoretical description in a Bayesian framework, as now Q is to be
modelled as a randomvariable, one needs a stochastic version of the theory sketched so far.
Thismeans one needs a stochastic version of continuum thermodynamics [45], with a new
interpretation of equilibrium Eq. (1), and a stochastic generalised standard material with
re-interpreted Eqs. (2) and (3), see [51]. An early version of this for plasticity is [46]. This is
achieved by modelling Q as a random quantity due to epistemic uncertainty, and assume
that it is a randomvariable on the probability space (Ωu,Bu,Pu) for epistemic uncertainty,
for the sake of simplicity we assume that it has finite variance, Q ∈ L2(Ωu,Bu,Pu). As Q
is now a random quantity, the macro-scale Eq. (6) has to be interpreted stochastically, the
state becomes a stochastic quantity z : Ωu → ZM , and Eq. (6) is translated into [46]

∂sFM(z, ż;Q) + δzWM(t, z;Q) 
 0, (11)

where

WM(t, z;Q) = E (WM(t, z(ωu);Q(ωu)))Ωu ,

FM(z, y;Q) = E (FM(z(ωu), y(ωu);Q(ωu)))Ωu ,

the expectation being defined as E (W)Ωu := ∫
Ωu

W(ωu)P(dωu). The random solution
z(ωu) from Eq. (11) is the input to Eq. (10) to provide the prediction yM(ωu,ωε). This
leads to:

Problem 1 Find an epistemically uncertain Q(ωu) in Eq. (11)—a random variable on the
space Ωu —such that the predictions of Eq. (10) match those of Eq. (8) in a measurement
sense.

The upscaling process that is related to Problem 1 was already considered in [47,49–51],
and hence will not be repeated here. However, as we show later, this problem is a special
case of the upcoming Problem 2, which is the main topic of this paper.
This Problem 2 deals with the situation that different observations or measurements

come from a population of different RVE realisations, further called aleatoric uncertainty.
In our case observations come from different realisations of Qm in Eq. (7). In such a case
the natural approach would be to capture that randomness also in themacro-scale model,
i.e. we want to identify in the macro-scale model a random variable Q.
Thus we model Qm at each point as a random variable in L2(ΩQ,BQ ,PQ ;Qm), i.e. a

random field defined by the mapping

Qm(ωQ) := Qm(x,ωQ) : G × ΩQ �→ Qm, (12)

where Qm is the parameter space, which depends on the application. As a consequence,
the deterministic evolution problem in Eq. (7) also becomes uncertain, and Eq. (7) rewrites
to

∂smFm(zm, żm;Qm) + δzmWm(t, zm;Qm) 
 0 a.s., (13)

in which

Wm(t, zm;Qm) = E (Wm(t, zm(ωQ);Qm(ωQ)))ΩQ
,

Fm(zm, sm;Qm) = E (Fm(zm(ωQ), sm(ωQ);Qm(ωQ))ΩQ
,

respectively.
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The formal changes are now that the observation in Eq. (8) not only contains the noise
described by ε̂, but is a random quantity of an aleatoric nature, because so is Qm(ωQ) and
hence zm(ωQ). Hence, one has:

ym = Ym(zm(ωQ),Qm(ωQ), fm)) + ε̂. (14)

As we want to see the randomness from ΩQ reflected in Q on the macro-scale, these
quantities now have to become a random variable on the probability space Ωu × ΩQ, and
hence so does the Eq. (11), with the change where

WM(t, z;Q) = E (WM(t, z(ωu,ωQ);Q(ωu,ωQ)))Ωu×ΩQ
,

FM(z, s;Q) = E (FM(z(ωu,ωQ), s(ωu,ωQ);Q(ωu,ωQ)))Ωu×ΩQ
,

i.e. the expected values are now on the space Ωu × ΩQ.
The prediction of the observation Eq. (10) has now to be interpreted in this way too, it

contains also the aleatoric randomness from ΩQ. With this re-interpretation of Eq. (10),
this in turn modifies Problem 1 into

Problem 2 Find an epistemically uncertain random (aleatoric) variable QM(ωQ) in
Eq. (11)—a random variable defined on the space Ωu × ΩQ—such that the re-interpreted
predictions of Eq. (10)match those of Eq. (14) in a measurement sense.

The designation of epistemic and aleatoric uncertainty is a kind of interpretation,
mathematically Ωu and ΩQ are just probability spaces. Once such an object like Q

is identified in a Bayesian framework, it does usually not really matter what caused
the uncertainty described in a probabilistic sense. Thus, for the sake of simplicity, in
the following we shall take on the macro scale just one probability space (Ω ,B,P) for
the description of the uncertainty, where one might think of ω ∈ Ω as a realisation
ω = (ωu,ωQ) ∈ Ωu × ΩQ = Ω , i.e. the product of those two probability spaces.

Bayesian upscaling of randommeso-structures
The goal is to identify the quantity Q defined on Ω conditioned on the observation ym
using Bayes’s rule. As some or all of the components of Q may be required to be positive
definite—as is often the case for material quantities—, this constraint has to be taken into
consideration. In our case all components of Q have to fulfil that requirement. In most
updating methods it is advantageous if the quantities to be identified have no constraints.
We shall explain how to achieve this by considering a scalar component Q of Q. The
first is to scale Q by a reference Q0 to obtain a dimensionless quantity, and consider
now q := log(Q/Q0). As numerically log(Q/Q0) = logQ − logQ0, it is convenient to
choose Q0 such that Q0 = 1 in the units used, and hence numerically logQ0 = 0 and
q := logQ. Henceforth we assume that this has been done. The variable q now has no
constraints, it is a free variable on all of R. This procedure may be extended to all even
order positive tensors, but will only be needed for scalars here. So instead of identifying
the collection Q directly, we identify the logarithms of its components giving in this way a
collectionqwherewewrite symbolicallyq = logQ, as in thiswaywhatever approximations
or linear operations are performed computationally on the numerical representation of
q(x,ω), in the end exp(q(x,ω)) is always going to be positive. This also gives the right kind
of mean—the geometric mean—for positive quantities. The underlying reason is that
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the multiplicative group of positive real numbers—a (commutative) one-dimensional Lie
group—is thereby put into correspondence with the additive group of reals, which also
represents the (one-dimensional) tangent vector space at the group unit, the number one.
This is the corresponding Lie algebra. A positive quadratic form on the Lie algebra—in
one dimension necessarily proportional to Euclidean distance squared—can thereby be
carried to a Riemannian metric on the Lie group. A similar argument holds for positive
tensors of any even order.
Therefore, instead of Problem 2, we consider its modified version:

Problem 3 Find a random variable q := logQ : Ω → Q for Q = exp q in Eq. (11), such
that the re-interpreted predictions of Eq. (10) match those of Eq. (14) in a measurement
sense.

Bayesian updating is in essence a probabilistic conditioning, the foundation of which
is the conditional expectation operator [4]. Here we are interested in the case where
the conditioning occurs w.r.t. another random variable, namely y(q(ω)), which depends
on the quantity q to be updated. For any function ϕ : Q → F of finite variance of q,
the conditional expectation of it is defined [4] by the projection onto a closed subspace
Cϕ ⊂ L2, which is in simple terms the L2-closure of all multivariate polynomials in the
components of y with coefficients from the vector space F , i.e.

