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Abstract 

In industrial electro galvanizing lines aged anodes deteriorate zinc coating distribution 
over the strip width, leading to an increase in electricity and zinc cost. We introduce 
a data-driven approach in predictive maintenance of anodes to replace the cost- and 
labor-intensive manual inspection, which is still common for this task. The approach is 
based on parasitic resistance as an indicator of anode condition which might be aged 
or mis-installed. The parasitic resistance is indirectly observable via the voltage dif-
ference between the measured and baseline (theoretical) voltage for healthy anode. 
Here we calculate the baseline voltage by means of two approaches: (1) a physical 
model based on electrical and electrochemical laws, and (2) advanced machine learn-
ing techniques including boosting and bagging regression. The data was collected 
on one exemplary rectifier unit equipped with two anodes being studied for a total 
period of two years. The dataset consists of one target variable (rectifier voltage) and 
nine predictive variables used in the models, observing electrical current, electro-
lyte, and steel strip characteristics. For predictive modelling, we used Random Forest, 
Partial Least Squares and AdaBoost Regression. The model training was conducted on 
intervals where the anodes were in good condition and validated on other segments 
which served as a proof of concept that bad anode conditions can be identified using 
the parasitic resistance predicted by our models. Our results show a RMSE of 0.24 V for 
baseline rectifier voltage with a mean ± standard deviation of 11.32 ± 2.53 V for the 
best model on the validation set. The best-performing model is a hybrid version of a 
Random Forest which incorporates meta-variables computed from the physical model. 
We found that a large predicted parasitic resistance coincides well with the results of 
the manual inspection. The results of this work will be implemented in online monitor-
ing of anode conditions to reduce operational cost at a production site.
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Introduction
Electro galvanizing is a well proven technology for producing corrosion-protected steel 
sheets with excellent surface quality, weldability and forming behavior [1]. Sometimes 
electro  galvanizing is the only way to coat advanced high strength steels because it is 
a low temperature process and the mechanical properties of the steel substrate remain 
mostly unaffected. Electro galvanizing has some unique features like one-sided coating 
and low coating thicknesses (less than 3 µm) [2]. The anode’s quality has a huge impact 
on the zinc thickness distribution and furthermore on the overall energy consumption. 
Therefore, the anodes underlie strict maintenance and have to be changed if degraded. 
Unfortunately, there is no method for online detection of anode quality, which can mon-
itor critical anode properties to foresee the end of the anode’s lifetime. But with the help 
of machine learning models the condition of anodes used in electro galvanizing lines can 
be monitored during their lifetime.

In steel manufacturing, the enormous progress of available machine learning tech-
niques together with the remarkable increase of available processing power and memory 
at affordable price levels has spurred a significant number of applications, ranging from 
blast furnace molten iron quality prediction  [3], blast furnace stock line detection  [4], 
continuous casting sticker detection [5], coating weight control [6], and prediction of the 
mechanical properties of galvanized steel coils  [7]. In particular, if the development of 
purely physics-driven models is too complicated or time-consuming, machine learning 
techniques are a viable alternative. However, despite the aforementioned achievements, 
steel manufacturing and heavy industry applications in general still pose significant chal-
lenges for the appliance of machine learning techniques. Typically, the amount of avail-
able labelled high-quality data is quite low. In such scenarios, it can be advantageous to 
use so-called physics-guided approaches as a kind of hybrid modelling technique.

Hybrid modelling has gained a lot of popularity recently as a proposed answer to the 
limitations of either purely data-driven or purely physics-driven model building. In 
hybrid modeling, the two approaches are systematically combined. There exists a variety 
of options how to combine these models, and we want to highlight some of the most 
prominent examples here. In a traditional Data Science setting, the domain knowledge 
(e.g., physical laws) is being exploited to shape the features which can be fed to data-
driven models [8, 9]. There are also examples of using domain-specific knowledge for 
feature selection, such as the selection of top-relevant frequencies to detect misfires 
in engines  [10]. Another example from the same domain demonstrates another strat-
egy, where a physics-based simulation model is applied in order to generate a dataset, 
which in turn is used as training data for data-driven machine learning models  [11]. 
Alternatively, a physics-driven and a data-driven model can also be developed indepen-
dently, with their results being computed in parallel and later combined to form a sin-
gle result  [12]. The term sequential hybrid models is used to describe settings, where 
one of the model’s outputs serves as input to the respective other type of model. This 
can mean that a physically inspired model, e.g. based on differential equations and real-
world measurements, serves as input to a data-driven model, which then learns how to 
combine the physics-based results and the features [13].

