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Introduction
Continuum structural topology optimization as a generalized shape optimization prob-
lem that has received extensive attention and considerable progress over the past few 
years. Different methods have been developed based on this concept. One of the most 
established methods is a homogenization method where a structure is represented by 
micro scale void materials. Evaluation and orientation of optimal microstructures is 
one of the major challenges in homogenization. Another approach, named the SIMP 
method, originally proposed by Bendsoe [1], has gained a general acceptance due to its 
conceptual simplicity and computational efficiency. However, the existence of transition 
elements and local convergence has been a major challenge in SIMP method. Filter-
ing techniques and parameter constraints have been used to address these challenges. 
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Abstract 

In this paper, a firefly algorithm based hybrid algorithm through retaining global con-
vergence of firefly algorithm and ability to generate connected topologies of optimal-
ity criteria (OC) method is proposed as an alternative method to solve stress-based 
topology optimization problems. The lower and upper limit of design variables (0 and 
1) were used to find initial material distribution to initialize the firefly algorithm based 
section of the hybrid algorithm. Input parameters, the number of fireflies, and the 
number of function evaluations were determined before the implementation of the 
firefly algorithm to solve formulated problems. Since the direct application of the firefly 
algorithm cannot generate connected topologies, outputs from the firefly algorithm 
were used as an initial input material distribution for the OC method. The proposed 
method was validated using two-dimensional benchmark problems and the results 
were compared with results using the OC method. Weight percentage reduction, 
maximum stress-induced, optimal material distribution, and compliance were used 
to compare results. Results from the proposed method showed that the proposed 
method can generate connected topologies which are free from the interference of 
end-users, and only depend on boundary conditions or design variables. From the 
results, the objective function (weight of the design domain) can be further reduced in 
the range of 5 to 15% compared to the OC method.
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Optimization (ESO/BESO) methods are other techniques proposed to solve structural 
topology optimization [2–4]. Due to truss like optimal layouts it generates, ESO-based 
methods have been recommended to solve problems having pin-jointed connections. 
The other variation is level set method which is based on the optimization of implicit 
interfaces. The boundaries move according to the stress on them. This method is very 
sensitive to the initial guess and easily caught in local minima [5]. For real world prob-
lems, globally optimum solutions are preferable and methods which can generate these 
solutions are getting more attention for solving optimization problems. Metaheuristic 
algorithm-based methods are also attractive when solving structural topology optimiza-
tion problems [5–14].

Firefly algorithm (FA) is a nature-based optimization algorithm developed by Xin-She 
Yang in late 2007 [15, 16]. It is a stochastic, meta-heuristic algorithm which has been 
implemented for solving different optimization problems. FA is inspired by the flashing 
behavior of fireflies, whose lighting behavior attracts mating partners and send warnings 
of a potential predators. This algorithm has been used to solve different numerical prob-
lems [17–21] and shows an outstanding performance in terms of convergence and effi-
ciency over the other nature-inspired algorithms, including genetic and particle-swarm 
optimization algorithms [19, 22–24]. FA and its variants have been applied for different 
optimization and engineering problems as shown in Fig. 1.

Principle of firefly algorithm
The FA idealizes several aspects of fireflies in nature. For example, a real firefly flashes in 
discrete patterns, whereas the modeled fireflies are always glowing. Then, three rules are 
used to model fireflies behavior and govern the algorithm [15]:

1.	 The fireflies are unisex which leads fireflies to be attracted to another firefly irrespec-
tive of their sex.
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Fig. 1  Taxonomy of firefly application [22]
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2.	 Attractiveness is proportional to the brightness, where both decrease as the distance 
between two fireflies increase. For any two fireflies within the domain considered, 
less bright fireflies are attracted to brighter ones. If all fireflies have equal brightness, 
the fireflies will move randomly.

3.	 The brightness of a firefly is proportional to the value of the function being maxi-
mized and can be considered as the value of the objective function.