Cϕ := cl {p(y(q)) | p(y(q)) =
∑

α

f αVα(y(q))}. (15)

where f α ∈ F and the Vα are real-valued multivariate polynomials in y = (y1, . . . , yj , . . . ),
which means that for a multi-index α = (α1,α2, . . . ) the polynomial Vα is of degree αj in
the variable yj . It turns out [4] that Cϕ contains all measurable functions g : Y → F so
that g(y(q(ω))) is of finite variance.
Here we will be only interested in the function ϕ(q) = q, i.e. the conditional mean of

q. To compute it, one may use the variational characterisation and compute the minimal
distance from the subspace C := Cq to the point q:

φ(y(q)) := E (q | y) := PCq = arg min
φ̂∈C

E

(∥
∥q − φ̂(y(q))

∥
∥2

)
. (16)

In this section, the expectation operators are to be understood as acting only on the
variables which describe the uncertainty in the estimation, i.e. in the notation of “Abstract
model problem” section only on the variables from Ωu. One may observe from Eq. (16)
that φ is the best “inverse” of y(q) in a least square sense, the orthogonal projection PCq of
q onto C. Following Eq. (16), onemay decompose the random variable q into the projected
component qp ∈ C and the orthogonal residual qr ∈ C⊥, such that

q = qp + qr = PCq + (I − PC)q = φ(y(q)) + (q − φ(y(q))) (17)

holds. Here, qp = PCq = E (q | y) = φ(y(q)) is the orthogonal projection onto the sub-
space C of all random variables consistent with the data, whereas qr := (I − Pσ (y))q is its
orthogonal residual.
This can be used to build a filter—filtering the observation ym together with the prior

forecast qf—which is optimal in this least square sense [38,39] and returns an assimilated
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random variable qa which has the correct conditional expectation. The first term in the
sum in Eq. (17) is taken to be the conditional expectation given the observation ym, i.e.
φ(ym) = E

(
qf | ym

)
, whereas (qf − φ(y(qf ))) is the residual component. Following this,

Eq. (17) can be recast to obtain the update qa for the prior random variable qf as

qa = qf + φ(ym) − φ(yM(qf )), (18)

in which yM(qf ) (see Eq. (10)) is the random variable representing our prior predic-
tion/forecast of the measurement data, and qa is the assimilated random variable. By
recalling φ(y(qf )) = PCqf , one sees immediately that E (qa | ym) = E

(
qf | ym

)
, and the

assimilated random variable qa has the correct conditional expectation. As in engineering
practice one is often not interested in estimating the full posteriormeasure, and the condi-
tional expectation is themost important characterisation, wewill use this computationally
simpler procedure.
Therefore, to estimate qa one requires only information on the map φ in Eq. (18).

To make the determination of this map computationally feasible, and for the sake of
simplicity, the map φ in Eq. (18) can be approximated by a n-th order polynomial—i.e.
the minimisation in Eq. (16) is not over all measurable maps, but only over n-th order
polynomials—such that the map φ in Eq. (18) becomes

φn(y;β) =
∑

α

K (α)Vα(y) (19)

with characterising coefficients β = {K (α)}α , K (α) ∈ Q, multi-indices α := (α1, . . . ) with
∀j : 0 ≤ αj ≤ n, and multivariate polynomials Vα as before in Eq. (15). In the affine case,
when n = 1 and φ1(y;β) = Ky + b in the previous formula Eq. (19), the Eq. (18) reduces
to the Gauss-Markov-Kalman filter [38,39]:

qa = qf + K (ym − yM(qf )), (20)

a generalisation of the well known Kalman filter.
In order to estimate the macro-scale properties using Eq. (18), one requires both ym and

yM , preferably in the functional approximation form. Note that yM is the prediction of
the measurement data on the macro-scale level, and is obtained by propagating the prior
knowledge qf (here a spatially homogeneous quantity) through the macro-scale model.
In this paper we use Bayesian regression —not related to the Bayesian updating—to esti-
mate the functional approximation of yM(qf ), as will be presented in “Approximating the
macro-scale response by Bayesian regression” section. On the other hand, ym represents
the response of the high-dimensional meso-scale model in which meso-scale properties
qm are heterogeneous and uncertain. By modelling qm one may estimate ym in a similar
manner as yM , see the first case scenario in Fig. 1. However, due to the high-dimensionality
of the input qm, and the nonlinearity of the meso-scale model, a straightforward uncer-
tainty quantification of ym is often not computationally affordable. The estimate would
require too many data points as thousands of input parameters can easily be involved in
the description of the meso-scale properties. Therefore, we use an unsupervised learning
algorithm to reduce the stochastic dimension of the meso-scale measurement, as further
described in “Approximation of the meso-scale observation by unsupervised learning”
section.
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Approximating the macro-scale response by Bayesian regression

The measurement prediction yM is approximated by a surrogate model

ŷM = φM(qf ;β) (21)

in which φM is usually taken to be nonlinear map of qf ∈ L2(Ωu,Bu,Pu) with the coeffi-
cients β . Furthermore, we assume that yM is in general only known as a set of samples,
and our goal is to match ŷM with yM . Let x := (qf (ωi), yM(ωi))Ni=1 be the full set of N data
samples describing the forward propagation of qf to yM via macro-scale model. In order
to specify ŷM the only thing we need to find are the coefficients of the map φf . Therefore,
we infer β given data x using Bayes’s rule

p(β|x) = p(x,β)
∫
p(x,β) dβ

(22)

In general case the marginalisation in Eq. (22) can be expensive, and therefore in this
paper we use the variational Bayesian inference instead [31]. The idea is to introduce a
family D := {g(β) := g(β|λ, w)} over β indexed by a set of free parameters (w, λ) such
that ŷM ∼ yM . Thus, the idea is to optimise the parameter values by minimising the
Kullback-Leibler divergence

g∗(β) = arg min
g(β)∈D

DKL(g(β)||p(β|x)) = arg min
g(β)∈D

∫
g(β) log

g(β)
p(β|x) dβ . (23)

After few derivation steps as depicted in [31], the previous minimisation problem reduces
to

β∗ = arg maxL(g(β)) := Eg (log p(x,β)) − Eg (log g(β)) (24)

in which L(g) is the evidence lower bound (ELBO), or variational free energy. To obtain a
closed-form solution for β∗, the usual practice is to assume that both the posterior p(β|x)
as well as its approximation g(β) can be factorised in a mean sense, i.e.

p(β|x) =
∏

pi(βi|x), g(β) =
∏

gi(βi) (25)

in which each factor pi(βi|x), gi(βi) is independent and belongs to an exponential family.
Similarly, their complete conditionals given all other variables and observations are also
assumed to belong to exponential families, and are assumed to be independent. Obviously
these assumptions lead to conjugacy relationships, and closed form solution of Eq. (24) as
further discussed in more detail in [31].
To approximate yM(ω), we take Eq. (21) to be described in a form of a polynomial

chaos expansion (PCE) or generalised PCE (gPCE) [67]. In other words, yM(ω) and qf (ω)
are taken to be functions of known RVs {θ1(ω), . . . , θn(ω), . . . }. Often, when for example
stochastic processes or random fields are involved, one has to deal here with infinitely
many RVs, which for an actual computation have to be truncated to a finite vector
θ(ω) = [θ1(ω), . . . , θL(ω)] ∈ Θ ∼= R