Finally, an efficient data-driven model may be built to serve as an approximation to a 
complex physics-based model, in order to achieve a speed-up in the computations [14]. 
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The latter setting is beneficial if the physics-based model provides sufficiently good 
results, but at the price of high computational complexity, which limits its applicability. 
The data-driven approximation provides a rough estimate of the results, but with the 
advantage of a much lower computational complexity and may guide the exploration 
process. One domain, where this is of particular importance, is material science, where 
due to the size of the search space, data-driven machine learning models are used to 
identify the most promising regions of the input space, which are then further analyzed 
using the more exact knowledge-driven model, leading to considerable speed-ups  [15, 
16]. Physics-based knowledge has also been exploited to inform the design of machine 
learning algorithms and architectures, going back to the inception of Convolutional 
Neural Networks, which exploit spatial neighborhood to achieve a sparse parameter 
space. Recently, more complex physics-derived constraints have been integrated directly 
into the network architecture, for example in the form of physics-informed convolu-
tions [17]. This approach of constraining a machine learning algorithm is not limited to 
deep learning architectures, but can also be successfully applied to simpler models, like 
linear systems [18].

Finally, also the output stage of a machine learning algorithm can be adapted for 
hybrid-modelling [19]. For example, by adapting the loss function to replace the classical 
supervised scenario of labelled training examples with constraints derived from physical 
laws [20]. Karpatne et al. [21] proposed a rigorous scientific framework combining those 
different approaches, which they coined theory-guided data science. Their motivation 
is two-fold: first they attempt to increase the interpretability of data-driven, black-box 
models and, second, they intend to constrain data-driven models. The latter is aimed at 
improving the generalization ability of data-driven methods and to prevent physically 
inconsistent models. They outline procedures, how different parts of the model build-
ing process can be enhanced via theory-guided design, ranging from choosing appropri-
ate link functions to selecting appropriate regularization functions. Subsequently, these 
methods have been applied specifically on deep neural networks [22]. Complementary 
approaches utilize physics-based theories to aid the interpretability of black-box models. 
As an example, Lei et al. [23] studied Convolutional Neural Networks by utilizing quan-
tum mechanics, energy models and thermodynamic entropy to gain a deeper under-
standing of the intrinsic functionality of deep neural networks.

Our aim and contributions

To the best of our knowledge, this paper is the first to present a simplified physical model 
of the rectifier voltage in a large-scale electro galvanizing unit. This report is also the first 
to implement the use of the physical model for labelling of training and testing areas 
in an electro galvanization production line and employ sophisticated machine learning 
methods to predict the baseline rectifier voltage. We claim that aged or mis-installed 
anodes can be identified based on the presence of parasitic resistances, which are indi-
rectly represented by a difference between theoretical (baseline) and measured voltage 
(parasitic voltage). In order to do that, the theoretical voltage was calculated based on a 
simplified physical model and alternatively predicted by machine learning from the elec-
trical current, steel strip and electrolyte parameters. A comparison between the results 
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of the physical and machine learning model and the use of meta-variables from the 
physical model in hybrid machine learning models is rounding off our discovery.

Materials and methods
Process unit

The electro galvanizing line was previously described in [2, 24]. More details on the 
products and technology involved can be read in [1] while the GRAVITEL® plating cells 
are covered in [25, 26]. A schematic drawing of the electro galvanizing line is depicted in 
Fig. 1. It consists of 12 vertical cells with four anodes each. In the entry section the steel 
strips are welded together to form an endless strip. The looper installed downstream 
compensates short downtimes during welding in the entry section. The strip is straight-
ened by the tension leveler. A multistage process to produce a clean and grease-free sur-
face is implemented for pre-treatment.