Based on these three rules, the basic FA can be summarized by a pseudo code as (Fig. 2):

Step 1. (Generating initial population of solution)

	 The FA generates a randomly initial population of solutions, xik.

where SP is the population size, D is a dimension of the problem, ub and lb are the 
lower and upper limit of the parameter or design variable xik . After the generation of 
the initial population, the objective function values for all solutions xi will be calcu-
lated and variable t , which is the number of iteration, is set to 1.

Step 2. (Calculate the new population)

Each solution of the new population is created from the appropriate solution xi as follows:
For each solution xi , the algorithm examines every solution xj , j = 1, 2, 3, . . . i , iteratively, 

starting from j = 1 . If solution xj has a higher objective function value than xi ( xj is brighter 
than xi ), the parameter values xik , k = 1, 2, 3, . . . ,D are updated by:

where i = 1, 2, . . . SP and k = 1, 2, 3 . . .D.

(1)xik = lk + (ub − lb) ∗ rand(size(lb)),

(2)xik = xik + β
(

xik − xjk
)

+ αSk(rand − 0.5),

Objective function 
Generate an initial population on  fireflies 
Light intensity  at is determined by 
Define the light absorption coefficient 
While 
For
For j=1: n (all n fireflies, inner loop) 
If
Move firefly  towards 
End if 
Vary attractiveness with distance via   

Evaluate the new solution and update light intensity 
End for 
End for 
Rank the fireflies and find the current global best ∗

End while 
Post-process of results and visualization 

Fig. 2  Pseudo code of firefly algorithm [15]
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where the first, second and third terms are the Cartesian distances, due to the attraction 
and randomization term. In the second term, β is a monotonically decreasing exponen-
tial function which describes a firefly’s attractiveness:

where rij is the distance between firefly i and firefly j , while β0 and γ are predetermined 
algorithm parameters, maximum attractiveness value, and absorption coefficient, 
respectively. Distance rij is obtained by the Cartesian distance as:

Control parameter β0 describes attractiveness when two fireflies are found at the same 
point of search space, i.e. at r = 0 the variation of attractiveness with increasing distance 
from a communicated firefly is determined by the control parameter γ.
α ∈ [0, 1] in the third term in Eq.  2 is a randomization parameter,Sk and randk 

are scaling parameter and random number uniformly distributed between 0 and 1, 
respectively. The scaling parameters Sk are calculated by:

In addition, whenever the values of the solution xik are changed, the FA controls the 
boundary conditions of created solutions and memorizes the new objective function 
value instead of the old one. The boundary constraint-handling mechanism used in 
the FA is given by:

The last solution obtained by Eq.  6 will be taken as the final solution of the new 
population which will be transformed the next iteration of the FA.

Step 3. (Reduce the randomization parameter)

The solution quality can be enhanced by reducing the randomization parameter α 
with a geometric progression reduction scheme which can be expressed as:

where MCN is the maximum cycle number, t is the current iteration number, θ ∈ (0, 1] 
is the randomness reduction constant. In most applications, we can use θ = 0.95 ∼ 0.99 
and α0 = 1 [15].

Step 4. (Record the best solution)

Ranks the fireflies by their light intensity/objectives and memorizes the best solu-
tion so far xbest and increase the variable t by one.

Step 5. (Check the termination criterion)

(3)β = β0e
γ rij ,

(4)rij =
∣

∣xi − xj
∣

∣ =

√

√

√

√

d
∑

k=1

(

xi,k − xj,k
)2
.

(5)Sk = |uk − lk |.

(6)xik =

{

lk , if xik < lk
uk , if xik > lk

.

(7)α(t) = α(t − 1).θ
1

MCN ,
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If t is equal to the maximum number of iterations then the algorithm is finished, 
else go to step 2.