L of significant RVs. We shall assume that these have
been chosen such as to be independent, and often even normalised Gaussian and inde-
pendent. The reason to not use qf directly is that in the process of identification of q they
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may turn out to be correlated, whereas θ can stay independent as they are. Thus a RV
yM(θ) is replaced by a functional approximation

yM(θ) =
∑

α∈JZ

y(α)M Ψα(θ), (26)

and analogously qf by

qf (θ) =
∑

α∈JZ

q(α)f Ψα(θ) (27)

in which the multi-index α = (. . . ,αk , . . . ), and the set JZ of multi-indices is a finite set
with cardinality (size) Z.
The coefficients q(α)f , y(α)M , e.g. v := {y(α)M }α∈JZ , are estimated by minimising the ELBO

analogous to the one in Eq. (24) by using the variational relevance vector machinemethod
[3]. Namely, themeasurement forecast ys := {yM(θj)}Nj=1 can be rewritten in a vector form
as

ys = vΨ (28)

in which Ψ is the matrix of collection of basis functions Ψα(θ) evaluated at the set of
sample points {θj}Ni=1. However, the expression in the previous equation is not complete,
as the PCE in Eq. (26) is truncated. This implies the presence of the modelling errors.
Under a Gaussian assumption, the data then can be modelled as

p(ys) ∼ N (vΨ , ς−1I ) (29)

in which ς ∼ Γ (aς , bς ) denotes the imprecision parameter, here assumed to follow
Gamma distribution. The coefficients v are given a normal distribution under the inde-
pendency assumption:

p(v|a) ∼
Z∏

i=0
N (0, ζ−1

i ) (30)

inwhichZ denotes the cardinality of thePCE, and ζ := {ζi} is a vector of hyper-parameters.
To promote for sparsity, the vector of hyper-parameters is further assumed to follow
Gamma distribution

p(ζi) ∼ Γ (ai, bi) (31)

under the independency assumption. In this manner the posterior for β := {v, ζ, ς), i.e.
p(β|ys), can be approximated by a variational mean field form

g(β) = gv(v)gζ (ζ)gς (ς), (32)

the factors of which are chosen to take same distribution type as the corresponding prior
due to the conjugacy reasons. Once this assumption is made, one may maximise the
corresponding ELBO in order to estimate the parameter set.
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Finally, we have everything to describe the macro-scale response yM , and therefore we
may fill this term in the filtering equation as presented in Eq. (18) to obtain:

qa =
∑

α∈J
q(α)f Ψα(θ) + φn(ym) − φn

(
∑

α∈J
y(α)M Ψα(θ)

)

(33)

Note that Eq. (33) is not yet fully computationally operational, the RV ym has to be put into
a computationally accessible form. This is considered in the following “Approximation of
the meso-scale observation by unsupervised learning” section.

Approximation of the meso-scale observation by unsupervised learning

Let the measurement ym be approximated by

ym = φm(w, η) (34)

in which φm is an analytical function (e.g. a Gaussian mixture model, a neural network,
etc.) parameterised by global variables/parametersw describing thewhole data set, and the
latent local/hidden variables η that describe each data point. An example is the generalised
mixture model in which parameters w include statistics of individual components, and
the mixture weights, whereas the hidden variable η stands for the indicator variable that
describes the membership of data points to the mixture components. The goal is to
estimate the pair β := (w, η) given data yd := {ym(ω̂i)}, i = 1, ..,M with the help of Bayes’s
rule. Note that we do not take full set of the input–output data (qm(ω̂i), ym(ω̂i)) with qm
defined on (ΩQ,BQ ,PQ), but only its incomplete version generated only by the output
yd := {ym(ω̂i)}, i = 1, ..,M. Following this, the coefficients of ym can be estimated as

p(β|yd) = p(yd,β)∫
p(yd,β) dβ

. (35)

The previous equation is more general than Eq. (25), and hence includes the problem
described in “Approximating the macro-scale response by Bayesian regression” section
as a special case. The main reason is that next to the coefficients w we also need to
estimate the argument η such that the functional approximation in Eq. (34) is minimally
parametrised.
Following theory in “Approximating the macro-scale response by Bayesian regression”

section, Eq. (35) is reformulated to the computationally simpler variational inference
problem. In other words, we introduce a family of density functions D := {g(β) :=
g(β|λ,� )} overβ indexed by a set of free parameters (� , λ) that approximate the posterior
density p(β|yd), and further optimise the variational parameter values by minimising the
Kullback–Leibler divergence between the approximation g(β) and the exact posterior
p(β|yd). Hence, following Eq. (24), we maximise the ELBO

L(g) = Eg(β)(log p(yd,β)) − Eg(β)(log g(β)))) (36)

by using the mean-field factorisation assumption, and conjugacy relationships. The opti-
misation problem attains a closed form solution in which the lower bound is iteratively
optimised with respect to the global parameters keeping the local parameters fixed, and
in the second step the local parameters are updated and the global parameters are held
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fixed. The algorithm can be improved by considering the stochastic optimisation in which
a noisy estimate of the gradient is used instead of the natural one.
The mean field factorisation as presented previously is computationally simple, but not

accurate. For example, one cannot assume independence between the stored energy and
dissipation coming from the same experiment. In other words, the correlation among the
latent variables is not explored. As a result, the covariance of the measurement will be
underestimated. To allow dependence in the factorisation, onemay extend themean-field
approach via copula factorisations [63,64]:

g(β) = c(F1(β1), ..., Fm(βm),χ )
m∏

i=1
gi(βi) (37)

in which c(F1(β1), ..., Fm(βm),χ ) is the representative of a copula family, Fi(βi) is the
marginal cumulative distribution function of the random variable βi, and χ is the set
of parameters describing the copula family. Similarly, gi(βi) represent the independent
marginal densities. In this manner any distribution type can be represented by a formula-
tion as given in Eq. (37) according to Sklar’s theorem [56].
Following Eq. (37), the goal is to find g(β) such that the Kullback-Leibler divergence to

the exact posterior distribution is minimised. Note that if the true posterior is described
by

p(β|yd) = ct (F1(β1), ..., Fm(βm),χt )
m∏

i=1
fi(βi), (38)

then the Kullback-Leibler divergence reads:

DKL(g(β)||p(β|ym) = DKL(c||ct ) +
m∑

i=1
DKL(gi(βi)||fi(βi)), (39)

and contains one additional term compared to the mean field approximation. When the
copula is uniform, the previous equation reduces to themean field one, and hence only the
second term is minimised. On the other hand, if the mean field factorisation is not a good
assumption and the dependence relations are neglected, then the total approximation
error will be dominated by the first term. To avoid this, the ELBO derived in Eq. (36)
modifies to