This is an important precondition for the application of homogeneous zinc layers with 
good adhesion. In the plating section the strip passes 12 GRAVITEL cells in which zinc 
from the electrolyte is deposited on the surface due to the application of high electri-
cal currents. This patented cell design allows single-sided or double-sided galvanizing of 
the strip. The conductor rolls and the sink roll direct the strip between the anode plates 
mounted on the anode boxes. One rectifier supplies two anodes, which are located on 
the top and the bottom side of the strip, as depicted in Fig. 2. The electrolyte is pumped 
into the wedge-shaped space between anode and strip and flows downward as pulled by 
gravity—similar to a cascade. Under the influence of the applied DC voltage, zinc ions 
move from the electrolyte to the strip, where they are deposited. In the post-treatment 
section, the strip surface is treated with various chemicals to obtain improved corro-
sion resistance and good paintability. Subsequently, the strip is rinsed and dried with hot 
air, and the thickness of the zinc coating is measured. In the inspection stand, surface 
inspection and strip marking are carried out. Upon request, the strip is additionally oiled 
(corrosion protection, forming behavior). Finally, the strip is coiled, cut from the endless 

Fig. 1  Schematic drawing of the electro galvanizing line. In the entry section, the strip is decoiled and 
welded to the previous strip. After alkaline cleaning and acidic pickling, the strip enters the plating section 
consisting of twelve GRAVITEL®- cells. After rinsing and optional post treatment, the strip is inspected and cut 
into coils again
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strip and weighed. In the exit section, too, a looper helps to compensate short down-
times (cutting). Some production parameters are presented in Table 1.

Anode aging

Anode aging has a variety of causes, amongst which the most important are strip con-
tact, abrasion, corrosion by electrolyte, and human caused error like mis-installation. 
The anodes have a typical lifetime of 3–12 months in the cell, until they are removed 
based on the results of the visual inspection. The inspection procedure is conducted on 
a monthly basis. During inspection the strip is stopped and electro galvanizing is con-
ducted in a static manner so that the current anode activity is reflected on the strip. The 
strip segments are subsequently photographed and evaluated visually by a team of pro-
cess experts and technicians. Typical pictures of strip segments corresponding to “good” 
and “bad” anode conditions are shown in Fig. 3. This inspection procedure is costly, time 
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Steel strip

Electrolyte
Squeezing rolls

Anodes

Rectifiers
Fig. 2  Schematic drawing of a cell in the GRAVITEL electro galvanizing unit. One cell consists of four anodes, 
connected electrically in two couples. The respective cathode is the steel strip. The Zinc electrolyte flows 
between the anodes and the cathodic strip driven by gravity. Subsequently the electrolyte flows back into 
the circulation tank, which is located underneath the plating cells

Table 1  General process parameters in  the  galvanizing unit, described previously in  [24, 
26]

Process parameter Characteristics

Rectifier voltage 11.228 ± 2.525 V (mean ± std.dev.)

Line speed  < 120 m/min

Anode type Insoluble Ti anodes with IrO2 coating

Anode strip gap 8 mm

Anode dimensions 995 mm × 1650 mm

Electrical current density  < 150 A/dm2

Electrolyte flow per cell  < 1000 m3/h
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consuming, and depends on the skills of the plant staff. This was the motivator to imple-
ment predictive modelling of the rectifier voltage to assess the anode condition and find 
the correct time for replacing them.

Data acquisition and preparation

The data used in this study was collected on one exemplary rectifier unit equipped with 
two anodes over the course of 22 months with a frequency of one sample every 10  s. 
The dataset consists of one target variable (voltage) and nine predictive variables which 
are given in Table 2. The data processing and regression model training was performed 
using our pre-developed scripts written in Python [27].

The data was filtered prior to analysis, i.e. data segments were chosen where no exter-
nal disturbances or maintenance occurred (determined by in-house records), where the 
production is set to double-sided galvanization (which accounts for up to 95% of pro-
duction time) and where the sheet rolling speed was held above 35 m/min. Additional 
filtering is based on valid ranges for individual parameters, i.e. pH 0–14 and electrolyte 
temperature 40.0–100.0 °C. The electrolyte values were determined in the laboratory in 
eight-hour intervals by replicated measurements. The respective analytical methods are 
mentioned in Table 2. The laboratory features were linearly imputed to the 10 s intervals.

