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Abstract

Tagged Magnetic Resonance images (tagged-MRI) are generally considered to be the
gold standard of medical imaging in cardiology. By imaging spatially-modulated
magnetizations of the deforming tissue, indeed, this modality enables an assessment of
intra-myocardial deformations over the heart cycle. The objective of the present work is
to incorporate the most valuable information contained in tagged-MRI in a data
assimilation framework, in order to perform joint state-parameter estimation for a
complete biomechanical model of the heart. This type of estimation is the second major
step, after initial anatomical personalization, for obtaining a genuinely patient-specific
model that integrates the individual characteristics of the patient, an essential
prerequisite for benefitting from the model predictive capabilities. Here, we focus our
attention on proposing adequate means of quantitatively comparing the cardiac model
with various types of data that can be extracted from tagged-MRI after an initial image
processing step, namely, 3D displacements fields, deforming tag planes or grids, or
apparent 2D displacements. This quantitative comparison—called discrepancy
measure—is then used to feed a sequential data assimilation procedure. In the state
estimation stage of this procedure, we also propose a new algorithm based on the
prediction–correction paradigm, which provides increased flexibility and effectiveness in
the solution process. The complete estimation chain is eventually assessed with synthetic
data, produced by running a realistic model simulation representing an infarcted heart
characterized by increased stiffness and reduced contractility in a given region of the
myocardium. From this simulation we extract the 3D displacements, tag planes and grids,
and apparent 2D displacements, and we assess the estimation with each corresponding
discrepancy measure. We demonstrate that—via regional estimation of the above
parameters—the data assimilation procedure allows to quantitatively estimate the
biophysical parameters with good accuracy, thus simultaneously providing the location
of the infarct and characterizing its seriousness. This shows great potential for combining
a biomechanical heart model with tagged-MRI in order to extract valuable new indices in
clinical diagnosis.
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Introduction
Cardiac biomechanical modeling has made tremendous progress over the past decades,
and some accurate models are now available to represent the complex deformations of
the organ—among other quantities of interest—over full heartbeats, frequently based on
multi-physics and multi-scale formulations, see e.g. [1,2] and references therein.
As for all natural systems—as e.g. in geophysics—a great challenge consists in dealing

with themany unknown or uncertain quantities—initial conditions, boundary conditions,
and various physical parameters—that need to be prescribed for running model simula-
tions [3]. In this work, we decide to rely on a data assimilation strategy [4] to estimate the
uncertain quantities while allowing predictive simulations.
Concerning the specific problem of estimation in cardiac biomechanical modeling, dif-

ficulties arise from both (1) the complexity of the models considered, and (2) the nature
of the available measurements, often relying on medical imaging [5]. An effective estima-
tion methodology has been proposed by [6] for this type of model, based on a so-called
sequential approach—also known as observer method. In this approach, the dynamical
model is corrected at each time using the computed discrepancy between the current
simulation and the actual measurements, see also [7]. This strategy was designed to be
applicable tomeasurements concerning displacements, whether they be given internally—
in a sub-region of the system—or on a boundary or a part thereof. It was also shown to
be extendable to data consisting of segmented surfaces as obtained by processing various
types of medical imaging dynamical sequences.
In this paper, we focus on estimation based on data provided by tagged-MR imaging

sequences [8,9]. Tagged-MR is generally considered to be the “gold standard” in cardiac
imaging, in particular as regards the assessment of so-called “cardiac mechanical indi-
cators”, namely, indicators pertaining to displacements, strains, and volumes [10]. As a
matter of fact, tagged-MR images visualize the deformations of grids associated with the
actual tissues, which is of course most valuable for clinical purposes, both from a qual-
itative standpoint as assessed by the physician’s eye, and with a view to obtaining such
quantitative indicators. However, the problem of extracting actual 3D material displace-
ments from a tagged-MR sequence gives rise to serious difficulties [11,12]. In fact, in
many cases only 2D “apparent” displacements are obtained, which introduces specific
errors in the displacement-based quantitative indicators, in addition to usual inaccura-
cies pertaining to image processing. Of course, these difficulties are also of concern when
extracted displacements are to be used in an estimation setup, hence this justifies looking
more closely into tagged-MR modalities to devise and analyze strategies to adequately
employ them for estimation purposes. In this regard, the contributions presented in this
communication are twofold.
First, we propose a systematic approach to incorporate within an estimation frame-

work a wide range of data, potentially obtained from prior processing steps applied on
tagged-MR images. These data vary in their nature, covering the cases of: full mechanical
displacements in a subdomain; sequences of deforming tag planes and tag grids; and 2D
apparent displacements. Extracting state—and parameter—corrections from these data is
an intricate task. To address this challenge, we devise for every case relevant discrepancy
measures. The soundness of our approach is corroborated by a complete mathematical
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analysis of the state observer in an idealized fully linear case, provided as complementary
material in Appendix A.
Secondly,we propose a relevant time-discretization scheme for the state observer,which

is a particularly crucial point in the context of sequential data estimation. This scheme
is built upon a “prediction–correction” strategy, where the former step corresponds to
genuinemodel timemarching, and the latter to discrepancy-based adjustments. This clean
decomposition of these steps offers numerous practical benefits. Additionally, we are able
to provide evidence that the obtained time-discrete observer retains the convergence
properties of the time-continuous observer, with rigorous proofs detailed in Appendix B.
The outline of the paper is as follows. In the forthcoming section we recall the main

principles underlying the design of observers, and we provide a quick overview of the
mechanical model of a beating heart, as an example of a model formulation. The next
section is dedicated to describing the potential information extracted from tagged-MR
images and to proposing—for each type of data—the discrepancy measures. We then
address the issue of space and time discretization of the observer in order to perform joint
state and parameter estimation. Finally, in the last section we present several numerical
experiments in which we performed parameter estimation based on synthetic measure-
ments.

Position of the problem
Principles of sequential estimator design

The aim of a sequential estimator—also called observer—is to approximate a real tra-
jectory, in spite of various uncertainties, using the knowledge provided by the mea-
surements obtained on this specific real trajectory. Let us consider a real trajectory
yref(t), t ∈ [0,+∞), belonging to the so-called state space Y and solution, in our case, of
a—possibly infinite-dimensional—dynamical system summarized in the state space form

ẏref = F(yref, t),

with an uncertain initial condition

yref(0) = y0 + ζy ,

where y0 is a known a priori and ζy is the uncertain part in the initial condition. Therefore,
any simulation of y—based on the discretization of the dynamical system—starting only
from y0 will be affected by the propagation of this error made in the initial condition. To
circumvent this difficulty, we can benefit from the measurements at our disposal on the
trajectory. We denote by z these measurements—also called observations and belonging
to the observation space Z—which are assumed to be generated by a mapping H on the
real trajectory, up to additional measurement errors

z = H(yref, t) + χ .

The observer denoted by ŷ is a system that starts from the only part known in the initial
condition—namely y0—and uses in time the available measurements z to generate a tra-
jectory ŷ(t), t ∈ [0,+∞) that converges to yref as fast as possible. Therefore, simulating ŷ
instead of y from y0 gives a better approximation of the targeted system.
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The main categories of observers addressed here are computed by a feedback law based
on the measurements in the form

⎧

⎨

⎩

˙̂y = F(̂y, t) + G(z − H(̂y, t))

ŷ(0) = y0,

whereG is called the gain operator, also referred to as filter. The dynamics of ŷ is corrected
when a discrepancy is observed between the actual measurements z and themeasurement
H(̂y) that would have been produced by ŷ. This discrepancy

J(̂y, t) = z − H(̂y)

is also called innovation since it not only expresses an observation error, but also a source
of improvement for the observer.We point out that with certain types ofmeasurements—
as is typically the case with image-based observations—it is sometimes difficult to define
an adequate observation operator but easier to directly compute a discrepancy [6]. This
is not a problem for the observer definition since only the discrepancy appears.
In a fully linear situation, namely, when the dynamics is linear with F(y, t) = A(t)y + R

and H(y, t) = H(t)y, the most well-known gain operator is given by the Kalman gain, see
e.g. [13,14] and references therein. This operator is expressed as G(t) = P(t)H(t)∗ where
P is an operator following the Riccati evolution equation

Ṗ = AP + PA∗ − PH∗HP, P(0) = P0,

andH∗ is the adjoint of H. Although P is computable for any dynamics operator A, it leads
after spatial discretization to a discrete operator which is intractable in practice. This
phenomenon has been known for decades and called “curse of dimensionality” [14,15].
Therefore, for specific dynamics other types of gains have been investigated as initiated by
[16]. They are based on the fact that, when computing the estimation error ỹ = yref − ŷ,
we get in a fully linear setting the following dynamics

⎧

⎨

⎩

˙̃y = (A − GH)̃y − Gχ

ỹ(0) = ζy .

Hence, G should be designed to stabilize the estimation error dynamics operator A−GH,
so that the homogeneous system tends to 0, namely,

ỹχ=0
t→+∞−−−−→ 0.

In the presence of noise in the measurements, this would also control the error dynamics.
This strategy is referred to as the Luenberger observer or nudging—see [17] for a survey.
For the elastodynamics system—a particular case of second-order hyperbolic systems—
[6] has shown that a very simple choice of

G = γH∗, (1)

with γ a scalar coefficient can be sufficient.
In a nonlinear configuration, fewer theoretical results are available. However, an

accepted strategy is to replace in the gain the use of the adjoint of the observation operator,
namelyH∗, by the adjoint of the tangent operatorDH(̂y)∗ around the estimated trajectory.
Therefore for small errors we can expect that the linearized error around the trajectory is
stable.
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One last fundamental aspect that we need to describe in this introduction to observer
design is how parameter estimation—also called identification—can be carried out. Let
us denote by θ the uncertain parameter to be identified. Note that θ may be a vector of
components or even a distributed field. The main idea is to introduce an augmented state
vector and dynamics operator

�y =
(

y
θ

)

, �F(�y, t) =
(

F(y, θ , t)
0

)

,

such that we still have �ẏ = �F(�y, t). Then, a Kalman observer can be directly defined on
this augmented model leading to a covariance operator and gain

P =
(

Pyy Pyθ
Pθy Pθθ

)

, G =
(

Gy
Gθ

)

.

However, it is more intricate to define a relevant Luenberger observer for the augmented
system as the observations are frequently linked to the parameters through the state only.
Therefore, there is little hope that γH∗ will lead to an efficient gain. An alternative strategy
was proposed by [18] as a generalization of the adaptive filtering strategy of [19,20]. The
idea is to retain the Luenberger observer on the state while using a Kalman-like gain on the
parameters. This strategy can be very effective in practice, since it is common to consider
a parameter described much more coarsely than the state discretization, thus alleviating
the curse of dimensionality associated with optimal filtering. The complete observer reads

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

˙̂y = F(̂y,̂θ , t) + γDH∗(z − H(̂y, t)) + L˙̂θ , ŷ(0) = y0
˙̂
θ = U−1L∗DH∗(z − H(̂y, t)), ̂θ (0) = θ0

L̇ = (DyF − γDH∗ DH)L + DθF, L(0) = 0

U̇ = L∗DH∗ DHL, U(0) = P−1
θθ (0),

(2)

where U−1 is a reduced covariance operator on the parameter space and L is a “sensitivity”
operator from the parameter space to the state space. We see in the dynamics (2) that the
state gain is the combination of the Luenberger gain and a gain directly inferred from the
parameter filter so that

Gy = (γ1 + LU−1L∗)DH∗.

In [18] the convergence of the complete observer is also established—at least in a linear
configuration—based on the idea that the Luenberger state observer reduces the uncer-
tainty to the parameter space where the optimal filter operates. Moreover, the effective-
ness of this approach has already been applied to biomechanical identification problems
by [7,21].