L(g) = Eg(β)(log p(ym,β)) − log g(β ,χ ) (40)

and is a function of parameters of the latent variables β , as well as of the copula parameters
χ . Therefore, the algorithm applied here consists of iteratively finding the parameters of
the mean field approximation, as well as those of the copula. The algorithm is adopted
from [63], and is a black-box algorithm as it only depends on the likelihood p(ym,β) and
copula description in a vine form. Note that when the copula is equal to identity, i.e.
uniform, the previous factorisation collapses to the mean field one.
Once the copula dependence structure is found, the measurement data ym are repre-

sented in a functional form—here taken as generalised mixture model—as in Eq. (34),
which is different than the polynomial chaos representation. In other words, the mea-
surement is given in terms of dependent random variables, and not independent ones.
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Therefore, the dependence structure has to be mapped to an independent one. In a Gaus-
sian copula case, the Nataf transformation can be used, and otherwise the Rosenblatt
transformation is applied. For high-dimensional copulas, such as a regular vine copula,
[1] provides algorithms to compute the Rosenblatt transform and its inverse. The result of
the transformation are mutually independent and marginally uniformly distributed ran-
dom variables, which further can be mapped to Gaussian ones or other types of standard
randomvariables viamarginals [62]. Let the functional approximationof themeasurement
be given as

ym(ξ) ≈
∑

α∈Jm

y(α)m Gα(ξ) (41)

in whichJm is a multi-index set, andGα(ξ) is a set of functions (e.g. orthogonal polynomi-
als) with random variables ξ as arguments.With this, we have obtained the measurement
ym in a minimised functional approximation form, which further can be plugged into
Eq. (33) to obtain the final filter discretisation. By combining the random variables θ and
ξ, one may re-write Eq. (33) in the following form

∑

α∈Ja

q(α)a Hα(θ, ξ) =
∑

α∈J
q(α)f Hα(θ, ξ)+φn

⎛

⎝
∑

α∈Jm

y(α)m Hα(θ, ξ)

⎞

⎠−φn

⎛

⎝
∑

α∈J
y(α)M Hα(θ, ξ)

⎞

⎠

(42)

in which Hα is a generalised polynomial chaos expansion with random variables (θ, ξ) as
arguments. Note that the coefficients q(α)f , as well as y(α)M and y(α)m , are sparse as they only
depend on θ or ξ, respectively. As θ describes the a priori (epistemic) uncertainty, onemay
take the mathematical expectation of the previous equation w.r.t. θ to obtain the natural
(aleatoric) variability of the macro-scale parameters:

∑

α∈Jm

q(α)a Gα(ξ) = Eθ

⎛

⎝
∑

α∈Ja

q(α)a Hα(θ, ξ)

⎞

⎠

= φn

⎛

⎝
∑

α∈Jm

y(α)m Γα(ξ)

⎞

⎠ + Eθ

(
∑

α∈J
q(α)f Ψα(θ) − φn

(
∑

α∈J
y(α)M Ψα(θ)

))

. (43)

In general, the approximation of the meso-scale information as previously described can
be cubersome due to high nonlinearity and time-dependence of ym. Therefore, instead
of approximating ym in a form as in Eq. (34), one may discretise ym in a Monte Carlo
sampling manner such that Eq. (33) rewrites to ∀ω̂i : i = 1, . . . ,M

q(i)a (θ) :=
∑

α∈J
q(α)i Ψα(θ) =

∑

α∈J
q(α)f Ψα(θ) + φn(ym(ω̂i)) − φn

(
∑

α∈J
y(α)M Ψα(θ)

)

. (44)

In other words we repeat the update formula M times for each instance of the measure-
ment ym, and thus obtainM posteriors q(i)a , i = 1, . . . ,M that depend only on the epistemic
uncertainty embodied in θ. By averaging over θ one obtains a set of samples:

∀ωi : q̄i = Eθ(q(i)a (θ)), i = 1, . . . ,M, (45)
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i.e. the data which are to be used for the estimation of the functional approximation form
of the macro-scale parameter qM similar to Eq. (34). To achieve this, we search for an
approximation

qM = ϕq(wq, ηq) (46)

given the incomplete data set qd := (q̄i)ni=1. Here, wq and ηq have same meaning as in
Eq. (34), and therefore can be estimated by using same unsupervised algorithm as pre-
viously described. This approach is computationally more convenient, as the correlation
structure between the material parameters is easier to learn than the one between mea-
surement data on the meso-scale.
For better clarity, we re-capitulate the upscaling procedure in Fig. 1 for comparison

reasons. In Fig. 1a) is shown the direct computational approach in which Eq. (42) is used
with ym being approximated in same manner as yM by supervised Bayesian regression
described in “Approximating the macro-scale response by Bayesian regression” section.
Due to a high computational footprint, this approach is not considered in this paper,
for more information please see [47]. The upscaling approach presented in Eq. (42), in
which ym is approximated by Eq. (34) via an unsupervised learning algorithm, is further
depicted in Fig. 1b. Here one first uses the Bayesian unsupervised learning algorithm
to learn the distribution of the meso-scale measurement, and later a Bayesian upscaling
procedure to estimate the macro-scale parameters. Finally, the upscaling approach given
by Eqs. (44) and (46) is shown in Fig. 1c. In this approach one first uses a Bayesian
upscaling procedure and estimates the macro-scale parameter sample-wise, after which
the Bayesian unsupervised learning algorithm is used to approximate the distribution of
the macro-scale parameters. The choice of algorithm depends on the application and
dimensionality, as well as on the nonlinearity of the meso-scale model.

Bayesian upscaling via energy considerations
As an example of the abstract model in “Abstract model problem” section in Eqs. (2) and
(3), we choose a prototypical version of the compressive behaviour of a cementitious-like
material, one which displays in its irreversible behaviour both a “softening” component,
as well as an “hardening” component, and therefore interaction with the Helmholtz free
energy, to test the merits of the identification algorithm on such behaviour. It is a sim-
ple version of a coupled elasto-damage model introduced in [24] (Sect. 3.5.2), in which
the state variable z = (u, w) from Eq. (6) is locally at some point x ∈ G in the body
z(x) = (u(x),w(x)) ∈ ZM = UM × WM , giving the local resulting strain ε(x) = ∇su(x), as
well as the internal variables w = (D, ς ). Here D ∈ [1,∞[ is a damage variable which will
modify the stiffness through the elasticity tensor, and ς is a scalar hardening variable.
Observe that often D̃ = (1− 1/D) is regarded as the “real damage”, as D̃ = 0 corresponds
to virgin or undamagedmaterial, and D̃ = 1 corresponds to totally damagedmaterial. For
the elastic part, we choose to identify an isotropic material, as the meso-model descrip-
tion is stochastically isotropic. Splitting the strain in its volumetric vol ε = (tr ε/3)I and
deviatoric part dev ε = ε − vol ε, the elastic relations may be written in the isotropic case
(e.g. [24]) as