Fig. 3  Photographs of the plated strip taken from a “bad” (left) and a “good” anode condition (right). The right 
picture shows signs of wear. The photographs are evaluated manually by a team of experts

Table 2  Data included in the analysis

The variables are divided into three groups: electrolyte parameters, strip parameters, current characteristics. Out of these, 
nine parameters will be used as predictive variables

Variable name Sensor/measurement description Use

Fe concentration in electrolyte ICP-OES Predictive

pH of the electrolyte Potentiometric (pH sensor) Predictive

Na concentration in electrolyte ICP-OES Predictive

Zn concentration in electrolyte ICP-OES Predictive

Electrolyte temperature Pt-100 Predictive

Width of steel strip Tactile width measurement Predictive

Thickness of steel strip Radiometric Predictive

Specific resistance Current–Voltage determination (4-point method) Predictive

Rectifier current Potential drop at shunt Predictive

Rectifier voltage Potential Target
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A simplified physical model

For the calculation of the baseline voltage, i.e. the voltage during good anode condi-
tions, we developed a physical model based on electrochemical and physical laws. The 
electrical circuit of a single cell for electro galvanizing in a steady state can be approx-
imated by the system shown in Fig. 4.

•	 Urect is the driving voltage generated by the rectifiers and applied across the whole 
cell.

•	 Rsupply is the resistance of the cables connecting the anodes and the conductor roll to 
the rectifier.

•	 Rroll is the resistance of the conductor roll itself and the transition resistance from the 
conductor roll to the steel sheet (see the schematic in Fig. 2).

•	 Rsheet models the resistance within the steel sheet from the conductor roll down to 
the electrolyte and depends on steel quality and strip thickness.

The circuit then splits into two parallel branches, as in the cases we investigated 
both sides of the strip were plated.

•	 The electrochemical potential of zinc deposition (EZn) remains nearly constant during 
operation and causes a voltage drop of about 0.76 V [28].

•	 The high current densities typically applied in electro galvanizing lines are far away 
from the equilibrium potential and therefore an additional potential ηZn has to be 
added. This overpotential can be calculated using the Tafel equation [29].

Urect

I
Rsupply Rroll Rsheet

EZn

I
2

ηZnRanodeηO2

EO2

EZn

I
2

ηZnRanodeηO2

EO2

Fig. 4  Equivalent circuit of the electroplating process
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•	 Ranode is the resistance of the electrolyte. It mainly depends on the distance between 
anode and steel strip and on the specific resistance of the electrolyte. The inverse of 
the specific resistance σelectrolyte, can be calculated by the following empirical equa-
tion [30]:

•	 The electrochemical potential of oxygen evolution (EO2)causes a voltage drop of 
1.23 V [29].

•	 Analogous to ηZn, ηO2 is the overpotential between the electrode and the electrolyte 
caused by the kinetics of the oxidation reaction of H2O to O2 and H+. Both overpo-
tentials are typically < 0.2 V.

From Fig. 4, an equation for theoretical rectifier voltage can be derived by simply add-
ing up all voltage drops in the circuit (Eq. 2).

If I and Urect—along with all the other relevant parameters—are measured, the differ-
ence between the calculated and measured rectifier voltage can be used to detect par-
asitic resistances—like aged anodes—within the circuit. A detailed explanation of the 
physical model is presented in Additional file 1.

Machine learning

For prediction of baseline rectifier voltage, we employed three different regression algo-
rithms, namely Random Forest (RF) regression, AdaBoost (ADA) regression and partial 
least-squares (PLS) regression. Our choice of regression algorithms includes both lin-
ear and non-linear regressors, with the first two (RF, ADA) being considered non-linear 
black box ensemble methods, which gained popularity in industrial settings due to their 
prediction quality, little preprocessing effort and model tuning, as well as fast paral-
lel training [30, 32]. Ensembles use the advantage of training many weak learners and 
average the predictions; the weak learners employed are commonly, but not exclusively, 
variations of decision trees aggregated either through boosting (sequential training) or 
bagging (parallel with random sub-sampling). Recently, ensemble methods performed 
best in machine learning and data science global challenges [33, 34].