Example of model formulation

Weconsiderhere amodel of beatingheart involving a largedisplacement solid formulation
with active stresses driven by an electrical input. Let us now introduce some notations in
order to summarize themodel equations.We denote the heart domain by�(t) at any time
t. This domain is the image of a reference configuration�0 through the solid deformation
mapping

ϕ :

∣

∣

∣

∣

∣

�0 × [0, T ] −→ �(t)

(ξ, t) �−→ x = ϕ(ξ, t) = ξ + u(ξ, t),



Imperiale et al. Adv. Model. and Simul. in Eng. Sci.            (2021) 8:2 Page 6 of 47

where u denotes the solid displacement, so that the solid velocity is given by v = u̇. The
deformation gradient tensor F is given by

F (ξ, t) = ∇ξϕ = 1 + ∇ξu.

Furthermore, we introduce the right Cauchy-Green deformation tensor C = Fᵀ · F . We
finally recall that the Green-Lagrange strain tensor denoted by e is defined by

e = 1
2
(C − 1) = 1

2

(

∇ξu + (∇ξu)ᵀ + (∇ξu)ᵀ · ∇ξu
)

.

Regarding the mechanical quantities notation, we denote by ρ the tissue mass per unit
volume, and by σ the Cauchy stress tensor associated with the deformed configuration. In
the reference configuration, we respectively define the associated first and second Piola-
Kirchhoff stress tensors as T = Jσ · F−ᵀ and � = F−1 · T = JF−1 · σ · F−ᵀ, where
J = det F .
The constitutive law can be considered as a nonlinear rheological combination of a

passive part and an active part T = �p + �a. The passive part �p is described by a
hyperelastic law of potential W and a viscous component chosen proportional to the
strain rate ė

�p(e, ė) = ∂W
∂e

(e) + ηsė.

Concerning the hyperelastic law, there exists some experimental evidence—based on
detailed ex-vivo tri-axial shear testing—in favor of a complete orthotropic passive behavior
[22], with a so-called sheet structure providing a second privileged direction, namely,
after the muscle fiber direction. However, the sheet direction cannot be characterized in-
vivo for patient-specific modeling purposes. Moreover, various studies have shown good
agreements of transversely isotropic models with experimental data obtained at the organ
level, see e.g. [23,24]. We thus consider a transversely isotropic law of exponential type
earlier proposed by [25], and inspired from the fully orthotropic model of [26], viz.

W = C0 exp
(

C1(J1 − 3)2
) + C2 exp

(

C3(J4 − 1)2
) + κ(J − 1) − κ ln(J ),

where J1 is the standard first reduced invariant, J4 is the reduced invariant accounting
for the anisotropy of the material in the fiber direction τ, namely J1 = J− 2

3 tr(C), J4 =
J− 2

3 τ · C · τ, and κ is the bulk coefficient.
For the active part �a, we rely on the model proposed in [27], with internal variables

defining the active strain ec, the active stiffness kc and the associated active stress τc,
along the fiber direction τ in a chemically-controlled constitutive law describingmyofibre
mechanics [27,28]. Therefore, we have �a = σ1D(ec, kc, τc)τ ⊗ τ. We finally end up with
the following second Piola-Kirchhoff stress tensor

�(e, ec, kc, τc) = ∂W
∂e

(e) + ηsė + σ1D(ec, kc, τc)τ ⊗ τ.

Concerning the boundary conditions, following [7] we model the interactions with the
surrounding organs by visco-elastic boundary conditions on a subpart of the boundary,
which gives in the reference configuration T · n = ksu + csv on �n, where n denotes the
surface normal in the reference configuration. Regarding the pressure load, we consider
a uniform following pressure on the left and right endocardium easily written in the
deformed configuration σ · nt = −pv,i nt on �n,i(t), i = {1, 2}, where, here, nt denotes the
normal of the deformed configuration boundary. Finally, the complete mechanical model
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reads
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u̇ = v, in �0
ρv̇ − div(T ) = 0, in �0
T · n = ksu + csv, on �n
T · n = −Jpv,i F−ᵀ · n, on �c,i
T · n = 0, on ∂�0\((∪i�c,i) ∪ �n).

(3)

Together with the internal variable dynamics given in [27], it constitutes a general defini-
tion of the dynamical operator denoted by F in our above summarized description for a
state y corresponding to (u, v, ec, kc, τc).

Filtering data available from imagingmodalities
For assessing the physiological condition of a patient’s heart, physicians usually seek stan-
dard indicators such as mass, volume or ejection fraction. Additionally intra-myocardial
deformations are of great importance to assess the cardiac function in a localized man-
ner. Even though the former three global indicators can be obtained using various types
of medical image modalities—e.g. cine-MRI—the latter are more intricate to capture by
standard procedures.
Magnetic resonance imaging with tissue marking—referred to as tagged-MRI—was

introduced in the late 80’s [8]. By non-invasively imprinting a pattern in the acquired
images—through specificmagnetizationof the tissue—it revealsmyocardial deformations.
Various types of tagged imagemodalities have arisen since its inception. They differ by the
orientation, the temporal persistence or even the shape of the pattern. For instance, the
SPAcialModulation ofMagnetization (SPAMM)modality—introduced by [9]—generates
a grid-like pattern, whereas the first tagging images included a radial pattern—see e.g. [29].
The temporal persistence of the pattern in SPAMM images covers the complete heart
systole. Figure 1a shows an example of a SPAMM image (in short axis view) at marking
time. We observe the regular pattern within the image domain. Figure 1b shows the same
image slice obtained during contraction. In this second image we observe the deformation
of the originally regular pattern subject to the material displacements.
Even though SPAMMimages are themost popular type of tagged-MRI, othermodalities

exist. For example, we can cite theDANTE sequence—initially introduced by [30]—which

a 2D slice at marking time b 2D slice during systole

Fig. 1 Example of SPAMM images in short axis view
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provides a thinner tag grid pattern. Another example is the CSPAMMmodality that aims
at decreasing the tag pattern fading using two sequences of SPAMM images—see [31].
Combinations of 2D images, e.g. by superposition in a orthogonal direction, are histori-

cally the first type of tagged image modalities that was proposed. However, they are natu-
rally affected by through-the-plane motion. This particular aspect will also be referred to
as “2D apparent displacement” in the following. It corresponds to the shift in the position
of the intersection of the deformingmaterial with the image plane. Note that this displace-
ment is neither a full displacementmeasurement nor a projection of the displacement onto
the image plane. To circumvent this limitation, later works have led to the production of
complete three-dimensional tagged-MRI—see [11]. 3D tagging (3D SPAMM) is an imag-
ing modality of major interest since it can provide truly three-dimensional information
on the heart strain.
From the most direct type of data to more complex observations, our work is dedi-

cated to the design of observers based on 2D or 3D SPAMM images. Such an endeavor
requires—see “Principles of sequential estimator design” section—to be able to compute
the discrepancies between the various types of pre-processed data and the model. First,
we assume that this image processing step leads to the reconstruction of the fully three
dimensional deformation of the heart—from 3D SPAMM for instance [11,32], or from
the collection of various 2D SPAMM [33,34]. In this context, following [6] we propose
an efficient way to assimilate this direct displacement measurement. However, this may
introduce a new source of error pertaining to displacement tracking, in addition to those
inherent to the imaging modality per se. Hence, we further consider three distinct situa-
tions aiming at gradually decreasing our demands on this prior processing step. To start
with, we propose a discrepancy measure based on the assumption that we are able to
reconstruct the tag planes fitting the tag pattern [35–37]. In the case of two-dimensional
images, obtaining these surfacesmay require a complex interpolation scheme in the image
transverse direction. Therefore, in a second step, we consider the case of 2D tag grids lying
within the image planes [38]. In a final step, we propose means of comparison between
the model and 2D apparent displacements extracted from 2DMR images, see [39–42].

Filtering 3D displacements from 3D grids

By constructing the tagging pattern in three directions, 3D SPAMM is a powerful image
modality that potentially leads to a reconstruction of the complete three dimensional
heart motion [11]. For instance, [12] proposed to adapt the HARmonic Phase (HARP)
method—which performs tag patterns tracking by analyzing the frequency contents of
the image—to 3D images in order to extract these data. However, this modality suffers
from long acquisition times, requiring multiple breath-holds from the patient. Note that
recent works [43] have shown that this difficulty can be partially overcome, typically using
signal under-sampling. Another technique to extract three dimensional displacements of
the heart from SPAMM images is to acquire two orthogonal sets of 2D images in short
and long axis—see for instance [33,44] or [45]. It should be noted that this process is likely
to suffer from slice misregistration and through-the-plane motion.
However, as a first step, it seems reasonable to assume that the observations take the

form of the 3D tissue displacements with a resolution corresponding to the tag pattern
spacing. In a (forthcoming) discrete setting, this entails the use of a space interpolation
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operator between the mesh model and the observation region. Nevertheless, in a contin-
uous formalism, we can assume that we have at our disposal some measurements of the
displacements in a subdomainω0 of the geometry.We introduce the observation operator
H = (H|Yu 0) ∈ L(Y ,Z) such that

H|Yu :

∣

∣

∣

∣

∣

Yu → Z
u �→ 1ω0u,

where Yu = H1(�0)3 is the displacement space. Note that H apply to the state space Y
gathering the displacement space and the velocity space (and eventually additional vari-
ables inmore general mechanical configuration). By contrast, H|Yu is the same operator of
input space restricted to the displacement space Yu . We then need to specify the obser-
vation spaceZ . One possible choice is to considerL2(ω0)3, the space of square-integrable
vector fields. However, this space does not characterize themaximumamount of informa-
tion we have on the system, since the observations typically comes from a displacement in
H1(�0)3, the space of square-integrable vector fields with square-integrable first deriva-
tives. We should rather consider Z = H1(ω0)3, and we propose in Appendix A a more
complete mathematical justification of this choice. Hence, following [6], we introduce a
convenient way to define a norm in this space. Let us consider the following extension

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

−div(σ lin(ψ)) = 0, in �0\ω0

ψ = ϕ, in ω0

σlin(ψ) · n = ksψ, on �n

σlin(ψ) · n = 0, on ∂�0\�n,

(4)

where σ lin denotes the stress tensor given by linearized isotropic elasticity. In particular,
we denote the corresponding linear constitutive law by

σ lin(ψ) = A : ε(ψ),

where ε denotes the usual linearized strain tensor. The boundary conditions on ∂�0 are
adequately obtained from (3). In the following, we will denote the extension operator by

ψ = Extω0 (ϕ).

Note that an equivalent variational characterization of the extension is given by

∀v� ∈ Yu s.t. v�
|ω0

= 0, (Extω0 (ϕ), v�)E0 = 0, (5)

where the energy dot-product is here defined by

(u1,u2)E0 =
∫

�0
σlin(u1) : ε(u2) d� +

∫

�n
ks u1 · u2 d�.