In the simplest case for the maximum optimization problem, the brightness I of a 
firefly at a location x can be chosen I(x) ∝ f(x) However, the attractiveness β will be 
judged by other fireflies. Thus, it varies with the distance rij between firefly i and j . 
The distance between any two fireflies i  and j at xi and xj  respectively is the Carte-
sian distance

Thus, the light intensity decreases with the distance from its source and the light 
is also absorbed in the media. The light intensity I(γ ) varies according to the inverse 
square law:

where Is is the intensity at the source. For a given medium with a fixed light absorption 
coefficient γ , the light intensity I varies with the distance r which can be expressed as:

where I0 is the original light intensity at zero distance r ≈ 0 . Since a firefly’s attractive-
ness is proportional to the light intensity seen by the adjacent fireflies, which can be 
defined as:

where β0 is the attractiveness at r = 0.  The movement of a firefly i to another, more 
attractive (i.e. brighter) firefly j is determined as:

where the first term is the Cartesian distance between two fireflies, and the second term 
is due to the attraction. The third term describes the randomization, with α being the 
randomization parameter having a value of [0, 1] and ∈i is a vector of random numbers 
drawn from a Gaussian distribution or uniform distribution.

Optimization process
Problem formulation

Based on von Mises stress failure theory a ductile material will fail when the von Mises 
stress induced in the material is higher than the yield strength of the material. Taking 
this failure into account, generalized stress constrained topology optimization problem 
for two- and three-dimensional mass minimization can be defined as:

(8)rij =
∣

∣xi − xj
∣

∣ =

√

√

√

√

d
∑

k=1

(

xi,k − xj,k
)2
.

(9)I(γ ) =
Is

r2
,

(10)I = I0e
−γ r ,

(11)β = β0e
γ r2 ,

(12)xt+1
i = xti + β0e

−γ r2
(

xtj − xti

)

+ α ∈
t
i ,
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where V  is a volume (objective function), N  the total number of elements which defines 
the design domain,e elements within the design domain, ve is volume of each element in 
the design domain, σ vm von Mises stress, σ yield is maximum (yield stress). K  is a global 
stiffness matrix, U  is a global displacement vector, F  a global force vector, xe is relative 
density/design variable, xmin is the minimum relative density to control the singularity 
phenomenon associated with the design variable.

Finite element analysis

For 2D problems, all the design domains are assumed to be rectangular and discretized 
by a square finite element as shown in Fig. 3. Element numbering and the degree of free-
doms for each node are also defined in the Figure.

Stress and strain analysis

A two-dimensional stress state consists of three different stress components as shown in 
Fig. 4, which are the normal stresses σ yy and σ xx and the shear stress σ xy = σ yx.

Like the stress state, there are three strain components which are directly proportional 
to the displacements in the respective direction can be expressed as:

(13)

Min
X V =

N
∑

e=1

xPe ve

Subjected to : g(xe) =
σ vm

σ yield
< 1

: KU = F

0 < xmin ≤ xe ≤ 1,

Fig. 3  Discretized design domain

Fig. 4  Two-dimensional element stress state
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where εxx,εxx and εxy are the strains in X ,Y  and XY  plane, respectively. u and v are the 
displacement in X and Y  direction, respectively. The stress-induced in the material can 
be related with the strain as:

where D is the constitutive matrix, which can be related to the Young’s modulus and 
Poisson’s ratio as:

where E is Young’s modulus which is a measure of the ratio of axial stress to axial strain 
in uniaxial tension. Poisson’s ratio, respectively. v is the Poisson’s ratio which is the nega-
tive ratio of lateral strain to axial strain, these values range between 0.25 and 0.35 [25].