(1)
σelectrolyte ≈ 90.9− 0.089 cZn + 0.705 cNa − 36.1 pH + 1.22T

− 0.00948 cZn cNa + 0.107 pH cZn + 0.203 pH cNa + 0.0145 cNaT

(2)

Urect = I

(

Rsupply + Rroll + Rsheet +
Ranode

2

)

+ EO2 + EZn + ηO2 + ηZn

= I

(
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Partial least squares

In PLS we want to find the multidimensional direction in the X-space (predictive vari-
ables) that explains the maximum multidimensional variance direction in the Y (tar-
get variable) [35]. The PLS method compresses the X-space to a set of vectors called 
latent components from the original X-space and builds a linear multivariable regression 
model for the target. A detailed overview of the method is presented in Refs. [35, 36].

Ensemble regressors

The Random Forest algorithm, conceptualized by Breiman [37], achieves prediction by 
exploiting bagging. The basis (weak learner) for RF is the decision tree algorithm. The 
independence between the individual weak learners reduces bias in the models, while vari-
ance can be controlled for by carefully optimizing weak learner hyperparameters, such as 
tree depth. Besides their good performance, RF accepts many feature representations and 
thus yields reduced preprocessing efforts, which makes them convenient for use in many 
applications, including manufacturing. Due to the fact that trees can be trained in paral-
lel, a major advantage of RF is parallelization when used in high-throughput computing 
infrastructures.

AdaBoost (adaptive boosting) [38] is based on sequential training on sub-samples where 
each instance (weak learner) is built in order to raise the importance of samples which have 
been mis-predicted in previous instances in the sequence. The final ensemble is then aver-
aged with a weight based on accuracy of the instances in the sequence. A comparison of the 
two algorithms with a more detailed description is presented in Ref. [32].

Hybrid models

The hybrid models, as described in the introduction, comprise a combination of predictors 
based on physical and machine learning models. In this work, we employed the described 
physical voltage models to generate meta-variables which were used in the machine learn-
ing models (PLS, RF, ADA) to improve the prediction quality. To this end, all of the vari-
ables calculated in Eqs. 1–2 which were not in the baseline data set were used as additional 
inputs to the three regressors.

Model training and validation

We used scikit-learn [39] as implementation of the algorithms in our work. The baseline 
rectifier voltage was set as the target variable, with the other variables in Table  2 being 
predictive variables and meta-variables for the hybrid models. The data was divided into 
“good” and “bad” segments. The segments were labelled according to the difference of the-
oretical to measured voltage and according to results from the manual inspection of the 
anodes’ condition (see "Results of the physical model and data labeling" section). From the 
“good” segments (a data set of ~ 1.06 million measurements) a training set (75%) and a vali-
dation set (25%) were chosen at random. The validation set was held out until model valida-
tion when the model was evaluated. The complete model pipeline is presented in Fig. 5. All 
models were trained on an in-house big data server described in [40]. The evaluation of the 
models was conducted using the root mean squared error (RMSE, Eq. 5), the R-squared 
score (R2, Eq. 6), and mean absolute error (MAE, Eq. 7).
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For optimizing hyperparameters we used grid search [41] with tenfold cross validation 
on the training set, which showed good results in our previous work [27]. The hyperpa-
rameters for the grid search are presented in Additional file 1: Table S1.

Results and discussion
Results of the physical model and data labeling

We calculated the theoretical voltage based on the simplified physical model (Eqs. 1–
2) in the section "A simplified physical model" given the electrical current, steel strip 
and electrolyte parameters. The assumption is that, from the difference of measured to 
theoretical voltage, one can reveal the appearance of parasitic resistance, which indi-
cates bad anode conditions or mis-installation. Figure  6 shows a time series plot of 
the voltage difference (measured–theoretical), which can be seen as “parasitic voltage” 