We can prove—see Appendix A for a similar dot product (·, ·)E0—that

(Extω0 (ϕ),Extω0 (ϕ))
1
2
E0

is a norm in Z = H1(ω0)3. It is now possible to define the adjoint of the observation
operator that is needed in (1). We find in [6] and Appendix A that H∗ is given by

H∗ =
(

H∗|Yu

0

)

, with H∗|Yu :

∣

∣

∣

∣

∣

Z → Yu

z �→ Extω0 (z).
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Note that in the rest of the document, by a slight abuse of notation, we will denote by
H the operator applying either on the state space or on the displacement field extracted
from the complete state y. We can now define, in a continuous formalism, the state
observer. As recalled in “Position of the problem” section, this state observer is the
first ingredient of our state-parameter estimation procedure as the state is corrected by
physically-based feedback and the parameters by a Kalman feedback. Indeed, following
[6], the state observer corresponding to (1) with G = γH∗ is given in strong formulation
by:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

˙̂u = v̂ + γExtω0 (z − 1ω0 û), in �0

ρ
˙̂v − div(̂T ) = 0, in �0

̂T · n = ksû + csv̂, on �n
̂T · n = −̂Jpv,i ̂F

−ᵀ · n, on �c,i
̂T · n = 0, on �0,

(6)

where �0 = ∂�0\((∪i�c,i) ∪ �n). In order to justify why such a simple feedback is in fact
very effective for controlling state errors in our formulation we propose: (1) a complete
mathematical analysis in a simplified elastodynamics configuration in Appendix A; (2) an
energy estimate of the estimation error proving at least the decrease of the estimation
error in a general framework. Indeed, let us compute

ỹ = (

ũ, ṽ
)ᵀ = (

uref − û, vref − v̂
)ᵀ,

in the simplified case of linearized visco-elasticity without activation internal variables,
namely

σ = σ lin(u) + ηsε(v).

The estimation error satisfies the following weak formulation, for any v� ∈ Yu,
∫

�0
ρ ˙̃v · v� d� + (̃u, v�)E0 +

∫

�0
ηs ε(̃v) : ε(v�) d� +

∫

�n
cs ṽ · v� d� = 0,

with the additional observer-based relation

˙̃u = ṽ − γ Extω0 (1ω0 ũ),

assuming zero measurement error to fix the ideas. Weighing the latter relation by ũ and
using the energy dot-product yields

(̃v, ũ)E0 = 1
2
d
dt

‖ũ‖2E0 + γ (Extω0 (1ω0 ũ), ũ)E0 = 1
2
d
dt

‖ũ‖2E0 + γ
∥

∥Extω0 (1ω0 ũ)
∥

∥

2
E0 ,

where we have used the orthogonality property (5).We can now substitute this expression
in the above variational formulation applied with the test function v� = ṽ, which gives

d
dt

1
2
(‖̃v‖2K + ‖ũ‖2E0

)

= −
∫

�0
ηs ε(̃v) : ε(̃v) d� −

∫

�n
cs ṽ 2 d� − γ

∥

∥Extω0 (1ω0 ũ)
∥

∥

2
E0 , (7)

where ‖̃v‖2K = (ρṽ, ṽ)L2(�0)3 denotes the kinetic energy of the error. We can see that the
total energy of the error—namely, elastic energy of the deformation plus kinetic energy
of the velocity—decreases. Due to the observer correction term, we can expect a faster
stabilization than with the sole natural dissipation.
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Filtering tagged-MR planes and grid

The limitations of 3D SPAMM that we have previously mentioned make this imaging
modality difficult to use in clinical routine. In most clinical cases only 2D tagged-MRI is
available. These datasets can be treated plane by plane to extract apparent displacements.
Prior to proposing a corresponding observer for this type of data, we assume that a first
step of image processing leads to the construction of geometrical objects taking the form
of tag planes or tag grids and following in time the deformations of the tag patterns—see
[36–38] for examples of tag planes constructions and [38,46,47] for tag grids.

Extension of surface data

For the definition of the spaces and norms associated with the discrepancy measures
needed in this section, following [6] and the approach detailed in the previous section,
we will use an extension operator mapping data provided on a surface to the whole solid
domain. More precisely, we denote by S0 a surface embedded in the reference domain
�0 and e a vector field defined on S0, with (e1⊥, e2⊥) defined so that (e1⊥, e2⊥, e) gives an
orthonormal basis at any point in S0. We define the extension ψ = ExtS0 (e ; ϕ) from S0
of the scalar field ϕ in the direction e as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−div(σ lin(ψ)) = 0, in �0

ψ · e = ϕ, on S0

(σlin(ψ) · n) · e1⊥ = (σ lin · n) · e2⊥ = 0, on S0

σlin(ψ) · n = ksψ, on �n

σlin(ψ) · n = 0, on ∂�0\�n.

(8)

An equivalent variational characterization of this extension operator is

∀v� ∈ Yu s.t. v� · e = 0 on S0, (ExtS0 (e ; ϕ), v�)E0 = 0. (9)

We can define a norm on the surface-based data using this extension, namely, ‖ψ‖E0 .
Typically, considering the following linear observation operator

H :

∣

∣

∣

∣

∣

Yu → Z
u �→ u|S0 · e,

we can use this norm in the observation space. Accordingly, observer terms in the form
H∗(z − H û) will give in a variational setting

(ExtS0 (e ; z − H û),ExtS0 (e ; H v�))E0 = (ExtS0 (e ; z − H û), v�)E0 ,

where the second expression is obtained by using the characterization (9) when observing
that on S0

ExtS0 (e ; H v�) · e = v� · e.
Therefore, we have in this case

H∗(z − H û) = ExtS0 (e ; z − H û). (10)

Now, when dealing more generally with a discrepancy operator J(̂u, z) pertaining to the
displacements on a surface S0, we will generalize this strategy by using the observer
correction given by

−ExtS0 (DuJ(̂u, z) ; J(̂u, z)),
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obtained by directly substituting in (10) J(̂u, z) for (z − H û), and −DuJ(̂u, z)—associated
with a vector field on S0—for e since in the linear case we have H û = û · e on S0. Of
course, this also easily generalizes to a measurement made of a collection of such surface-
based data associated with NS surfaces (S i

0)
NS
i=1 and associated vector fields ei, for which

the correction will be given (in the linear case) by

H∗(z − H û) =
NS
∑

i=1
ExtSi

0
(ei ; z − H û). (11)

Tag planes

We consider data consisting of a set of NP tag planes T = ⋃NP
i P i deforming over time.

Following the original ideas of [6] the discrepancy between the model and the data will
be measured using the signed distances between the tag planes and the corresponding
model data. These model data are deforming surfaces obtained by applying the model
displacements to the initial configuration of the tag planes. Let us then denote by T0 =
⋃NP

i P i
0 the set of tag planes in the reference configuration, mapped by the estimated

trajectory û to ̂T = ⋃NP
i

̂P i. For any point in a model tag plane x̂ = ξ + û(ξ) ∈ ̂P i for
some ξ ∈ P i

0, we can compute the signed distance to the corresponding target tag plane
P i by

dist(̂x,P i) = (̂x − �P i x̂) · nP i , (12)

where x̂ is a point on the ithmodel tag plane ̂P i,�P i x̂ is the projection of this point on the
corresponding observed tag plane, and nP i is the normal of the observed tag plane at the
projection point—see Fig. 2. The discrepancy operator is then the application mapping
the displacement field to this collection of (scalar) distance fields defined over the planes
of T0 . When differentiating with respect to the displacement field we have

∀v� ∈ Yu, Dudist(̂x,P i) · v� = nP i · v�.

a b

Fig. 2 Illustration of tag planes discrepancy measure
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a Deforming tag grid b 2D apparent displacements

Fig. 3 Example of a tag grid and apparent displacements extracted from real tagged-MR images. Apparent
displacements obtained from inTag plugin of OsiriX software [48]

Hence, the application of the above-described strategy gives an observer that follows the
mechanical system of equations (3), except for the first equation modified into

˙̂u = v̂ − γ

NP
∑

i=1
ExtP i

0

(

nP i (̂x) ; dist(̂x,P i)
)

. (13)

Tag grids

We now consider the data in the form of a collection of tag lines deforming within the
set of (2D) image slices—see Fig. 3a for an example. We thus assume that we have NP
such lines

(

Lij)NP
i=1 in each 2D image I j , with 1 ≤ j ≤ NI . We cannot directly design the

discrepancy operator based on the corresponding model lines, since displacement fields
are not well-defined along lines in the variational space. To circumvent this difficulty, we
again consider the tag planes in the model and project each point of the planes onto the
neighboring image slices. Denoting by �Ij the Euclidean orthogonal projection onto the
image I j , we compute the signed distance of the projected point to the corresponding tag
line within each image—see Fig. 4—i.e.

dist(�Ij x̂,Lij) = (

�Ij x̂ − �Lij�Ij x̂
) · nLij .

Then, we can interpolate the signed distances thus-obtained in the various images
concerned—which provides interpolated distance fields over the model tag planes as a
discrepancy operator, namely,

Ji (̂u, z) = J(j)
(

dist(�Ij x̂,Lij)
)

, (14)

for each plane P i
0, where J(j) denotes the interpolation operator. When differentiating

this expression, we have

∀v� ∈ Yu, Dudist(�Ij x̂,Lij) · v� = nLij · v�,

but we also have a contribution coming from the interpolation operator derivative. Since
this interpolation only depends on the coordinate of the point considered along the axis
orthogonal to all image slices, denoting by J ′

(j) the derivative with respect to this coordi-
nate, a straightforward computation finally yields

∀v� ∈ Yu, DuJi (̂u, z) · v� =
(

J(j)
(

nLij
) + J ′

(j)
(

dist(�Ij x̂,Lij)
)

nI
)

· v�,
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Fig. 4 Illustration of tag grids discrepancy measure

where nI denotes the direction vector of the orthogonal axis. Note that when consid-
ering e.g. linear interpolation, the derivative J ′

(j) is directly given by the finite difference
expression computed between the two adjacent planes. This finally gives for the observer
correction equation

˙̂u = v̂ − γ

NP
∑

i=1
ExtP i

0

(

ei ; J(j)
(

dist(�Ij x̂,Lij)
)

)

, (15)

with ei = J(j)
(

nLij
) + J ′

(j)
(

dist(�Ij x̂,Lij)
)

nI .

Filtering 2D apparent displacements

Finally,we consider themeasurements corresponding to apparent displacements obtained
from the processing of 2D tagged images—see Fig. 3b for an example. In the literature
we can distinguish two main corresponding extraction methods. A first manner consists
in tracking the tag pattern directly in the image plane. For instance [49,50] consider an
optical flow methodology that takes into account the fading of the tag pattern during
the acquisition process. Another solution proposed by [41] is to perform non-rigid image
registration. A second family of methods consists in working in the frequency domain.
The most popular method is the HARP technique—see [51,52]—which tracks the phase
of the tag pattern. Following this trend, recent works proposed by [42,53] use the Gabor
filter to obtain a better estimation of local deformations in late systole—which appears to
be a slight limitation of the HARP methodology.
In any case, we can assume that this pre-processing step enables us to track—throughout

the dynamic sequence—the intersections of material fibers originally orthogonal to the
image planes. This holds e.g. for such fibers corresponding to the intersection of tag
planes, but 2D-tag processing techniques generally provide a (2D) displacement field all
over the image slices—as depicted in Fig. 3b. Note that the material point located at
the intersection between the fiber and the image changes over time due to through-the-
plane motion. Hence, the measurement is not a material displacement, see Fig. 5. This
induces serious complications in the exact form of the tangent observation operator DH,
therefore we will use an approximate form based on a small displacements assumption.
With this assumption, the observation operator reduces to the components of thematerial
displacements tangential to the image plane. In this case, the measurement is a two-
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Fig. 5 Illustration of the difference between material displacement u and apparent displacement uapp

component field over a plane—instead of a scalar field for the above distances. Hence, we
resort to a slightly different extension operator, namely, ψ = Ext′S0 (e ; ϕ) defined by

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−div(σ lin(ψ)) = 0, in �0

�eψ = ϕ, on S0

(σlin · n) · e = 0, on S0

σlin · n = ksψ, on �n

σlin · n = 0, on ∂�0\�n,

(16)

where �e denotes the projection onto the plane orthogonal to e, plane in which ϕ is
assumed to lie. Finally, the correction equation for the observer reads

˙̂u = v̂ + γ

NI
∑

j=1
Ext′Ij

(

nI ; z − H(̂u)
)

, (17)

where nI denotes the normal to the image planes, and the innovation term z − H(̂u) will
be computed—see “Generating apparent displacements” section—based on the actual
tracking of material fibers, i.e. without small displacements assumption.