Shape function

Shape functions are used to interpolate the displacement field within the design 
domain. For a linear displacement, the shape functions in a local coordinate, as shown 
in Fig.  5, can be expressed as shown in Eq.  17. To calculate the stress-induced and 
elemental stiffness matrix the displacement is approximated using shape functions as:

where

(14)εxx =
∂u

∂x
, εyy =

∂v

∂y
, εxy =

∂v

∂x
+

∂u

∂y
,

(15){σ } = [D]{ε},

(16)[D] =
E

1− v2





1 v 0

v 1 0

0 0
1−v
2



,

(17)[N ] =

⌈

N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4

⌉

,

Fig. 5  Square finite element in the Natural coordinate system
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Strain–displacement matrix

The displacement vector can be approximated in terms of the shape functions as:

where {d} is the nodal displacement vector, {u} is the displacement vector and [N ] is a 
vector of shape function. For computing the stress, strain, and stiffness the matrix the 
strain–displacement matrix having a size of 3 × 8.

The term [∂]{N } is described as a strain displacement matrix which can be expressed 
as:

Solving formulated problems

The proposed hybrid method has two stages for solving the proposed problem: the 
first stage will generate the values for design variables using the FA algorithm, and 
generated values of the design variables will be used as input for the second stage, OC 
method. The design variables at the second stage of the proposed method are updated 
using the following scheme:

where m is a positive limit, which usually takes a value of 0.2, η is a numerical damping 
coefficient with a value of 0.5 [26–28], β which will be dependent on the type of prob-
lems defined below:

N1 =
1

4
(1− ξ)(1− η) N3 =

1

4
(1+ ξ)(1+ η),

N2 =
1

4
(1+ ξ)(1− η) N4 =

1

4
(1− ξ)(1+ η).

(18)
{u} = [N ]{d}

{ε} = [∂]{u}

{ε} = [∂][N ]{d},

(19)[B] =







∂N 1
∂x

0

0
∂N 1
∂y

∂N 1
∂y

∂N 1
∂x

∂N 2
∂x

0

0
∂N 2
∂x

∂N 2
∂y

∂N 2
∂x

∂N 3
∂x

0

0
∂N 3
∂x

∂N 3
∂y

∂N 3
∂x

∂N 4
∂x

0

0
∂N 4
∂x

∂N 4
∂y

∂N 4
∂x






.

(20)

if xeβ
η
e ≤ max(xmin, xe −m)

xnewe = max(xmin, xe −m)

ifmax(xmin, xe −m) < xeβ
η
e ≤ min(1, xe +m)

xnewe = xeβ
η
e

if min (1, xe +m) < xeβ
η
e

xnewe = min (1, xe +m),

(21)βe =

∂v
∂x

�
∂g
∂x

,
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where � is a Lagrangian multiplier. Here, the value is found from a bi-sectioning algo-
rithm. The sensitivity analysis for problems defined in Eq. 21 can be calculated as:

In this paper, the stress is calculated at the centroid of an element [28–30]. To 
relate the macro and micro stress levels, local stress interpolation scheme proposed 
by Duysinx and Sigmund [31] is used as:

where σ (x) is local stress at a material point, De(x) is macroscopic elastic tensor which 
can be related to the constitutive elasticity tensor D0 by a power-law approach as shown 
in Eq. 24, ε(x) is the average strain of a material point which can be expressed in terms 
of strain displacement matrix Be and elemental displacement vector ue . The exponent 
q > 1 is a constant to preserve physical consistency in the material model.

Substituting Eqs. 24 and 25 into Eq. 23, the stress at any material point with the 
given design domain can be expressed as:

From Eq.  26 the partial derivative of the constraint function in Eq.  22 can be 
expressed as:

From equilibrium equation we have, KU = F  , differentiating both sides of the 
equilibrium equation with respect to the design variable yields:

Substituting Eq. 20 for partial derivative of the displacement vector in Eq. 27 yields 
the sensitivity analysis for stress constraint defined in Eq. 22 as:

Therefore, the sensitivity analysis for stress-based topology optimization becomes:

(22)
∂v
∂x
∂g
∂x

=
1

∂
∂x

(

σ vm

σ yield
− 1

) .