(3)SStot =

n
∑

i=1

(

yi − ȳ
)2

(4)SSres =

n
∑

i=1

(

ŷi − yi
)2

(5)RMSE =

√

SSres

n

(6)R2
= 1−

SSres

SStot

(7)MAE =

∑n
i=1

∣

∣yi − ŷi
∣

∣

n

Fig. 5  Pipeline for machine learning employed in this work
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or voltage which cannot be explained by other contributions. The moments at which 
the anodes were changed are shown by vertical dashed lines. It can be observed that 
anodes got replaced by maintenance personnel about the same time the median volt-
age difference (parasitic voltage) was at ~ 1  V. The training periods (shaded in orange 
color) for machine learning were determined at times when the voltage difference was 
low, i.e. below 0.6 V, and where the maintenance personnel estimated anode condition 
as good. From the shaded areas containing data with good anode condition (which rep-
resent model training and validation sets together), 25% of data was chosen by random 
sampling for validation. The non-shaded areas were used for the proof of concept. The 
RMSE of the theoretical voltage calculated by the physical model on the validation set is 
0.464 V. The area from month 18 onwards demonstrates the concept very well since the 
model assigned low differences to a fresh anode exchanged in month 18.

Fig. 6  Timeseries plot (complete data set) of the rectifier voltage difference (measured–theoretical) or 
“parasitic voltage” for an exemplary anode couple. The theoretical voltage for the plot is calculated from the 
physical model (Eqs. 1–2). The grey points are raw voltage differences (measured–theoretical), the green line 
is the median value of the raw difference data. The time window for calculating the median is approximately 
10 days before and after (rolling median). The dashed vertical lines with the highlighted text present times of 
anode changes. The orange shaded areas represent the “good segments” used for machine learning model 
training and validation. The unshaded areas represent “bad segments”, while some low voltage difference 
areas were left out for our proof of concept

Table 3  Hyperparameters chosen by grid search for the base regressors (Additional file 1: 
Table S1)

Partial Least Square Regresion Max iterations = 200, N components = 2

Random Forest Regression Max depth = 8, No. estimators = 200, Min samples split = 200, Max sam-
ples = 0.5

Ada Boost Regression DecisionTreeRegressor (Max depth = 2), No. estimators = 1000, Loss = Square, 
Learning rate = 1
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Results of the machine learning models

We trained three different machine learning models described in the "Machine learning" 
section. The optimal hyperparameters chosen by grid search are presented in Table 3.

The predictive quality was evaluated on the validation sets. Figure  7 shows model 
residual plots. For comparison, the respective root mean square error values are 
included in the subplots. RF shows the best prediction on the validation set with a RMSE 
of 0.334 V. It is followed by the physical model with an RMSE of 0.464 V, PLS RMSE 
0.819 V and ADA as the worst performing model with an RMSE of 1.570 V. From the 
plots in Fig. 7 it is clear that RF and the physical model have a higher error in the upper 
voltage region with no obvious global patterns in error distribution. They also appear to 
be less prone to potential outliers. ADA and PLS appear to have failed in fitting the data 
as the point cloud seems to experience a curved structure.

It was however expected that PLS will show less scattered points (outliers) since it 
can extrapolate better than Random Forest which is binning data amongst the known 
instances. Furthermore, RF has the hyperparameter “min samples” chosen to be 200, 
meaning there are 200 instances binned to one voltage value. ADA shows poor behavior 
with this data set.

The hybrid models were trained with 7 additional meta-variables capturing theory-
driven information. Even though the additional variables are derived from the original 
ones (Table 1), we observed an improvement in the models’ performance (Table 4). All 
models were improved through addition of meta-variables from the theoretical model, 
which adds electrochemical and physical knowledge to the models. This may have 

Fig. 7  Prediction error plots of the four models presented on the validation set with the respective RMSE 
results. Top left) Random Forest regression; top right) Ada Boost regression; bottom left) Partial Least Squares 
regression; bottom right) Physical model
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allowed weak learners (RF and ADA) to produce better suiting splitting criteria and 
thus allowed for a better fit. Even though we employed three different metrics for result 
evaluation, the metrics are following the same pattern with RF showing the best perfor-
mance in all of them. This can be assigned to the size of the data set, i.e. with a count 
of ~ 265,000 measurements in the validation set the metrics will be less sensitive to outli-
ers than is the case with using a variety of metrics small data sets. The improved perfor-
mance of RF over boosting algorithms (ADA herein) was also observed in prior work 
[30, 42]. Figure 8 shows a visual comparison of the median voltage differences predicted 
by the physical model (measured–theoretical) and the one predicted by means of the 
best model (Hybrid RF). The model was used to predict also the “bad sectors” which are 
unshaded areas in the plot.