Time discretization using a prediction–correction scheme
Time discretization of the state observer

In this section we address the issue of the time discretization of the observer. Here, we
focus our effort on ensuring that the dissipative behavior of the (time discrete) estimation
error dynamics is preserved, up to some consistency terms inherent to any discretiza-
tion. A specific numerical time scheme based on a mid-point scheme was proposed by
[6] for similar observers. Our present approach, however, differs in the sense that the
time-discrete observer is built on a prediction–correction paradigm. Consequently, the
prediction part—in practice, iterations of the direct model—and the correction part—
i.e. the action of exploiting the discrepancies between the data and the model—can be
managed in separate ways.
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In order to incorporate the observation operators described in the previous section, we
consider the case of nonlinear operators.More precisely, neglecting the observation noise,
we assume that the observations are obtained by

zn = H(y(n�t)), (18)

where H(·) is a nonlinear and sufficiently smooth observation operator. Following [6] we
propose to define the time-discrete observer as

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ŷn+1− − ŷn+
�t

= F
( ŷn+1− + ŷn+

2

)

(19a)

ŷn+1+ − ŷn+1−
�t

= γDHe+
∗(zn+1 − H(̂ye+) − DHe+ (̂yn+1+ − ŷe+)

)

(19b)

ŷ0+ = y0

where we denote by ŷn+1− and ŷn+1+ the prediction and correction steps respectively. In
the correction relation (19b), we use ŷe+ an extrapolated trajectory, and DHe+ the tangent
operator of the observation operator evaluated at ŷe+, i.e. DHe+ = DH(̂ye+). While other
choices are possible—see [6]—the most simple approach is to set ŷe+ = ŷn+1− .
Even though fewer theoretical results can be obtained in the case of nonlinear obser-

vation operators, this numerical procedure is based on a linearization argument. This
leads, after a local analysis around the trajectory used in the linearization, to a dissipative
behavior similar to that of a linear problem. To fully understand this crucial aspect, we
derive in Proposition B.2 of Appendix B the energy estimate satisfied by the estimation
error, in the fully linear case. Building on this first result, we deduce in Proposition B.4 of
Appendix B a similar relation satisfied by the linearized estimation error. Due to the lin-
earization procedure proposed in (19b)—compared to an explicit scheme—this estimate
shows desirable dissipation properties, up to two (natural) source terms: a first consis-
tency term emanating from the time discretization process, and a second term due to the
linearization process. Hence, assuming that the initial condition is reasonably close to the
target initial condition, the latter will have little influence on the overall stability of the
numerical scheme.
In the case of discrepancy measures—see “Filtering tagged-MR planes and grid” section

for practical examples—the observations and the real trajectory are linked through the
implicit relation

J
(

y(n�t), zn
) = 0.

In this case, the time-discrete observer can be directly inferred from system (19a)–(19b)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ŷn+1− − ŷn+
�t

= F
( ŷn+1− + ŷn+

2

)

(20a)

ŷn+1+ − ŷn+1−
�t

= −γDJe+
∗(J(̂ye+, zn+1) + DJe+ (̂yn+1+ − ŷe+)

)

(20b)

ŷ0+ = y0

The corresponding linearized estimation error satisfies the estimate in Proposition B.4
of Appendix B, but the operator DJe+ = DJ(̂ye+, zn+1) appears instead of the tangent of the
observation operator.
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Characterization and iterative resolution of the correction step

We now introduce a fully discrete model—solved in practice—by considering the vectors
of degrees of freedom associated with a standard finite element spatial discretization. We
denote by capital letters the vectors of degrees of freedom, and by italic operators the
matrices associated with the functional operators used until now. For example, we denote
by U ∈ R

Ndof the vector of degrees of freedom—of dimension Ndof—associated with the
function uh defined in the finite-element space Yu

h ⊂ Yu. We also define a state vector
as the concatenation of the displacement degrees of freedom and the velocity degrees of
freedom Y = (U

V
)

. This final space discretization procedure enables us to define a fully-
discrete transition operator Fn+1|n, such that the prediction step (19a)—or (20a)—can be
rewritten as

̂Y n+1− = Fn+1|n(̂Y n+), (21)

where Fn+1|n represents the time-discrete flow from time tn to time tn+1. Concerning the
correction step, some specific elements need to be addressed due to the presence of the
adjoint of the tangent observation operator in (19b)—or of the discrepancy operator in
(20b). This aspect is particularly important—as extensively detailed in [6]—when dealing
with displacement-based observations. To that end, we define for all (uh,1,uh,2) ∈ Yu

h ×Yu
h

Uᵀ
1 MU2 = (ρuh,1,uh,2)L2(�0)3 =

∫

�0
ρuh,1 · uh,2 d�,

and

Uᵀ
1 KU2 = (uh,1,uh,2)E0 =

∫

�0
ε(uh,1) : A : ε(uh,2) d� +

∫

�n
ks uh,1 · uh,2 d�,

the mass and stiffness matrix respectively, and we consider the associated norm

N =
(

K 0
0 M

)

.

In the same manner, we denote the linear operator after space discretization by H , and
by DH the tangent of a nonlinear observation operator. By a slight abuse of notation we
use the same notation H—or DH—when applied to U or to Y , despite the fact that it
corresponds in this latter case to

(

H 0
)

—or
(

DH 0
)

.
Concerning the observation norm, we consider the matrix S computed through the

extension operators as detailed in the previous section. For example, when considering
3D displacements, let us consider Zh′ ⊂ Z a suitable discretization of the observation
space. The (linear) observation operator boils down to an interpolator between the mesh
and the observation subdomain ω0, whereas S is defined for all (ψh′ ,1,ψh′ ,2) ∈ Zh′ × Zh′

by

�
ᵀ
1 S�2 = (ψh′ ,1,ψh′ ,1)Z = (Extω0 (ψh′ ,1),Extω0 (ψh′ ,2))E0 .

We recall that, in this particular case, the extension operator is defined by (4). This
extends directly to tag planes (or tag grids) and to apparent displacements using the
definition of the extension operators (8) and (16) respectively. Taking into account this
spatial discretization, we can write the correction step (19b) after space discretization as

N
(

̂Y n+1+ − ̂Y n+1−
�t

)

= γDHe+
ᵀS

(

Zn+1 − H (̂Y e+) − DHe+(̂Y n+1+ − ̂Y e+)
)

,
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where DHe+ is the tangent of the observation operator around the extrapolated trajectory
̂Y e+. To simplify the presentation, we set ̂Y e+ = ̂Y n+1− , so that the correction step can be
expressed in a more practical form as

̂Y n+1+ = ̂Y n+1− + γ (N + γDHe+
ᵀS�tDHe+)−1DHe+

ᵀS�t(Zn+1 − H (̂Y n+1− )), (22)

where S�t = �tS. We remark that, in a fully linear setting, (22) corresponds exactly
to the Best Linear Unbiased Estimator (BLUE) associated with the observation Zn+1, the
observation covariance S−1

�t , the a priori statêY n+1− and the a priori state covariance γN−1

[15]. Alternatively, it can be interpreted as solving the following minimization problem

min
̂Y

1
2

{

‖̂Y − ̂Y n+1− ‖2N + γ ‖Zn+1 − H (̂Y n+1− ) − DHe+(̂Y − ̂Y n+1− )‖2S�t

}

,

where ‖·‖N and ‖·‖S�t are thenorms inducedby thematricesN and S�t respectively. From
this alternate characterization, we see that the correction step corresponds essentially to a
linearized versionof a least-squaresminimization around theapriori statêY n+1− . Note that
similar characterizations can be deduced from (20b) in the case of discrepancy operators.
The complete system (21)–(22) can be seen as a prediction–correction discrete-time
sequential estimator as is the case for the discrete-time Kalman filter [15,54], but here
the a priori state covariance remains constant equal to γN−1. Therefore, whereas the
discrete-time Kalman filter is not computable for systems arising from PDEs, our filter is,
since N is sparse.
Let us now give some additional methodological key points to solve the correction step

(22) in a very effective way. We remark that

N ≤ N + γDHe+
ᵀS�tDHe+ ≤ N

(

1 + O(�t)
)

,

which proves that N−1 is a good preconditioner to solve Eq. (22) with an iterative
solver. This reveals to be very helpful as typically we do not want to store the opera-
tor DHe+ᵀS�tDHe+. Indeed, with an iterative solver, we only need to be able to compute
for any vector Y quantities like N−1Y and (N + γDHe+ᵀS�tDHe+)Y . Using an iterative
solver is particularly effective in the case of apparent displacements where the observation
space is the concatenation of the set of image planes having a potentially high resolution,
yielding a very dense operator S.
Finally, a practical difficulty may arise in our specific case where quantities of the form

DHe+ᵀS�tDHe+Y may be cumbersome to compute because of the choice of the obser-
vation norm S, obtained from various extension operators. Authors in [6] demonstrated
that a judicious approximation of the extension can be found by considering a penalized
minimization problem. For instance, in the case of 3D displacement measurements, the
computation of the adjoint ψ = H∗ϕ = Extω0 (ϕ) for ϕ ∈ Z can be approximated, after
space discretization, by solving

min
�∈RNdof

1
2

{

ε�ᵀK� + (� − H�)ᵀMobs(� − H�)
}

, (23)

where ε > 0 is the (small) penalization parameter, � and � are vectors of degrees of
freedom, H is an interpolation operator between the mesh and the subdomain ω0, and
Mobs is the matrix associated with the L2-norm on the observation space

�
ᵀ
1Mobs�2 =

∫

ω0
φh′ ,1 · φh′ ,2 d�, ∀(φh′ ,1,φh′ ,2) ∈ Zh′ × Zh′ .
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From the penalized form (23) of the extension operator, we derive a more convenient
expression of the observation norm S. To do so, we start by remarking that, for all
(uh,1,uh,2) ∈ Yu

h × Yu
h ,

Uᵀ
1 H

ᵀSHU2 = (1ω0uh,1,1ω0uh,2)Z
= (Extω0 (1ω0uh,1),Extω0 (1ω0uh,2))E0
= (uh,1,Extω0 (1ω0uh,2))E0 ,

where we have used the orthogonality property (5) to obtain the last relation. Then,
replacing the extension operator by its penalized approximation (23) yields

Uᵀ
1 H

ᵀSHU2 = Uᵀ
1 K (εK + HᵀMobsH )−1HᵀMobsHU2,

from which we retrieve the relation given in [6],

HᵀS = K (εK + HᵀMobsH )−1HᵀMobs. (24)

Similarly,whendealingwith tagplanes, tag grid or apparent displacement, one can approx-
imate the extension operators (8) and (16) using a penalization strategy.