σ = 3κ
D

vol ε + 2μ dev ε = C(D) : ε,
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Fig. 1 Stochastic multi-scale analysis

where κ is the bulk modulus and μ the shear modulus, in total describing a damage
depended elasticity tensor C(D), the damage only acting on the bulk response.
For undamaged material the damage variable is D = 1, and as it grows D → ∞, the

bulk response weakens.
The local stored energy is given by

W (ε,w, κ) = 1
2
ε : C(D) : ε + 1

2
ςKdς = 3κ

2D
(vol ε : vol ε) + μ(dev ε : dev ε) + Kd

2
ς2,

(47)

with the components of the characterising parameter vector Q = (κ ,μ, σf , Kd), where Kd
is a hardening modulus for the scalar internal variable ς for hardening, and σf is a failure
stress, used in the failure criterion, where we choose one of crushing damage—as it may
occur e.g. for cementitious material [24] (Sect. 3.5.2)—with failure function

fd(tr σ,χd) = 〈− tr σ〉 − (σf − χd), (48)
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where 〈x〉 = 1/2(x + |x|) is the Macauley bracket, and χd = −Kdς , the thermo-
dynamic force corresponding to hardening. The elastic domain is fd(tr σ,χd) ≤ 0, i.e.
damage occurs when the pressure satisfies p = − tr σ ≥ σf + Kdς . The internal vari-
ables are w = (D, ς ). The Legendre-Fenchel dual F∗ of the dissipation pseudo-potential
F (ε,w, ẇ,Q) — the indicator function of the elastic domain—is then

F∗(ε,w, ζ,Q) =
⎧
⎨

⎩

0 if fd(tr σ,χd) ≤ 0,

+∞ otherwise .

The thermodynamic forces are

ζ = DwW =
( κ

2D2 (tr ε)2, Kdς
)

=
(

1
18κ

(tr σ)2,−χd

)

,

so that the instantaneous dissipation density becomes η = Ḋ(tr σ)2/(18κ) + ς̇Kdς .
The measurement or observation prediction on the macro-scale yM will be only reg-

istered at certain intervals �t of the pseudo-time variable t, t0 = 0, t1 = �t, . . . , t� =
��t, . . . . The observation prediction is specified by the spatial average of the energy-type
prediction of the macro model yM = (Ee, Eh, Ed) at observation time t�, given by

Ee = 1
2

∫

G
ε(x, t�) : C(D)(x) : ε(x, t�) dx,

Eh = 1
2

∫

G
Kd(x)ς (x, t�)2 dx,

Ed =
∫ t�

t�−1

∫

G
η(x, t) dx dt, (49)

i.e. the integrated or averaged stored elastic and hardening energy, and the energy dissi-
pated between the last observation at t = t�−1 and now at t = t�.
In the numerical experiments the previous model is used on both themeso- andmacro-

scale. Finally, the upscaling is considered for the energy-type of measurement from the
meso-scale ym = (Eme, Emh, Emd), and in our case defined exactly in an analogous way as
in Eq. (49), using the meso-scale model respectively. On the macro-scale, the integrand
quantities C(D)(x) and Kd(x) in Eq. (49)—in fact all components of Q—are assumed
spatially homogeneous or constant, whereas on the heterogeneous meso-scale model
they do vary spatially and are modelled as random fields. In this manner, the stored as
well as the dissipated portion of the total energy is faithfully mapped from the meso- to
the macro-scale model.
To represent the measurement data ym for all meso-structure realisations, one may use

generalised mixture models. In our particular application the measurement is positive.
Therefore, we use samples x := (log ym(ωi))Ni=1 to approximate log ym as a Gaussian
mixture model [2]

p(x) =
K∑

k=1
πk N (x|νk ),

K∑

k=1
πk = 1, 0 ≤ πk ≤ 1 (50)

describedbyparameter set ν = (μk ,Σk )Kk=1 with νk := (μk ,Σk ) being the statistics param-
eters of Gaussian components, and πk are the mixing coefficients. These constitute the
parameter vector w. The hidden variable η is the indicator vector zk of dimension N that
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describes the membership of each data point to the Gaussian cluster. Following this, the
joint distribution is given as

p(x, Z,μ,Σ ,π ) = p(x|z,μ,Σ ,π ) p(z|π ) p(π ) p(μ|Σ) p(Σ) (51)

in which

p(z|π ) =
N∏

n=1

K∏

k=1
π
znk
k , p(zk = 1) = πk (52)

and

p(x|z,μ,Σ ,π ) =
N∏

n=1

K∏

k=1
N (xn|μK ,Σ−1

K )znk . (53)

The priors are chosen such that p(π ) is a Dirichlet prior, whereas p(μ,Σ) follows an
independent Gaussian-Wishart prior governing the mean and precision of each Gaussian
component. Hence, our parameter set β is described by a set of global parameters w :=
(μ,Σ ,π ) and the hidden variable z. To incorporate correlations, the copula dependence
structure of Gaussian mixture as in Eq. (37) is found, and the measurement data are
represented in a functional form, as discussed in “Bayesian upscaling of random meso-
structures” section.

Numerical results
Bayesian upscaling of a heterogeneous linear elastic material model

In this section the proposed upscaling scheme is first applied on a linear elastic random
heterogeneous material. Here it is known from homogenisation theory that for a large
enough representative volume element (RVE) one may indeed find a spatially homoge-
neous constant value for the elastic parameters. This is also quickly seen from a gen-
eral consideration: for a homogeneous strain, on the macro-scale the stored energy is a
quadratic function of the strain. The meso-scale local strain on the other hand is a linear
function of the homogeneous boundary strain on the meso-scale model, and locally the
stored energy is a quadratic function of the local strain, hence it is locally a quadratic
function of the homogeneous boundary strain. The observable, the spatial average of the
local meso-scale stored energy, is as a spatial integral of those quadratic functions again
a quadratic function of the homogeneous boundary strain. Hence there exists a unique
set of coefficients on the macro-scale for a perfect match of the energies. In computa-
tional practice, the RVE will often not be large enough, and the above consideration only
applies if the macro-scale allows a large enough elastic symmetry class to capture possible
anisotropies. Here we want an isotropic macro-scale model, as themeso-scale description
is stochastically also isotropic and homogeneous. But as the RVEmay not be large enough,
residual model errors can be expected in numerical practice.
All our experiments will be performed only for 2D situations, as this is sufficient to

demonstrate the approach. The example meso-scale specimen consists of a 2D block
described by 64 circular inclusions of equal size randomly distributed in the domain. In
the first case scenario only onemeso-scale realisation is observed for verification purposes.
The computational FE-model uses regular 50 × 50 mesh of standard bi-linear Q4 quad
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Fig. 2 Experimental setup

elements for the meso-scale, and one such element for the macro-scale. The material
properties are taken as follows: the bulk modulus is Km = 4 MPa, and the shear modulus
isGm = 1MPa for thematrix phase, whereas the inclusions characteristics are prescribed
to be ten times higher. The volume fraction of the inclusions is taken as 40%.
The meso-scale characteristics are upscaled in a Bayesian manner to the coarse scale

homogeneous isotropic finite element described by material properties taking the form
of a posteriori random variable as schematically shown in Fig. 2. To gather as much
as information as possible in observation data, we consider different types of loading
conditions including pure shear or compression, or their combination as shown in Fig. 2.