Table 4  Results of  all models on  the  validation sets by  means of  the  scores calculated 
from Eqs. 5–6

R2 Score MAE RMSE R2 Score MAE RMSE ΔRMSE
Baseline Hybrid Hybrid-

Baseline

PLS 0.895 0.610 0.819 0.964 0.308 0.481 − 0.34

Ada Boost 0.614 1.302 1.570 0.583 1.479 1.632 0.06

Random Forest 0.983 0.232 0.334 0.989 0.185 0.263 − 0.07

Physical model 0.966 0.337 0.464

Fig. 8  A time series plot of the difference voltages (parasitic voltages) obtained from the best machine 
learning model (red), i.e. RF hybrid model and the physical model (green )for the complete data set, 
represented as median values. The dashed vertical lines with the highlighted text present times of anode 
changes. The time window for calculating the median is approximately 10 days before and after (rolling 
median). The orange shaded areas represent the “good segments” used for machine learning model training 
and validation. The unshaded areas represent “bad segments”, while some low voltage difference areas were 
left out for our proof of concept
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It can be seen that overall, the best model calculated a lower baseline volt-
age, which is expected to be more realistic especially after the installation of fresh 
anodes. The unexpected lower voltage from month 18 onwards is assigned to a novel 
type of anode coating tested in the unit (which was not available in the training set). 
Both models show slightly lower median voltage.

Concept transfer and limitations

Our proposed concept can be transferred to any setting where existing physical models are 
employed but still have limitations in predictive quality. It is commonly seen that manu-
facturing plants employ physical models to describe dynamic processes in their individual 
production units. With inclusion of metavariables derived from or generated within phys-
ical models, one can improve data-driven predictions. This can be considered a feature 
engineering method. The methodology can be applied to any condition monitoring setup 
where the measured value, descriptive of a condition (a target variable), differs from pre-
dicted or physically modelled baseline caused by suboptimal working conditions. One has 
to be able to clearly determine the target variable (a quantified condition) and its possi-
ble predictors. Early classification in condition monitoring can reduce material and energy 
cost. With the use of ensemble regression models like Random Forest and AdaBoost, one 
can improve predictive power and reduce preprocessing time, since the models work well 
with heterogeneous data. The simplified data processing can therefore reduce the efforts in 
creating online and semi-online automated learning pipelines.

Some of the limitations of this approach will be explored in future research, such as the 
development of a universal model for all rectifiers; the removal of local outliers per strip 
prior to training; automated data labelling; the inclusion of additional process variables 
which are not present in the physical model. The same limitations can be transferred to 
other use cases where one has more data available in the system than those which are being 
considered as co-variates of the target variable. Furthermore, often industrial settings have 
more than one operating/processing unit of the same kind, which means universal mod-
els for all units might be desirable. An important aspect when modelling such systems 
are product and expendable material properties which, if changed, can cause drift in the 
covariance matrix. Besides that, process units can age as well and in case of such a dynamic 
system be influenced by corrosion and other tribological effects. In the model presented 
here, we are certain that the model was trained on well distributed data regarding steel strip 
and anode material. The steel strip and anode material might get changed in the future and 
model re-training could be necessary to improve generalization of the presented model.

Conclusion
In this paper, we presented a hybrid machine learning approach to predict baseline voltage 
in a rectifier placed in an electro galvanizing production line and compared it to a simpli-
fied physical voltage model. The difference of the baseline from the measured voltage pre-
sents parasitic resistance due to bad anode condition. Therefore, this parasitic resistance 
is employed as an indicator of the anode condition. The best model (a hybrid machine 
learning model) shows good predictive quality with an RMSE of 0.263 V in a rectifier with 
(mean ± std. dev.) 11.228 ± 2.525  V. The winning algorithm RF can easily be employed 
semi-online (needs periodical re-training) due to fast and parallelizable training and little 
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preprocessing effort. The final goal is to support the business unit and optimize anode main-
tenance in a data-driven manner. An early change of aged anodes will save electrical energy 
as well reduce downtimes and personnel effort, which are all costly. The model can be used 
for online monitoring of the anode condition, which results in a predictive maintenance 
approach for anode change. The proposed concept can be transferred to any condition mon-
itor and production setting with or without prior knowledge from machine learning models.
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