Time discretization of the joint state and parameter observer

Having defined the discrepancy operator and designed the state observer, we can now
consider the additional stage of parameter identification through the state and parame-
ter observer introduced at the end of “Principles of sequential estimator design” section.
We should now define the adequate discretization of System (2) compatible with the
discretization of the state observer already defined in (20a)–(20b). To that purpose, two
discretizations are available in the literature. The first one is based on the fact that (2) cor-
responds to applying a continuous-time Reduced-Order Extended Kalman Filter (RoEKF)
to the parametric space, hence a proper discretization is clearly the prediction–correction
scheme defined by the discrete-time RoEKF [18]. The second one proposed by [55] is
not directly an exact discretization but rather an extension at the discrete-time level. In
fact, the parameter dependency makes the joint state and parameter system nonlinear
even if the state dynamics is linear. Therefore, the RoEKF filter on the parameters is
only an approximate optimal filter. Other choices of approximate reduced-order optimal
filter can therefore be used when available. It is typically the case of the Reduced-Order
Unscented Kalman Filter (RoUKF) derived by [55]. This filter replaces at the discrete-time
level the tangent computations in (2) by finite difference computations which appear to be
better adapted to large nonlinearities. In addition, there is no need to implement the tan-
gent operators, as instead the original dynamics and observation operators are applied on
so-called “sampling points”. This algorithm thus combines accuracy and computational
efficiency, and it has already been successfully applied in real biomechanical applications,
indeed, see [7,21,56,57]. Moreover, it reduces to the Reduced-Order Kalman Filter upon
linearization, which allows to validate its stability with an error linearization study as
achieved by [55]. Indeed, both algorithms reduce to the reduced-order Kalman filter after
linearization. For completeness we here recall the complete algorithm in our case, before
proceeding to the results section.
Following [55,58], for θ discretized in R

r , we introduce r + 1 so-called unitary simplex
sampling points I [i] in the space Rr and the associated weights αi with the following rules

r+1
∑

i=1
αiI[i] = 0,

r+1
∑

i=1
αiI[i]I[i]ᵀ = 1, (25)
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i.e. with zero mean and unit covariance so that, at each time step, the sampling points can
be generated around the estimated values basedon the actual covariance estimation.Given
an adequate sampling rule, we store the corresponding weights in the diagonal matrixMα

and precompute these unitary sigma-points. We also denote by M�t = �tMobs, and by
[I[∗]] the matrix concatenating the (I[i])1≤i≤r+1 vectors side by side, and similarly for other
matrices aggregating some particle vectors.
We then perform at each time step

1. Sampling (1 ≤ i ≤ r + 1):
⎧

⎪

⎪

⎨

⎪

⎪

⎩

Qn = √

(Un)−1

̂Y n
[i]+ = ̂Y+

n + LnyQ
ᵀ
n I[i]

̂θn[i]+ = ̂θ+
n + LnθQ

ᵀ
n I[i]

(26a)

2. State prediction (1 ≤ i ≤ r + 1):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

̂Y n+1
[i]− = Fn+1|n(̂Y n

[i]+,̂θ
n
[i]+)

̂θn+1
[i]− = ̂θn[i]+

̂θn+1− = ∑r+1
i=1 αîθ

n+1
[i]−

(26b)

3. State correction (1 ≤ i ≤ r + 1):
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Zn+1
[i]− = Hn+1(̂Y n+1

[i]− )
̂Y n+1
[i]−+ = ̂Y n+1

[i]−
+γ (N + γDHe+ᵀS�tDHe+)−1DHe+ᵀS�t(Zn+1 − Zn+1

[i]− )
̂Y n+1−+ = ∑r+1

i=1 αîY n+1
[i]−+

(26c)

4. Parametric correction:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Ln+1
Y = [̂Y n+1

[∗]−+]Mα[I[∗]]ᵀ

Ln+1
θ = [̂θn+1

[∗]−+]Mα[I[∗]]ᵀ

Zn+1− = ∑r+1
i=1 αiZn+1

[i]−
�n+1 = [Zn+1

[∗]−]Mα[I[∗]]ᵀ

Un+1 = 1 + (�n+1)ᵀM�t�n+1

ϒn+1 = Un+1(�n+1)ᵀM�t (Zn+1 − Zn+1− )
̂Y n+1+ = ̂Y n+1−+ − Ln+1

Y ϒn+1

̂θn+1+ = ̂θn+1− − Ln+1
θ ϒn+1

(26d)

Results
In order to illustrate and assess the above data assimilation method, we propose to per-
form parameter estimation in a synthetic data context. More precisely, in this applicative
example we will extract from the direct simulation of an infarcted heart the tag planes, tag
grids and apparent displacements. The infarct is represented in the model by increasing
the stiffness and decreasing the contractility in the septum, see Fig. 6. To that purpose
we define two parameters θK and θ such that the constant values (C0, C2), appearing in
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Fig. 6 Model geometry (top row), location of the infarct used in direct simulations and 2-region estimation
(bottom-left), and geometry with AHA-regions in the left ventricle (bottom-right)

Table 1 Set parameters for the biomechanical heart
model (SI units)

Valve Base Left Vent. Right Vent

C0 85.5 · 103 28.5 · 103 5.7 · 103 5.7 · 103
C1 1.1 · 10−1 1.1 · 10−1 1.1 · 10−1 1.1 · 10−1

C2 57 · 103 28.5 · 103 5.7 · 103 5.7 · 103
C3 1.1 · 10−1 1.1 · 10−1 1.1 · 10−1 1.1 · 10−1

η 7 · 101 7 · 101 7 · 101 7 · 101
κ 2 · 105 2 · 105 2 · 105 2 · 105
α 1.5 1.5 1.5 1.5

σ0 6.2 · 105 6.2 · 105 6.2 · 105 7.44 · 105
k0 1.0 · 105 1.0 · 105 1.0 · 105 1.0 · 105
μ 7 · 101 7 · 101 7 · 101 7 · 101
Es 3.0 · 107 3.0 · 107 3.0 · 107 3.0 · 107
The last five parameters concern the active part of the constitutive law, and are defined in details in [27]

the hyperelastic potential, and the contractility of the tissue σ0, appearing in the model
proposed in [27], are transformed into

(C0, C2) → 2θK (C0, C2) , σ0 → 2θσ0.

This exponential dependence allows to keep these parameters positive, which is crucial
from a physical standpoint, and to ensure stability of the numerical scheme during the
estimation procedure.
Using the calibration strategy of [25]—based on a reduced modeling approach—we

propose a complete set of model parameters, see Table 1, for which direct simulations are
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in good agreement with standard values of physiological and mechanical indicators—see
Fig. 7. For the parameters describing the infarct we choose (θK , θ ) = (1,−1) in the septum,
and (θK , θ ) = (0, 0) otherwise.

Synthetic data generation

Generating the syntheticmeasurements required to assess our proposed tagged-MRI data
assimilation strategy is an intricate procedure in itself. In this sectionwediscuss the various
methodological steps used to build, from the biomechanical heart model, the tag planes,
the tag grids and the 2D apparent displacements.

Generating tag planes and tag grids

A natural idea to build the set of tag planes from a direct simulation is to produce, in
the deformed configuration at marking time, a set of two-dimensional triangular meshes
associated with the planes and to consider the nodal interpolation operator between the
model tetrahedral mesh and the set of tag meshes. Denoting by JP i

m
the interpolation

operator of a single tag plane, its displacement uP i
m
is given in this context by

uP i
m
(ξm, t) =

{

JP i
m
(u(ξ, t) − um), if ξm ∈ �m ∩ P i

m
0, otherwise,

where um is the model displacement at marking time tm, ξm denotes the associated
deformed coordinate, namely, ξm = ϕ(ξ, tm), and �m = ϕ(�0, tm). This leads to signif-
icantly irregular displacements near the intersections between the model boundary and
the tag planes. One way to circumvent this limitation is to consider the tag planes as made
of an elastic material and to regularize the interpolated displacement using an appropriate
elastic model. However, as the geometry at hand is two-dimensional, a shell model would
be required. To simplify this task—which is, in essence, an issue of data regularization—
we consider a set of elastic (3D) tag layers

⋃NP
i V i

m. In practice, each tag layer is built so
that P i

m ⊂ V i
m. Hence, the displacement of a tag plane P i

m is derived from

uP i
m
(ξm, t) = uV i

m
(ξm, t)|P i

m
, (27)

where uV i
m
is the displacement of the tag layer V i

m, verifying
⎧

⎪

⎨

⎪

⎩

−div(σV (uV i
m
)) = 0, in V i

m\(�m ∩ P i
m

)

uV i
m

= JP i
m
(u − um), in �m ∩ P i

m
σV (uV i

m
) · n = 0, on ∂V i

m

(28)

The procedure described in (28) is in fact the extension—in the sense of “Filtering tagged-
MR planes and grid” section—of the interpolated displacement, namely,

uV i
m

= Ext
�m∩P i

m

(

JP i
m
(u − um)

)

.

In (28) we denoted by σV the Cauchy stress tensor describing the tag layer material. In
practice, a relevant choice is a linearization around a given trajectory of the heart material
since, within the image, the tag pattern follows the heart material points. We show in
Fig. 10a an example of synthetic tag planes extracted from a direct simulation.
As far as the tag grids are concerned, they are obtained by clipping the tag plane meshes

with the image planes. Figure 8 illustrates the complete procedure of construction of a tag
plane and of several tag lines, while Fig. 10b gives an example of extracted synthetic tag
grids.
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Fig. 7 Some indicators obtained from direct simulations for a healthy and infarcted heart
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Fig. 8 Illustration of synthetic tag plane and tag lines construction

a b c

Fig. 9 Illustration of synthetic apparent displacement computation

Generating apparent displacements

Once the tag grids are created, the apparent displacement field can be approximated by
tracking the displacements of the tag lines intersection points. More precisely, at marking
time, we compute the intersection point of every tag lines ((red) crosses in Fig. 9a). During
the simulation, as the tag lines deform, we track the displacements of the intersection
points, leading to the (green) vectors in Fig. 9b. Once the displacements of the intersection
points are computed, a global apparent displacement field of the image plane is produced
((blue) vectors in Fig. 9c) by standard interpolation. We show in Fig. 10c an example of
synthetic apparent displacements extracted from a direct simulation.

Discrepancy measure in practice

The tagging process is not performed in the reference configuration—never observed
in reality—but at the previously mentioned marking time. For this reason, the tagging
pattern is necessarily built over an alreadydeformedconfiguration.Hence, the information
obtained from a set of tagged-MR images should be considered of Eulerian nature.
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(a) Tag planes

(b) Tag grids

(c) Apparent displacements

Fig. 10 Example of computations of synthetic data extracted from a direct simulation of an infarcted heart
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However, assuming the displacement at marking time u(ξ , tm) is given, we can circum-
vent this difficulty by introducing this additional information in the filtering procedure.
From an algorithmic standpoint, the discrepancy measure is computed as follows:

1. [offline] Build at marking time the set of tag planes
⋃NP

i P i
m,

2. [offline] Build at marking time the interpolation operator {JP i
m
}NP
i=1 from the

deformed configuration (by u(ξ , tm)) to the tag planes
⋃NP

i P i
m,

3. [online] From the estimated displacement, deform the tag planes
⋃NP

i P i
m using

(28),
4. [online] From the estimated (deformed) tag planes

⋃NP
i

̂P i compute the innova-
tion terms appearing in (12) (planes data), in (14) (tag grids) or in (17) (apparent
displacement).

In our context of synthetic data assimilation, we directly provided the displacement
u(ξ , tm). In real cases, the task of estimating the displacement at marking time could be
carried out using, for instance, the segmentation of the endo- and epicardium of the left
ventricle—obtained typically from cine-MR images. In any case it requires another source
of information on the system and this points out a certain limitation of the tagged-MRI
data for estimation purposes.