(23)σ (x) =
De(x)ε(x)

xq
,

(24)De(x) = xPD0,

(25)ε(x) = Bue .

(26)σ (x) = xP−qD0Beue .

(27)
∂g

∂x
= (p − q)xP−q−1D0Beue + xP−qD0Be

∂ue

∂x
.

(28)

(29)
∂g

∂x
= (p − q)xP−q−1D0Beue − xP−qD0Be

∂k

∂x

u

k
.

(30)
∂v
∂x
∂g
∂x

=
1

(p − q)xP−q−1D0Beue − xP−qD0Be
∂k
∂x

u
k
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Once the sensitivity analysis for both formulation was completed, a Matlab code is 
written for the stress based topology optimization and an existing Matlab code was 
used for compliance [28, 29]

Determination input parameters

Before using FA to solve stressed based topology optimization problems, input 
parameters must first be determined. These parameters include the number of fire-
flies, the maximum number of iterations, the randomness parameter α and initial 
brightness value β . Among these parameters, the effect of the number of fireflies and 
the number of iterations were studied, and the best combination of these parameters 
was selected for further implementation of the algorithm. The following sections will 
discuss the determination of these parameters (number of iteration and number of 
fireflies). The value of other parameters was directly adopted from other applications 
of FA [17, 19].

Number of fireflies

To assess the effect of a number of function evaluations on the efficiency of FA, a 
range between [50 and 500] function evaluations was considered. A design domain 
was formulated and solved using a FA for the range of function evaluations for 100 
test runs. Then, the variation of best, meaning, and worst values of the objective 
function with function evaluation was studied through plotting these values with the 
number of fireflies, as shown in Fig. 6. From the figure, the objective function is mini-
mum when the number of function evaluations is 200, and the number of fireflies is 
30 as shown in Fig. 6a but the variation of the objective is not stable with the variation 
of the number of fireflies as shown in Fig. 6b, c. From the figure, it can be noticed that 
variation of the objective function is less sensitive for the number of fireflies greater 
than 35. Range of fireflies > 35 and function evaluations > 250 is the optimum range 
for best values of the objective function.

Number of iterations
An optimization problem based on Eq. 13 was formulated and solved using FA for the 
range of function evaluations for 100 test runs. Then, the variation of best, mean, and 
worst values of the objective function with the variation of the number of fireflies was 
studied through plotting these values of the objective function with the number of 
fireflies, as shown in Fig. 7. From the figure, it can be noticed that the variation of the 
objective function is less sensitive to the number of function evaluations when > 350. 
For function evaluations > 350, the range of the number of fireflies > 30 is the range for 
best values of the objective function.

Since the direct implementation of the FA yields a topology full of transition ele-
ments and highly affected by the checkerboard effect as shown in Fig.  8. A hybrid 
method was proposed to overcome this issue as described in Fig. 9. One of the chal-
lenges in the currently available methods is the dependency of initial material dis-
tributions [5]. From the initial topology generated from the firefly algorithm, we can 
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Fig. 6  Effect of variation of function evaluation on objective function
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Fig. 8  a Design domain and b generated material distribution

Fig. 9  A schematic diagram of structural topology optimization using discrete firefly
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have the best values for the design variables which leads to the best values of the 
objective function. Even if it generates values of design variables, generated topolo-
gies are full of disconnected elements which are unwanted from an engineering per-
spective. To address this issue in direct implementation of FA and dependence of OC 
method on initial material, the outputs of the design variable values using FA as an 
input for the OC method. From the convergence history shown in Fig.  10, the pro-
posed method can generate connected optimal plots.

Result and discussion
The proposed method was used to solve benchmark problems under different discretiza-
tion size and the results are compared with solutions using an OC method.

Numerical results

Cantilever beam

The first case studies considered was a cantilever beam under loading and boundary 
conditions defined in Fig. 11.