Verification

To verify our method, we compare Bayesian upscaling procedure to the deterministic
homogenisation approach (as presented in [61], Exercise 4). Therefore, we initially observe
only one realisation of the random meso-structure and apply periodic boundary condi-
tions. For the sake of clarity, we describe here the deterministic approach briefly: the FE
simulation is performed on the meso-structure, the resulting response is used to compute
the macro-scale deformation or stress tensor (depending on the deformation, traction or
mixed boundary conditions on the RVE), finally the computed average macro-scale quan-
tities are used to compute the homogeneous/effective material parameters i.e. bulk and
shear moduli in the current setting. For further details, the interested reader can consult
[61]. An example of the fine-scale response in terms of the element level energy density
is shown in Fig. 3 for Experiment 1 and 4. Here we recall that one of the distinguishing
features of Bayesian upscaling approach is that it uses energy to estimate macro-scale
material parameters.
The comparison of the deterministic homogenization and Bayesian upscaling results

(abbreviated as DHB and BUB respectively) are shown in Fig. 4, along with different
analytical bounds (computed using the given material properties and volume fraction).
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Fig. 3 Deformed mesh and stored energy density [MJ/m2] of the meso-scale response under bi-axial
uniform compression and pure shear with periodic boundary conditions

These bounds are defined as follows (with increasing degree of refinement): the material
properties bound (Mat) with inclusion and matrix properties defined as higher and lower
limits respectively, the Reuss-Viogt bounds (RBH) and Hashin-Strickman bounds (HSB).
As expected and depicted in Fig. 4, the DHB fails to predict the shear moduli in a pure
compression state (Experiment 4). An analogous result is expected and also obtained for
the bulk modulus in case when only shear loading conditions are applied (Experiment 1).
On the other hand, the BUB in the form of Eq. (33) regularises the problem by introduc-
ing prior information. When the data are not informative about the parameter set, this is
recognised in that the posterior estimate is unchanged from the prior. Otherwise, the pos-
terior mode and the deterministic homogenised value are identical after all experiments.
Note that the blue crosses representing the DHB results, taken from [61], are fluctuating
before the final estimate in contrast to the Bayesian estimate. We also observe from Fig. 4
that both the DHB and BUB results remain within the confines of analytical bounds. In
particular for BUB results, the bounds for shear modulus reside inside all of the consid-
ered analytical limits for the last two experiments: 1 and 2, whereas for bulk modulus, a
similar behaviour is observed for experiments: 3 and 4. To conclude, the Bayesian upscal-
ing procedure is more robust than the classical one, and it additionally reflects possible
model errors due an insufficient size of the RVE in the residual uncertainty. In addition, in
the Bayesian upscaling procedure one may sequentially introduce the measurement data
into the upscaling process. For example, one may first use the measurement information
coming from the fourth experiment to obtain the upscaled material properties. These
further can be used as a new prior for the third experiment, and so on, see Fig. 4.

Upscaling of random elastic material

To quantify randomness on the meso-scale level, the previously described experiment is
repeated several times, and the averaged stored elastic energies per experiment are col-
lected. In particular, we observe realisations of the meso-scale elastic material described
by randomly placed inclusions with a volume fraction of 40%. Initially, the stored energy
is identified given the observed data by using the variational Bayesian inference method
as described in “Bayesian upscaling of random meso-structures” section, resp. “Approx-
imation of the meso-scale observation by unsupervised learning” section. The logarithm
of the energy is modelled by a copula Gaussian mixture model, and the individual compo-
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Fig. 4 Upscaling of deterministic material properties: a shear modulus [MPa] b bulk modulus [MPa]

Fig. 5 Measured energy [MJ] on 100 mesostructure realisations for different number of inclusions and
random position only. The boundary condition is linear displacement

nents are identified. The optimal number of mixture components is further decoupled by
an inverse transform. The resulting uncorrelated random variables are then further used
to obtain the polynomial chaos surrogate of the measurement data.
The simulation is performed on the 2D meso-structure with an increasing number

of particles and linear displacement based boundary condition.The material properties
for the matrix and inclusion phases are kept the same as considered previously in the
verification procedure. For a given number of inclusions embedded in the matrix phase,
an ensemble of 100 realisations of stored energy is considered to gather corresponding
measurement set. In Fig. 5 the PDFs for the identified elastic energies are shown for the
pure shear and the bi-axial compression test, respectively. As expected, the variation of
stored energy reduces with the increase of the number of particles in the matrix phase.
One would expect that these would converge to the same PDF after taking large number
of inclusions. However, here the largest taken number was not large enough. In order to
be able to compare results to [61], we therefore did not increase this number any more. It
is interesting to note that in the compression case the mean responses of stored energies
vary more than in a pure shear test. This is closely related to the way how boundary
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Fig. 6 Confidence bounds of the energy (in [MJ]) approximation for 4 particles and a 100 Monte Carlo
samples (train data) b10 Monte Carlo samples (train data). Here, est is the mean estimate, and p95 est are 95
quantile bounds

conditions are imposed. Namely, we take into consideration directly the element onwhich
the loadings are imposed, and thus one may recognise the strong influence of boundary
conditions on the obtained results. In would be better if one would take into consideration
only internal elements, which are away from the boundary. This means that the averaging
would be performed only over anRVE embedded in a large domain onwhich the boundary
conditions are applied.
The previously discussed results are estimates of the stored energy given its samples

following Eq. (41), obtained by the unsupervised learning algorithmdescribed in “Approx-
imation of the meso-scale observation by unsupervised learning” section. However, the
residual uncertainty consists of two kinds of uncertainties: aleatoric (meso-scale ran-
domness) and epistemic (prior information in the unsupervised learning algorithm, see
Eq. (35)). Estimating the confidence intervals w.r.t. to the epistemic uncertainties one
obtains the corresponding PDFs of energy: themeanPDFwhich represents purely aleatory
uncertainty and p95 upper and lower PDF’s that describe 95% epistemic quantiles on the
mean PDF, see Fig. 6a. Naturally the epistemic quantile intervals strongly depend on the
size of the measurement set. From Fig. 6b one may conclude that with the smaller mea-
surement set by using only 10 samples our confidence about the estimated PDF is lower
than in case of higher number of measurements, as expected.
Besides the previous analysis, the impact of boundary conditions on the upscaled quan-

tities is another important factor to study. In Fig. 7 are depicted the 95% quantiles of
energy for linear displacement (LD), periodic (PR) and uniform tension (UT) boundary
conditions. According to these results, linear displacement defines the upper bound on
the estimated energy, whereas uniform tension gives its lower limit. On the other hand,
variations of the energies are similar for all three types of boundary conditions, and are
inverse proportion to the number of inclusions.
Once themeasurement energy is identified, in the second step we use the proxy of ym to

identify the elastic macro-scale material characteristics by using the filter of polynomial
order 2 as given in Eq. (42). When using this type of upscaling ,one is biased to the prior
knowledge of the material characteristics on the macro-scale. In a multi-scale analysis,
however, it is not an easy task to define the prior knowledge, or better to say the limits of the
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Fig. 7 Energy 95% quantiles (in [MJ]) w.r.t. boundary conditions and number of inclusions for a compression
test, b shear test