Spectral analysis of the observer associated with (3D) tag planes

In this section we discuss the observer built using a set of tag planes that can be decom-
posed into three distinct families. Each tag plane in a given family shares—at marking
time—the same orthogonal direction and, only for the sake of simplicity, we assume that
the three directions are orthogonal. This type of data set may be referred to, in what fol-
lows, as (3D) tag planes. As alreadymentioned and emphasized in Appendix B, the quality
of the state filtering procedure can be assessed by the amount of damping we introduce
in the otherwise conservative or weakly damped system. For this reason we propose to
conduct a numerical study of the spectra of the operators driving the target dynamical
system and the estimation error dynamical systems. For simplicity, we consider a linear
elastic model, typically obtained from the linearization around the null trajectory of the
calibrated passive cardiac model. To facilitate this analysis we also decrease the natural
viscosity of the target system. Hence, we consider the solutions of the following spectral
problem

(

0 K
−K −C

)

Y = λ

(

K 0
0 M

)

Y,

which corresponds to the operator without filter and where, additionally to the stiffness
K and mass M matrices, we denote by C the damping matrix obtained after spatial
discretization. For the case of complete displacement observer we consider the spectral
problem

(

γK (εK + HᵀMobsH )−1HᵀMobsH K
−K −C

)

Y = λ

(

K 0
0 M

)

Y,

where H corresponds to the identity matrix or an interpolation operator. Note that the
form of the stabilization operator is the one derived in (24) where the extension operator
has been approximated by its penalized counterpart. For the (3D) tag plane observer, the
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Fig. 11 Spectra of the time continuous operators. (North-West) : In (cyan) operators without filter, in (red)
complete displacement observer. (North-East): In (green) (3D) tag planes with spacing 8mm. (South-West): In
(green) (3D) tag planes with spacing 3.5mm. (South-East): In (green) (3D) tag planes with spacing 0.25mm

spectral problem reads
(

γK (εK + DuJᵀMobsDuJ )−1DuJᵀMobsDuJ K
−K −C

)

Y = λ

(

K 0
0 M

)

Y,

where the discrepancy operator corresponds to the one detailed in (13).
Using the optimal criterion on the gain γ provided by [6], in Fig. 11 we show the spectra

obtained for the operators without filter, with complete displacement feedback and with
(3D) tag planes. In these plots we also vary the spacing between two consecutive tag
planes from 8mm, to 3.5mm and 0.25mm. In the three situations we observe that for low
frequencies the observer using tag planes acts as the direct displacement observer. For
coarse tag patternswe naturally observe that the higher frequencies are less stabilized than
with the direct displacement observer. This phenomenon disappears as the tag pattern
becomes denser, and the overall efficiency of the tag planes observer tends towards the
full displacement observer.
This result is of major importance since it comforts the intuition—and hopes—that

tagged-MRI could indeed provide information on intra-myocardial deformations. Even
though amore thoroughmathematical analysis should be carried out to corroborate these
results, a first explanation for these outstanding performances is that the tangent of the
discrepancy operator is the concatenation of the normal vector fields of the tag planes,
which in the case of 3D tag planes span all directions in space.

Estimation results

Since we have evaluated—through spectral analysis—the state estimation capabilities of
our proposed observer, we can now assess the joint state and parameter estimator by
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identification of the infarct location and intensity presented in the beginning of the results
section.We distinguish two situations. First we provide the exact location of the infarcted
region but not the values of the parameters characterizing the pathology. Hence, we have
two separate regions, for each of which we identify a contractility parameter and the
main passive stiffness parameter. This case may be referred to as the 2-Regions case. Sec-
ondly, we use the AHA-Regions—roughly corresponding to the territories of the coronary
arteries, see [59]—to partition the left ventricle and retrieve both active contractility and
passive stiffness parameters in each AHA-Region. In this case, the infarct location will
be inferred from the parameters spatial variation over the AHA subdivision. In all cases,
for the sake of simplicity, the reference configuration and the intra-cavity pressures are
assumed to be known and the initial condition is defined by solving an equilibrium state
with the lowest pressure sustained before the atrial contraction. We point out that, since
the stiffness is globally modified between the target system and the observer, an error in
the initial condition will be introduced during the estimation.

The 2-Regions case

We start with the simpler 2-Regions case and we only seek to assess the observability
provided by the data. We choose a fine spatial distribution of the tag planes by setting the
space between two consecutive tag planes to 3.5mm. Denoting by MT the surface mass
matrix computed on the set of tags, we define the measurement observation norm S by
setting, in (23)

Mobs = 1
m
MT .

The parameter m represents the square of the standard deviation of the discrepancy
measure. In the perspective of only assessing the method capabilities, the observations
are extracted from the direct simulations—as explained in “Synthetic data generation”
section—with a high temporal resolution of 1 output every 25 simulation time steps—
set in our simulations to 2.5 · 10−4 s—and no noise is added. Therefore, following [7] we
rescale

m = �tobs
�t

mobs = 25mobs,

and set a high confidence in the observations with mobs = (0.65mm)2. The results are
presented in Figs. 12, 13, 14 and 15, where the dashed curves visualize the estimated
standard deviation. In Fig. 12, we consider themost optimistic configuration where three-
dimensional tag planes are available, whereas in Fig. 13we consider amore realistic config-
urationwhere only two directions of tag planes—here a short axis grid only—are available.
Then, in Fig. 14 we proceed with the corresponding bi-dimensional grid as described in
“Synthetic data generation” section.We thus rely on the grid-based observer discrepancy.
Finally,we present in Fig. 15 the results where extracted 2D apparent displacements are
defined as the available measurements. In this particular case, since the innovation corre-
sponds to the comparison of two vector fields defined within the image planes, we take the
observation norm as a piecewise constant mass matrix in the image domain. The behav-
ior of the estimation procedure is very similar for all types of processed data considered,
and the parameter values are accurately estimated in the two regions, both for the active
(contractility) and passive (stiffness) parameters. It should be noted, in particular, that the
estimations produced based on 2D tagged data—namely, with tag planes and grids, and
apparent displacements—are as effective and accurate as those obtained with 3D tags.
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Fig. 12 Estimation of active (top) and passive (bottom) parameters using (3D) tag planes

The AHA-Regions case

We now consider a configuration that can be encountered in a more realistic context.
First, we only generate from the direct simulation approximately 20 “synthetic” images in
the cardiac cycle fromwhich we extract 2D tag planes. Then, for the estimation, we set up
an AHA-based partition, which defines 17 regions, namely, the 16 AHA regions and the
remaining part of the heart.
The evolution of the joint state and parameter estimation is presented in Figs. 16, 17

and 18. The state convergence is demonstrated through the evolution of the volume
curves and P–V loop plots, whereas the evolution of each parameter is presented in
Figs. 17 and 18. The results are divided into three groups of parameters associated with
the three different long axis elevations of the AHA partitions, namely basal (regions 1–6),
intermediate (regions 7–12) and apical (regions 14–16). We visualize in Fig. 19 the final
parameter identification diagram in a bull’s eye representation as used in a clinical context.
In addition, we recall the identification that would be obtained when only exploiting cine-
MRI segmentations of the endocardium and epicardium as presented in the previouswork
of [7]. This directly illustrates the identification benefits obtained with the tagged-MRI
measurements, in particular concerning the passive stiffness parameters.
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Fig. 13 Estimation of active (top) and passive (bottom) parameters using tag planes

Discussion

First, concerning state estimation, our results confirm the remarkable effectiveness of the
strategy previously introduced by [6], and the excellent adequacy of both tagged-MR as an
imagingmodality of choice for estimation purposes, and of our herein-proposed strategies
for incorporating such data via specifically designed discrepancy operators. Indeed, the
above spectral analysis gives a very clear indication as to how fast state estimation errors
are being damped when using this estimation chain. In particular, we have observed the
convergence of the spectrum—with respect to tag spacing—towards that of the observer
with full 3Dobservation,while the spectrumobtainedwith coarse tags shows that standard
tag spacing is amply sufficient to obtain uniformdamping rates. This is also confirmedwith
the results obtained in the joint state-parameter estimation trials, in which mechanical
indicators are effectively and accurately retrieved, recall Fig. 16.
As regards parameter estimation, the additional estimation stage provided by RoUKF

filtering—combinedwith the state observer—also shows very good performance. In the 2-
Regions estimation setup, in particular, both active and passive parameters are very accu-
rately estimated, and in a very short time as soon as the parameters concerned become
observable in the type of behavior that is encountered along the cardiac cycle. Namely,
passive parameters aremostly observable during the—rather short—initial diastolic phase
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Fig. 14 Estimation of active (top) and passive (bottom) parameters using tag grids

associated with atrial contraction, while of course contractility parameters can only be
revealed once the electrical activation actually starts. Note that this 2-Regions setup gives
a realistic strategy in clinical perspectives, as cardiac MR performed for infarct diagnosis
frequently includes late-enhancement sequences, which can be segmented to provide the
desired subdivision into healthy and diseased regions. In case late-enhancement images
(or the associated segmentations) are not available, or when additional concurrent local-
ization information is desired, estimation can be performed based on the AHA subdi-
vision. The corresponding estimation results exhibit the same general features as with
two regions—namely, rather fast convergence during diastole and systole for passive and
active parameters, respectively—albeit as expected the estimation is less accurate for each
individual parameter.Nevertheless, active parameters are still quantitatively retrieved, and
passiveparameters are quite discriminately detectedwithin the infarcted region, andmuch
more so than with estimation based on Cine-MR. Of course, fundamental identifiability
issues are of concern in this multiple parameter estimation context, and we can expect
that identifiability would be improved—hence estimation would bemore accurate—when
using segmentedCine sequences in addition to tagged images in the estimation procedure.
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Fig. 15 Estimation of active (top) and passive (bottom) parameters using apparent displacements

Fig. 16 Time evolution of the volume and P-V loop for the observer (in (green)) using tag planes (with
coarse time sampling of the observations) compared with the healthy direct model (in (blue)) and the
reference infarcted model (in (red))
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Fig. 17 Time evolution of active estimated parameters using tag planes with coarse time sampling of the
observations (dashed lines give reference values)



Imperiale et al. Adv. Model. and Simul. in Eng. Sci.            (2021) 8:2 Page 34 of 47

a

b

c

Fig. 18 Time evolution of and passive estimated parameters using tag planes with coarse time sampling of
the observations (dashed lines give reference values)
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Fig. 19 Estimation of active (top row) and passive (bottom row) parameters using tag planes (middle
column) and cine surfaces (right column) with coarse time sampling of the observations

Towards clinical applications

Despite its efficiency with synthetic data, our data assimilation strategy still needs to be
validated using real clinical data. To address this challenge, it remains to complete the
proposed approach with the following requirements:

1. Obtaining patient specific geometries and fiber orientations. Even if segmenting the
ventricles is a well studied problem, it remains an issue [3,60]. It is even more the
case for obtaining fiber orientationmaps, directly from images [61], or by combining
geometrical models [62] whose parameters could also be assimilated [63]. Moreover,
with large deformation systems such as the heart complete bio-mechanical model,
we ultimately need a reference configuration which needs to be inferred from the
images at hand, typically using inverse methods [64].

2. Registering the tagged-MR sequence with respect to the initial geometry, hence to
the reference configuration by transitivity.

3. Including blood pressure measurements. Note that we should either rely on direct
but invasive measurements in the cavities or on estimating these blood pressures
from non-invasive distal pressure using typically signal processing [65,66] or data
assimilation.
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4. Specifying the boundary conditions, or using additional measurements to estimate
them. In our modeling choice, viscoelastic boundary conditions are defined on �n
which needs to be geometrically designated. Moreover, this simplified model should
be ultimately jointly estimated with similar data assimilation methods [21].

One tremendous difficulty is that each error in the steps listed above can introduce irre-
ducible errors in the estimation procedure. This was typically our experience in [7,21,67]
where we discussed how boundary conditions modeling errors can pollute the result-
ing estimation in a “clinical” context. Therefore, even if our method paves the way for
carefully integrating tagged-MRI measurements in a data assimilation strategy, the com-
plete model-data fusion pipeline in clinical cardiac applications necessitates to combine
multiple technologies and expertise from modeling to data processing and associated
registrations [3,5].