100
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Fig. 10  Convergence history of hybrid method

Fig. 11  Boundary and loading condition
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The first study was solved using the proposed method with a design domain and load-
ing conditions defined in Fig. 11a and the generated topologies for different discretiza-
tion size of the design domain are presented in Fig. 12.

The generated topologies for the Cantilever beam under loading and boundary condi-
tions in Fig. 11b, c are presented in Figs. 13 and 14, respectively.

L‑shape beam

The other benchmark problem considered to be solved using the proposed method is an 
L-shape beam under different boundary and loading conditions. Generated topologies for 
the design domains using the proposed method are shown in Tables 1 and 2, respectively.

Fig. 12  Optimal material plots for numerous sizes of design domain a 45 × 32, b 60 × 80, c 80 × 30, d 
100 × 40, e 120 × 60 and f 200 × 70

Fig. 13  Optimal material plots for numerous sizes of design domain a 40 × 40, b 60 × 30, c 80 × 30, and d 
120 × 60
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Simply supported

The other benchmark problem used for validation of the proposed method was a simply 
supported beam under the loading and boundary condition defined in Fig. 15 and gener-
ated topologies are shown in Fig. 16 under different discretization sizes.

Fig. 14  Optimal material plots for numerous sizes of design domain a 40 × 20, b 60 × 30, c 60 × 60, and d 
80 × 30

Table 1  Boundary and  loading condition with  respective topologies under  various 
discretization size L-shape variant 1
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Comparison of results
The optimization results using the proposed method were compared with results from 
OC-method topologies. Table 3 shows the composition of generated optimal topolo-
gies using the proposed method and optimal topologies using OC based method for 

Table 2  Boundary and  loading condition with  respective topologies under  various 
discretization size L-shape variant 2

Fig. 15  Definition of boundary and loading conditions

Fig. 16  Optimal material plots for different sizes of design domain a 60 × 20, b 80 × 30, c 120 × 60, and d 
100 × 40
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different benchmark problems. Optimal topologies using the proposed method have 
less weight reduction percentage than the topologies generated using the OC method 
as shown in Table  4. Even if the weight reduction percentage is less for respective 
design domains, generated topologies using the proposed method are more complex 
than the OC method.

Table 3  Generated optimal topologies using proposed method and  optimality criteria 
(OC) method

Table 4  Performance evaluation of proposed method on different design domains

Where CCA, CCB, CCC, SS, LLL and LLU indicate classical cantilever beam, Cantilever beam with pre-defined shape, 
cantilever beam under multiple loading, simply supported beam and loading and boundary conditions of L-shaped beam, 
respectively

Design 
domain

Optimal plots

Void material 
(%) proposed

Void material 
(%) OC based

Solid 
material (%) 
proposed

Solid 
material (%) 
OC based

Transition 
material (%) 
proposed

Transition 
material (%) 
OC based

CCA​ 51.13 36.71 37.54 55.00 12.63 8.29

CCB 54.50 44.67 7.96 8.50 37.54 46.83

CCC​ 44.50 38.75 13.46 9.33 42.04 51.92

SS 44.67 37.13 14.38 8.96 40.96 53.92

LLL 60.52 54.6 5.04 4.8 34.44 40.6

LLU 47.96 44.05 6.96 5.6 45.07 50.35
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Conclusion
This paper presented a firefly algorithm (FA)-based hybrid method for stress-based 
topology optimization of 2D structures. The advantages of generating globally con-
vergent solutions from FA, and the ability to generate connected topologies of the 
OC method, are crucial elements in the proposed method. In the proposed method, 
initial parameters for the SIMP method were determined using FA and also used as 
an input from the OC-based method, then optimal topologies were generated. The 
proposed method was validated using different benchmark problems to address 
global convergence and dependence of optimal material distribution on initial values 
of design variables of the OC method. Generated topologies and simulation results 
show the objective function, which is the weight of the design domain, can be further 
minimized in the range of 5–15%.
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