Fig. 8 Estimated shear moduli [MPa] w.r.t. prior choice, a including both aleatoric and epistemic
uncertainties, b averaging over the epistemic uncertainity

prior distribution. Therefore, in Fig. 8 is investigated the posterior change of shear moduli
w.r.t. prior knowledge. The prior distributions are chosen such that their 95% limitsmatch
the interval described by the material properties of the matrix phase and inclusions (in
the figure denoted by MAT), Reuss-Voigt (RV) or Hashin-Shtrikman (HS) bounds. Their
corresponding 95% posterior limits w.r.t. number of inclusions are depicted in Fig. 8a.
It is interesting to note that even though the posterior (including both aleatoric and
epistemic uncertainties) of the upscaled shearmoduli changes w.r.t. the prior assumption,
its posterior averaged over the epistemic uncertainty as in Eq. (43) remains the same, see
Fig. 8b, and does not depend on the prior knowledge.
To verify our result further, in Fig. 9we compare the aleatoric part of the posterior distri-

bution with the posterior distribution obtained by repeating the deterministic homogeni-
sation, see [61], on each of the meso-scale samples. As one may notice, the distribution
coming from the deterministic homogenisation (denoted by det) and the aleatoric one
obtained by our approach (denoted by partial) are matching. They are further compared
with the full posterior distribution (denotedby total), i.e. the total uncertainty that includes
both aleatory and epistemic knowledge.
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Fig. 9 Comparison of deterministic homogenisation result (det) with the Bayesian aleatoric posterior (partial)
and the full posterior (total) for the shear modulus [MPa]

Table 1 Mean values of randommeso-scale material
parameters [MPa]

κ μ σf Kd

204,440 92,000 310 470

Upscaling of damage phenomena

In this subsection, the proposed approach is applied to another interesting problem. For
this purpose a phenomenological elasto-damage model is considered as described in the
beginning of this section. The goal is to compute a homogenised description of random
material parameters on themacro-scale givenmeso-scale measurements. Themeso-scale
is assumed to follow same constitutivemodel as themacro-scale. For verification purposes
we assume that themeso-scale has homogeneousmaterial properties, which aremodelled
by a random variable. Hence, the meso- and macro-scale are identical. Furthermore, in
a second experiment we model the meso-scale material properties as spatially varying,
and apply the upscaling procedure in order to estimate the homogeneous macro-scale
material properties. In both experiments we only simulate the displacement controlled
uniform bi-axial compression of a 2D block with unit length ( similar to the experiment
in the previous example). The volumetric strain εv = tr ε/2 in 2D is calculated for a
given time step through piece-wise linear interpolation from the set of values given as
(t, εv) : {(0, 0), (3,−0.00025), (10,−0.00035)}, where t denotes the pseudo-time. For the
experiments under consideration, the displacement is applied in 8 equidistant steps in t.

Verification

For verification purposes the material parameters Qm on the meso-scale are modelled as
lognormal random variables with the mean values shown in Table 1 and the coefficient
of variation 5%. After propagating the variables through the elasto-damage model, the
correspondingmeasurements as in Eq. (49) are estimated.We assume that the polynomial
chaos approximation of the measurement is not given, but only a set of 100 samples.
Therefore, the log of measurements are modelled as copula Gaussian mixtures with the
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Fig. 10 Scatter plot of energies [J]: Ee and Ed between the linear elastic step 1 and the nonlinear step 3

Fig. 11 Scatter plot of log of energies [J]: Ee and Ed , at the full damage step 8

unknown number of components. The simulation is run in 8 equidistant time steps, the
first two being elastic. In the third to sixth steps the behaviour is a combination of elasticity
and damage, whereas in the last step is dominated by the damage component.
In Fig. 10 are shown scatter plots of energies in the first and the third step, both depicting

two states in the response: elastic and damage. The red circles denote samples that are
in the elastic state in the third step, whereas blue crosses denote samples that experience
damage behaviour in the third step. The third step is the first time step in which damage
behaviour initiates. Hence, the correlation between elastic energies in the third and the
first step for samples that are undergoing elastic behaviour is linear, see red circles in
left plot in Fig. 10, as expected. However, the elastic part of energy in the third step has
nonlinear correlation to the elastic part of energy in the first step for the samples that are
switching from elastic to damage state, see blue crosses in the left plot in Fig. 10. Similar
holds for the right plot in Fig. 10. Here one may see that the samples that remain in elastic
state from the first to the third step do not have Ed in the third step (therefore the straight
line made of red circles), whereas samples that change their state from elastic to damage
have non-zero Ed nonlinearly correlated to the elastic part of energy in the first step.
To estimate the macro-scale properties, we observe measurements at the last time step

as depicted in Fig. 11. Clearly, the Eh and Ed are almost linearly related in the log-space,



Matthies et al. Adv. Model. and Simul. in Eng. Sci.           (2020) 7:50 Page 27 of 35

Fig. 12 Left: Scatter plot between the log of estimated macro-scale bulk modulus κ [MPa] and limit stress σf
[MPa] w.r.t. to the full posterior measure (aleatoric plus epistemic uncertainty), and its epistemic mean (only
aleatoric uncertainty, here denoted as “estimate”). Right: Comparison of 100 samples of mapped Gaussian
random variables from the estimated macro-parameters and independent standard Gaussians

Fig. 13 Estimated posterior of the log of macro-scale parameters w.r.t. to their true value. “Full posterior”
represents both aleatoric plus epistemic uncertainty, whereas “estimate” is only the aleatoric one

whereas this does not hold for the Ed and Ee. Furthermore, we employ a copula approach,
see “Approximation of the meso-scale observation by unsupervised learning” section, to
uncouple these measurement data, and estimate their functional approximations. Once
they are mapped to Gaussian random variables, we may easily generate the approxima-
tion of measurements at other time steps. For this we utilise the approach described in
“Approximating the macro-scale response by Bayesian regression” section.
Given the approximation of the measurement ym, we may estimate homogeneous

macro-scale properties by the approach described in “Bayesian upscaling of randommeso-
structures” section. The a priori description of the macro-scale properties is taken to be
also modelled as lognormal random variables with the mean 20% larger than in the meso-
scale case, and a coefficient of variation of 20%.
The resulting updated macro-scale properties are shown in Fig. 13. The bulk modulus

κ and the limit stress σf that initiates the damage are both updated and match the true
distribution, whereas their correlation and the mapping to the normal space is shown in
Fig. 12. The left plot in Fig. 12 depicts the correlation between upscaled bulk modulus κ
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Fig. 14 Left: Comparison of two up-scaling strategies described by Eqs. (43) and (44) in terms of PDF of the
log of macro-scale parameters, Right: Correlation between the log of macro-scale parameters

and the limit stress σf . Here, one may distinguish the correlation calculated by taking into
account the full posterior (both aleatory uncertainty due to uncertain RVEs, as well as
epistemic uncertainty or only its aleatoric (estimate) part (obtained by averaging the pos-
terior over the prior uncertainty). Note that the remaining epistemic uncertainty is bigger
for the limit stress σf than the bulk modulus κ , as the relationship between the parameter
and the measurement is more nonlinear than in case of the bulk modulus. The right plot
in Fig. 12 describes the correlation between variables (η1, η2) obtained after mapping the
measurement data (Ee, Ed) to the Gaussian space by the use of algorithms in “Approxima-
tion of the meso-scale observation by unsupervised learning” section. These are referred
as transformed variables, and are further compared to the sample set of standard uncor-
related Gaussians in order to verify the mapping algorithm. As can be seen, the mapped
Gaussians are indeed uncorrelated, and hence can be used for further approximations.
On the other hand, due to the chosen experiment, both shear and hardening moduli stay
unidentified as they are not observable. Hence, their analysis is not considered.
In the previously described experiment the relationships between themeasurement data

and their approximations are too complex in order to be properly modelled. Therefore,
the experiment is repeated in same setting, only this time the measurement is not func-
tionally approximated. Instead, the inverse problem is solved for each individual sample
of measurement (each RVE), and then the updated parameters are collected into the set
of parameter samples as described in Eqs. (44) and (46). This calculation is expected to be
simpler than the previous one as the relationships between the material parameters are
easier to model. In Fig. 14 is depicted the difference between this approach (est1) and the
previous one (est2), as well as the joint distribution between the bulk modulus κ and σf .
Hence, by upscaling we obtain a simpler representation of our meso-scale data, however,
at the expense of a correlation of the material parameters.