Conclusions
Wehave proposed specificmethods for integrating tagged-MR sequences in a data assim-
ilation frameworkwith a beating heartmodel. Tagged-MRI represents the “gold standard”
in cardiac imaging, and great benefits are expected fromusing the corresponding rich kine-
matical information for performing the joint state-parameter estimation of the system,
and of various modeling parameters of high potential value in terms of clinical diagnosis
assistance.
In this data assimilation framework, a crucial ingredient lies in the adequate formula-

tion of a discrepancy operator to compare the model and the data. We have considered
several options, based on: (1) extracted 3D displacements; (2) tag planes in the 3D vol-
ume; (3) tag grids in 2D slices; (4) apparent displacements in 2D slices. In practice, the
specific choice of discrepancy operator could be based on the type of tagged sequence
and on the available corresponding post-processing tools, albeit our unified framework
also allows detailed comparative assessments. For the purpose of state estimation, each
definition of discrepancy operator was accompanied by the formulation of an adapted
filtering operator.
We have also proposed well-adapted discretization strategies. As regards time dis-

cretization, in particular, a two-step “prediction–correction” type algorithmwas designed
for the proposed estimation systems, allowing to completely dissociate the operations
related to themodel and thoseperformed for estimationpurposes, e.g.with twodifferent—
coupled—software codes. This is very valuable from a software architecture perspective,
and in particular makes the estimation strategy compatible with modular concepts such
as those underlying the Verdandi data assimilation library [68].
Mathematical analyses have been provided at the various stages of construction, to

substantiate the convergence of the overall observer strategy based on a simplified—albeit
illuminating—linear example, and also to assess the effects of discretization procedures.
Finally, some detailed numerical assessments of the overall estimation framework have

been performed, based on synthetic data produced by a reference cardiac simulation rep-
resenting the behavior of an infarcted heart in a realistic manner. The assessment results
show that state estimation is extremely effective, while the performance of parameter esti-
mation depends on the specific estimation objectives, as can be expected from the point
of view of observability. In particular, when the diseased region is pre-determined prior
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to estimation, active and passive parameters are very accurately and quickly retrieved in
the infarcted and healthy regions. When the more challenging objective of estimation in
an AHA subdivision is considered without any prior on the diseased region, the conver-
gence of each individual parameter value is less accurate, but the overall distribution of
parameters is very adequately retrieved, allowing for effective localization and quantita-
tive assessment of the disease. This provides a great improvement over similar estimation
based on using Cine-MR alone, which only gives adequate results for active parameters.
All major ingredients are thus in place for using this methodological framework in a

patient-specific context with actual data, which is of course a most natural perspective
of this work. Addressing this challenge will imply combining different measurements
and image modalities in order to estimate patient-specific modeling components. Other
perspectives concern the consideration of alternative discrepancy operators, such as with
the formalism of currents [69–71] which would allow to dispense with using sophisticated
image post-processing tools on tagged-MR as a prerequisite for data assimilation.
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Appendix A: The illuminating example of efficient state feedback in
elastodynamics
In the following very simplified example, we aim at mathematically proving why a simple
state feedback can have a comparable efficiency with respect to a Kalman-based feedback
in the context of elastodynamics problems. Let us then consider a simplified configuration
where the model and the observation operator are linear. More precisely, we assume a
linear elastic system in which the Cauchy stress tensor is given by

σ = A : ε(u),
where the elasticity tensor A is assumed to be constant and isotropic. Defining �e(·) =
div(A : ε(·)), our model simply reads

⎧

⎪

⎨

⎪

⎩

u̇ = v, in �0 × (0, T )
ρv̇ − �eu = f , in �0 × (0, T )
u = 0, on ∂�0 × (0, T ).

(29)

The external load is a time-dependent regular function f ∈ C1([0, T ],L2(�0)). We intro-
duce Yv = L2(�0)3, the displacement space Yu = H1

0(�0)3, and Y = Yu ×Yv . Using the
Korn and Poincaré inequalities, Yu is an Hilbert space with the following scalar product

∀(u1,u2) ∈ Yu, (u1,u2)E0 =
∫

�0
ε(u1) : A : ε(u2) d�.
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In a semi-group theory context we introduce the semi-group generator A ∈ L(D(A),Y)
with

A =
(

0 1
1
ρ
�e 0

)

,

and we can prove that (29) admits a classical solution C0([0, T ],Yu) ∩ C1([0, T ],Yv) for
every initial condition in the domain [72]

D(A) = {

(u, v) ∈ Yu × Yv, div(A : ε(u)) ∈ Yv} .

Moreover, the operator A is skew-adjoint, implying that

∀t > 0,
∥

∥y(t)
∥

∥

Y = ∥

∥y(0)
∥

∥

Y ,

corresponding to the energy balance on the system (29) with E = 1
2

∥

∥y
∥

∥

2
Y . Using the

semi-group theory, we rewrite the dynamics of the model in the abstract state-space form

ẏ = Ay + R, y(0) = y0 + ζy .

Concerning this model, we assume that we have at our disposal some measurements of
the displacements. We introduce the observation operator H = (H|Yu 0) such that

H|Yu :

∣

∣

∣

∣

∣

Yu → Z
u �→ 1ω0u,

where ω0 is an internal open subdomain of �0 and Z = H1(ω0)3. Here H and H|Yu as
H = (H|Yu 0) correspond to the same operators with different input spaces.
Using the extension ψ = Extω0 (ϕ) defined by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−�e(ψ) = 0, in �0

ψ = ϕ, in ω0

ψ = 0, on ∂�0,

(30)

we can prove the following property.

Proposition A.1 For any (ϕ1,ϕ2) ∈ Z2, the bilinear form (Extω0 (ϕ1),Extω0 (ϕ2))E0
defines a scalar product on Z = H1(ω0)3.

Proof The proof is a simple extension of the property proven by [73] for scalar equations.
Let ϕ be an element of Z . The only difficulty lies in proving the norm equivalence with
‖ϕ‖2H1(ω0)3

. First, we have

‖ϕ‖2H1(ω0)3 = ‖∇ ϕ‖2L2(ω0)3 + ‖ϕ‖2L2(ω0)3

≤ ∥

∥∇ Extω0 (ϕ)
∥

∥

2
L2(�0)3 + ∥

∥Ext�0 (ϕ)
∥

∥

2
L2(�0)3

≤ (1 + Cp)
∥

∥∇ Extω0 (ϕ)
∥

∥

2
L2(�0)3

≤ Ck (1 + Cp)
∥

∥Extω0 (ϕ)
∥

∥

2
E0 ,

with Cp given by the Poincaré inequality and Ck given by Korn inequality and a bound Ca
on the elasticity tensor. Conversely, by continuity of the extension on�0\ω0 with respect
to the data, there exists a constant Cd > 0 such that for any ψ = Extω0 (ϕ) we have

∫

�0\ω0
ε(ψ) : A : ε(ψ) d� ≤ Cd‖ϕ|∂ω0‖2H 1

2 (∂ω0)3
.
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Hence, denoting by Ct the constant arising from the continuity of the trace operator, we
have

∥

∥Extω0 (ϕ)
∥

∥

2
E0 ≤

∫

ω0
ε(ψ) : A : ε(ψ) d� + Cd ‖ϕ‖2

H
1
2 (∂ω0)3

≤ Ca ‖∇ ϕ‖2L2(ω0)3 + Cd‖ϕ|∂ω0‖2H 1
2 (∂ω0)3

≤ (Ca + CdCt )‖ϕ‖2H1(ω0)3 ,

which completes the proof. ��

It is now possible to define the adjoint of the observation operator.

Proposition A.2 The operator H is bounded from Y to Z and H∗ is given by

H∗ =
(

H∗|Yu

0

)

with H∗|Yu :

∣

∣

∣

∣

∣

Z → Yu

ϕ �→ Extω0 (ϕ)

Proof Let us first prove that H is bounded. We consider ψ ∈ Yu and ϕ such that ϕ =
H|Yu ψ. We have directly, from norm equivalences,

‖ϕ‖2Z = ∥

∥Extω0 (ϕ)
∥

∥

2
E0 ≤ C1 ‖ϕ‖2H1(ω0)3 ≤ C1 ‖ψ‖2H1

0(�0)3
.

Then, we have that for all ϕ ∈ Z and v� ∈ Yu

(ϕ,H|Yu v�)Z =
∫

�0
ε(Extω0 (ϕ)) : A : ε(Extω0 (v

�
|ω0

)) d�.

By the variational characterization of the extension (5) we have
∫

�0
ε(Extω0 (ϕ)) : A : ε(Extω0 (v

�
|ω0

)) d� =
∫

�0
ε(Extω0 (ϕ)) : A : ε(v�) d�,

since v�
|ω0

− Extω0 (v
�
|ω0

) = 0 on ω0. Therefore (ϕ,H|Yu v�)Z = (H∗|Yuϕ, v�)E0 , and H∗ is
given by

H∗ :

∣

∣

∣

∣

∣

∣

∣

∣

Z → Yu

ϕ �→
(

Extω0 (ϕ)
0

)

.

��

We can now define the observer by the dynamics
⎧

⎨

⎩

˙̂y = Aŷ + R + γH∗(z − Hŷ)

ŷ = y0,

which in strong form reads
⎧

⎪

⎨

⎪

⎩

˙̂u = v̂ + γExtω0 (z − 1ω0 û), in �0
ρ ˙̂v − �e (̂u) = f , in �0
û = 0, in ∂�0,

(31)

which converges to the solution of (29) under the observability condition given by the
next theorem, see e.g. [74] for a proof.
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Theorem A.3 LetA be a time-independent skew-adjoint operator generating a group and
H ∈ L(Y ,Z). The error system ỹ of dynamics

˙̃y = (A − γH∗H)̃y

is exponentially stable if the following observability condition is satisfied: there exists two
constants (Cst, T ) such that for any solution y of ẏ = Ay, we have

∫ T

0

∥

∥Hy(s)
∥

∥

2
Z ds ≥ Cst

∥

∥y(0)
∥

∥

2
Y . (32)

We can nowmake explicit the specific observability condition in our configuration that
will allow us to invoke Theorem A.3 of Appendix A.

Theorem A.4 If there exists a constant Cst and a time T such that every solution of
⎧

⎪

⎨

⎪

⎩

u̇ = v, in �0
ρv̇ − �eu = 0, in �0
u = 0, on ∂�0

satisfies the observability condition

∫ T

0

∥

∥Extω0 (1ω0u)
∥

∥

2
E0 dt ≥ cst

(

∥

∥u(0)
∥

∥

2
E0 + ∥

∥v(0)
∥

∥

2
L2

)

, (33)

then, in the absence of observation error, the observer given by the dynamics (31) converges
to the solution yref of (29) such that

z = Hyref.

Proof We have defined the reference trajectory as the solution of

ẏref = Ayref + R,

and the observer as the solution of

˙̂y = Aŷ + R + γH∗(z − Hŷ).

The error ỹ = yref − ŷ is then solution of

˙̃y = (A − γH∗H)̃y.

which, from Theorem A.3 of Appendix A, converges exponentially to 0 for every initial
condition when the observability condition (33) is verified. ��
Following [75], we define the elastic geometric control condition:

Definition A.1 (Elastic Geometric Control Condition) The elastic geometric control con-
dition is satisfied if every combination of pressure (P) and shear (S)waves ray encounters—
in the sense of [75]—the subdomain of observation.

Readers may refer to [75] for a complete description of such rays. This condition gener-
alizes to the vectorial case the so-called geometric control condition (GCC) introduced by
[76], allowing to control any solution of the acoustic wave equation from the observations
of the time derivative of the wave in a subdomain.
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Theorem A.5 The observability condition of Theorem A.4 holds on a subdomain ω0 as
soon as the elastic geometric control condition is satisfied with ω̌0 and dist(�0\ω0, ω̌0) > 0.