Upscaling of a heterogeneousmedium

Asbefore, theblock is deformedbydisplacement controlleduniformbi-axial compression.
As far as the material description is concerned, the material properties on the heteroge-

neous meso-scale are a priori assumed to be realisations of log-normal random fields with
the statistics depicted in Table 2, and Gaussian covariance functions. These are simulated
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Table 2 Macro-scale statistics for elasto-damage
constitutive model in [MPa]

Property κ σf Kd

Mean 204, 440 300 450

Std.dev. 10, 222 15 22.5

Fig. 15 The damage/failure stress σf [Pa] realisations using different values of the correlation length �c

Fig. 16 Scatter plots of log of energies in [J]: Ee and Ed w.r.t. to different time steps

using different values of the correlation length �c ∈ {5le, 10le, 25le} (le is the element length
on the meso-scale) and coefficients of variation cvar ∈ {5%, 10%}.
In Fig. 15 is shown an example of themeso-scale randomfield realisations given different

correlation lengths. The realisation is becoming smoother when the correlation length
increases. This means that the material becomes more homogeneous in the limit �c =
∞. On the other hand, the macro-scale material properties are taken a priori as a log-
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Fig. 17 The PDF of energies in [J]: Ee , Ed and Eh w.r.t. the correlation length (left) �c and time steps (right)

Fig. 18 The presence of damage (elements marked in black) on the meso-scale for cvar = 0.1 and �c = 5�e ,
�c = 10�e , �c = 25�e , respectively

normal random variables, with the samemean and standard deviation as their meso-scale
counterpart.
The measurement data are made of three type of averaged data: Ee, Ed , and Eh. Their

logarithms are simulated using mixture models and vine copulas, and further identified
using a variational Bayesian rule. Similarly to the experiment in the verification section,
in the first two simulation steps one may observe only the elastic energy, as the dissipa-
tion effects do not appear yet. Therefore, we start the simulation with the last step, and
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Fig. 19 The presence of damage (elements marked in black) on the meso-scale for one random field
realisation with cvar = 0.1 and �c = 10�e w.r.t. time step

approximate the corresponding measurements by mixture models and vine copulas, see
Fig. 16. The complete simulation steps from the previous section are repeated. However,
it is interesting to note the change of the scatter plots with the correlation length. The
scatter plots of Ee in two consecutive linear steps are wider with the reduction of the
correlation length. The opposite holds true when it comes to relationship between Ee and
Ed in the last simulation step.
The distribution of damage is graphically illustrated in Figs. 18 and 19. The elements

without any color are undamaged, whereas the ones marked in black are damaged. As
shown in Fig. 17 the variation of measurements increases with the correlation length size
for the case when the cvar of the meso-scale random field is taken to be 10%. The reason
for this is that measurement realisations are less fluctuating with increasing correlation
length, but their average value is more pronounced as prospective fluctuations do not
cancel out, as similar can be concluded when observing Fig. 15. The previous conclusion
holds for all measurements, and can be explained by Fig. 18 in which the presence of
damage for one random field realisation and different correlation lengths is shown. With
increase of the correlation length the damage is more pronounced, and hence one expects
higher variations. In addition, one may also conclude that the corresponding PDFs are
becoming more skewed when the material model approaches the homogeneous case, see
Fig. 17. The skewness in terms of long tails is not completely caused by variations of the
randommeso-scale, but also by the inaccuracy of the variational method used for the PCE
estimation of the measurement due to possible overestimation.
On the right side of Fig. 17, one may observe the energy evolution w.r.t. to time. Here,

cvar of the correspondingmeso-scale random field is chosen to be 10% and the correlation
length is �c = 10�e. The top figure depicts the elastic energy. As expected, the energy
variation grows in time. On the contrary, Ed seen in the middle does not alter much
the PDF form. The damage initialises in the third step, and mostly shifts towards higher
average valuedue to increasedpresenceof damage as shown inFig. 19. Finally,Eh increases,
but also changes the PDF form significantly in time.
The upscaled parameter estimates behave similarly to the measurement estimates as

shown in Fig. 20. The hardening parameter does not get updated, and stays constant over
time.
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Fig. 20 The PDF of parameters κ (in Pa), Failure stress σd (in Pa) and Hardening modulus Kd (in Pa) w.r.t. the
correlation length (left) �c and time steps (right)

Conclusion
The stochasticmulti-scale analysis as previously presented is one particular kind of inverse
problem in which the macro-scale parameters are to be estimated given the meso-scale
information. In this paper we employed an extended Hill-Mandel principle in order to
estimate the macro-scale parameters given the meso-scale energy observations. Such an
approach allows the fitting of appropriate constitutive laws on the macro-scale coun-
terpart, the ones that are optimally matching the energy information. Furthermore, we
show that in a case when the meso-scale energy information is of deterministic kind, i.e.
describes one particular RVE, the process of estimation can be easily done by employing a
nonlinear conditional expectation filter. The filter represents the map between the obser-
vation and the quantity of interest, i.e. the macro-scale model parameters, or the model
itself. In addition, we have shown that this kind of mapping can be also used in a more
general situation, in which one wants to upscale an ensemble of meso-structures, and the
meso-scale information is described by aleatoric uncertainty. The only requirement to
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achieve this is to fully specify the random variables representing the data, i.e. to describe
its probability distribution. For this purpose we employ a Bayesian variational inference in
combinationwith copula theory. Computationally, themeasurement probability distribu-
tion is then represented by a functional approximation in terms of the polynomial chaos
expansion obtained by mapping the measurement data to the Gaussian space, applying
an inverse transform, and using an additional sparse Bayes variational regression for the
purpose of estimation of the expansion coefficients. As the inverse map from the energy
space to the Gaussian one is not easy to approximate, we recommend to first discretise
the energy space (i.e. to sample), and then to map each sample to the macro-scale model
parameters. As shown on both the linear elastic and the elasto-damage examples, the
latter ones can be more accurately approximated. Note that in this paper we have only
observed the elasto-damage models on two scales under one specific loading condition.
This was possible due to the simple nature of the damagemodel. However, in practice this
will not suffice to achieve a good macro-scale representation. Therefore, the next step to
be considered is to add different loading conditions into estimation.
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