Proof For technical reasons, we assume that the elastic geometric control condition is
satisfied for an observation domain ω̌0 slightly smaller than ω0, namely, with ω̌0 ⊂ ω0 and
dist(�0\ω0, ω̌0) > 0. We first recall the classical observability result when the velocity is
observed. In fact there exists a constant Cst and a time T such that every solution of (29)
satisfies the observability condition

∫ T̆

0
‖v‖2L2(ω̌0)3 dt ≥ Cst

(

∥

∥u(0)
∥

∥

2
E0 + ∥

∥v(0)
∥

∥

2
L2(�0)3

)

, (34)

with T̆ = T − δ for δ > 0 sufficiently small, as soon as the elasticity geometric control
condition is verified in the time interval [0, T [ [75]. Following what was already done
for acoustic waves by [73] we will use a property of equirepartition (over time) of the
total energy localized within the observation subdomain between the kinetic and elastic
contributions to infer (33) from (34).
Let ψ ∈ C∞

c (�0) be a cutoff function satisfying

ψ(ξ) =
{

0, if ξ ∈ �0\ω0
1, if ξ ∈ ω̆0

and 0 ≤ ψ(ξ) ≤ 1 for every ξ ∈ �0. Denote also φ(t) = t2(T̆ − t)2. Then, by repeated
integrations by parts we obtain

0 =
∫ T̆

0

∫

ω0
φψ(ü − �eu) · u d� dt

=
∫ T̆

0

∫

ω0
φ̈ψ

|u|2
2

d� dt −
∫ T̆

0

∫

ω0
φψ |u̇|2 d� dt

−
∫ T̆

0

∫

ω0
φ ε(u) : A : (∇ψ ⊗ u) d� dt

+
∫ T̆

0

∫

ω0
φψ ε(u) : A : ε(u) d� dt.

Moreover,

∫

ω0
ε(u) : A : (∇ψ ⊗ u) d�

≤ Cst ‖ψ‖W1,∞
∥

∥ε(u)
∥

∥

L2(ω0)3 ‖u‖L2(ω0)3

≤ Cst ‖ψ‖W1,∞ ‖u‖2H1(ω0)3 .

where Cst represents a different constant in each line. This identity combined with the
properties of the cutoff functionsφ andψ provides, for any strictly positive ε, the existence
of a constant Cst > 0 such that

∫ T̆−ε

ε

∫

ω̌0
|u̇|2 d� dt ≤ Cst

∫ T̆

0

∫

ω0
‖u(·, t)‖2H1(ω0)3 dt.
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Substituting T̆ + 2ε for T̆ in all the above computations gives
∫ T̆+ε

ε

∫

ω̆0
|u̇|2 d� dt ≤ Cst

∫ T̆+2ε

0
‖u(·, t)‖2H1(ω0)3 dt.

We proceed by making the change of variable τ = t − ε in the left-hand side integral,
yielding

∫ T̆

0

∫

ω̆0
|u̇(ξ, τ + ε)|2 d� dτ ≤ Cst

∫ T̆+2ε

0
‖u‖2H1(ω0)3 dt. (35)

Noting that u(ξ, t + ε) satisfies the elastodynamics system with initial data (u(ξ, ε), u̇(ξ, ε))
and applying (34) with this shifted solution, we obtain that there exists also Cst such that

∫ T̆

0

∫

ω̆0
|u̇(ξ, τ + ε)|2 d� dτ ≥ Cst

(

‖u(ε)‖2E0 + ‖u̇(ε)‖2L2(�0)3
)

. (36)

Combining (35), (36) and the fact that the energy of the solution of the elastodynamics
equation is exactly conserved over time, we have our observability inequality (33) upon
choosing ε = δ

2 . ��

Appendix B: Analysis of the prediction–correction scheme
This appendix is dedicated to the analysis of the prediction–correction scheme proposed
in “Time discretization of the state observer” section. More specifically, we are interested
in showing that the linearizationprocedure applied in the context of nonlinear observation
operators induces a dissipative behavior for the linearized time-discrete estimation error.
This property is a crucial aspect when building relevant state observers.

Linear model and linear observation operator

To start with, we assume that the dynamical system satisfied by the target trajectory is
given by

⎧

⎨

⎩

ẏ(t) = (A + ηV)y(t)

y(0) = y0 + ζy ,
(37)

where A is a skew-adjoint operator, V is a self-adjoint and semi-negative operator and η ≥
0 is a viscosity coefficient. Note that (37) can be interpreted as a linearization of (3) around
the stress-free configuration. Additionally, we consider a linear observation operator and
we neglect, for simplicity, the observation noise. Denoting by �t the (constant) time
step of the numerical procedure, the time-discrete observations read zn = Hy(n�t). The
prediction–correction scheme for the observer reads

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ŷn+1− − ŷn+
�t

= (A + ηV)
ŷn+1− + ŷn+

2
(38a)

ŷn+1+ − ŷn+1−
�t

= γH∗(zn+1 − Hŷn+1+
)

(38b)

ŷ0+ = y0.

Relation (38a) corresponds to the prediction step, with the operators driving the target
system, while (38b) is the correction step. Defining the discrete estimation error from the
correction step

ỹn+ = y(n�t) − ŷn+, (39)
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and associating a prediction error with

ỹn+1− = y((n + 1)�t) − ŷn+1− , (40)

we can determine the time-discrete dynamics satisfied by the estimation error.

Proposition B.1 Assuming that y ∈ C3([0, T ],Y), then the estimation error satisfies the
following discrete dynamical system

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ỹn+1− − ỹn+
�t

= (A + ηV)
ỹn+1− + ỹn+

2
+ εn (41a)

ỹn+1+ − ỹn+1−
�t

= −γH∗Hỹn+1+ (41b)

ỹ0+ = y0 − ŷ0

with εn = O
(

�t2
∥

∥

...y
∥

∥

C3([0,T ],Y)
)

.

Proof (41b) is directly inferred from the definition of the prediction estimation error and
using (38b), namely,

ỹn+1− = y((n + 1)�t) − ŷn+1−
= y((n + 1)�t) − ŷn+1+ + γ�tH∗Hỹn+1+
= (1 + γ�tH∗H)̃yn+1+ .

We now have to work our way to (41a). First, we remark that

ỹn+1− − ỹn+
�t

= y((n + 1)�t) − y(n�t)
�t

− ŷn+1− − ŷn+
�t

. (42)

Using centered Taylor expansions we can easily see that

y((n + 1)�t) − y(n�t)
�t

= (A + ηV)
y((n + 1)�t) + y(n�t)

2
+ εn, (43)

with εn = O
(

�t2
∥

∥

...y
∥

∥

C3([n�t,(n+1)�t],Y)
)

. Therefore, feeding equation (42) with (43) and
(38a), we obtain

ỹn+1− − ỹn+
�t

= (A + ηV)
y((n + 1)�t) − ŷn+1−

2
+ (A + ηV)

y(n�t) − ŷn+
2

+ εn, (44)

hence, (41a) holds. ��

We can now establish the energy estimate associated with (41a)–(41b)

Proposition B.2 The norm of the estimation error, namely

˜En+ = 1
2

∥

∥ỹn+
∥

∥

2
Y ,

satisfies the following estimate

˜En+1+ − ˜En+
�t

= −η

∥

∥

∥

∥

∥

(√−V
) ỹn+1− + ỹn+

2

∥

∥

∥

∥

∥

2

Y
− γ

∥

∥

∥Hỹn+1+
∥

∥

∥

2

Z

−γ 2�t
2

∥

∥

∥H∗Hỹn+1+
∥

∥

∥

2

Z
+ (εn,

ỹn+1− + ỹn+
2

)Y . (45)
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Proof Denoting ˜En+1− = 1
2

∥

∥

∥̃yn+1−
∥

∥

∥

2

Y
, we have, from system (41a)-(41b),

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

˜En+1− − ˜En+
�t

= −η

∥

∥

∥

∥

∥

(√−V
) ỹn+1− + ỹn+

2

∥

∥

∥

∥

∥

2

Y
+

(

εn,
ỹn+1− + ỹn+

2

)

Y

˜En+1+ − ˜En+1−
�t

= −γ
(

H∗Hỹn+1+ ,
ỹn+1+ + ỹn+1−

2

)

Y

(46)

Equation (41b) leads to

˜En+1+ − ˜En+1−
�t

= −γ (H∗Hỹn+1+ , ỹn+1+ + γ

2
�tH∗Hỹn+1+ )Y

= −γ

∥

∥

∥Hỹn+1+
∥

∥

∥

2

Z
− γ 2�t

2

∥

∥

∥H∗Hỹn+1+
∥

∥

∥

2

Y
,

which, by regrouping both equations in (46), entails the desired estimate. ��

In (45) we see the effect of the correction step (38b) leading to some dissipation terms
brought by the observation operator. The expression is the abstract and discrete version
of expression (7), perturbed with natural consistency terms.

Linear model and nonlinear observation operator

As a second step, we consider the case of a nonlinear observation operator, so that the
observations are obtained through (18), while the model operator remains linear. In this
case, the related prediction–correction time-scheme is

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ŷn+1− − ŷn+
�t

= (A + ηV)
ŷn+1− + ŷn+

2
(47a)

ŷn+1+ − ŷn+1−
�t

= γDHe+
∗(zn+1 − H(̂ye+) − DHe+ (̂yn+1+ − ŷe+)

)

(47b)

ŷ0+ = y0.

As for the linear case, one canderive the time-discrete dynamics satisfiedby the estimation
error.

Proposition B.3 Assuming that y ∈ C3([0, T ],Y), then the estimation error associated
with (47a)–(47b) satisfies the discrete dynamical system

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ỹn+1− − ỹn+
�t

= (A + ηV)
ỹn+1− + ỹn+

2
+ εn (48a)

ỹn+1+ − ỹn+1−
�t

= −γDHe+
∗DHe+ỹn+1+ + λn (48b)

ỹ0+ = ζy ,

with the source term in (48a) is identical to the one in (41a), and the source term in (48b)
is given by

λn = O(
∥

∥y((n + 1)�t) − ŷe+
∥

∥

2
Y ).

Proof Similarly to the linear case, the prediction estimation error is

ỹn+1− = y((n + 1)�t) − ŷn+1− .
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This entails (48b) since from equation (47b) and the linearization of H(y((n + 1)�t))
around the extrapolated trajectory ŷe+ we have

ỹn+1− = y((n + 1)�t) − ŷn+1+ + γ�tDHe+
∗(zn+1 − H(̂ye+) − DHe+ (̂yn+1+ − ŷe+)

)

= (1 + γ�tDHe+
∗DHe+ )̃yn+1+ + �tλn.

All the other computations previously presented to prove Proposition B.1 still hold, so
that we obtain the dynamical system (48a)–(48b) satisfied by the estimation error. ��

We can now establish the energy estimate associated with (48a)–(48b).

Proposition B.4 The norm of the estimation error in the case of a nonlinear observation
operator satisfies the following estimate

˜En+1+ − ˜En+
�t

= −η

∥

∥

∥

∥

∥

(√−V
) ỹn+1− + ỹn+

2

∥

∥

∥

∥

∥

2

Y

−γ

∥

∥

∥DHe+ỹn+1+
∥

∥

∥

2

Z
− γ 2�t

2

∥

∥

∥DHe+
∗DHe+ỹn+1+

∥

∥

∥

2

Z

+
(

εn,
ỹn+1− + ỹn+

2

)

Y
+

(

λn,
ỹn+1+ + ỹn+1−

2

)

Y
. (49)

Proof We remark that the system satisfied by the linearized estimation error (48a)–(48b)
can be obtained from system (41a)–(41b) by replacing the observation operator by its
tangent around the linearization trajectory, and by adding the linearization term λn in the
correction step. Hence, by following the demonstration of Proposition B.2 of Appendix
B, one can obtain estimate (49). ��

Finally, let us remark that the extension of these results to the case of a nonlinear model
does not entail specific challenges, within the context of the presented analysis. After
linearization, one can expect to produce another linearization source term, this time in
the prediction step (48a)—instead of the correction step. Hence, the dissipation property
of the time-discrete observer still holds, up to this additional linearization term.
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