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Bundesanstalt fir One of the most important goals in civil engineering is to guarantee the safety of the

Materialforschung und -priifung construction. Standards prescribe a required failure probability in the order of 1 0~%to
(BAM), Unter den Eichen 87, 1076, Generally, it is not possible to compute the failure probability analytically.

Berlin, Germany Therefore, many approximation methods have been developed to estimate the failure
probability. Nevertheless, these methods still require a large number of evaluations of
the investigated structure, usually finite element (FE) simulations, making full
probabilistic design studies not feasible for relevant applications. The aim of this paper
is to increase the efficiency of structural reliability analysis by means of reduced order
models. The developed method paves the way for using full probabilistic approaches in
industrial applications. In the proposed PGD reliability analysis, the solution of the
structural computation is directly obtained from evaluating the PGD solution for a
specific parameter set without computing a full FE simulation. Additionally, an adaptive
importance sampling scheme is used to minimize the total number of required
samples. The accuracy of the failure probability depends on the accuracy of the PGD
model (mainly influenced on mesh discretization and mode truncation) as well as the
number of samples in the sampling algorithm. Therefore, a general iterative PGD
reliability procedure is developed to automatically verify the accuracy of the computed
failure probability. It is based on a goal-oriented refinement of the PGD model around
the adaptively approximated design point. The methodology is applied and evaluated
for 1D and 2D examples. The computational savings compared to the method based
on a FE model is shown and the influence of the accuracy of the PGD model on the
failure probability is studied.

Abstract
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Introduction
One of the most important goals in civil engineering is to guarantee the safety of the
construction. Therefore, failure probabilities P in the order of 10~* to 107° in the ulti-
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mate limit state are required in standards (e.g. Eurocode 0)!. The failure probability is
mathematically defined as the integral over the failure domain of an #-dimensional joint
probability density function depending on random parameters. The failure domain is
implicitly given by means of the limit state function. The limit state function is usually
also only implicitly given by the comparison of the resistance (e.g. the material strength)
and the effect of action (e.g. the stress caused by a given loading) of the structure. Often,
a numerical simulation (finite element (FE) simulation) of the structure is needed to eval-
uate the limit state function. For that reason, it is generally not possible to compute the
failure probability analytically. Numerical methods (such as variants of Monte-Carlo sim-
ulations) are needed to estimate the failure probability. The drawback of these methods
is the need for a huge number of evaluations of the implicitly given limit state function
including the FE simulation of the structure for varying parameter sets. For that reasons,
a full probabilistic design is often not feasible. Instead, the so-called safety factor concept
(see footnote 1) is used in industrial applications. The uncertainties in loads as well as in
material properties are included in partial safety factors which are given in standards. In
this way, the resistance of the structure is decreased by a partial safety factor for material
properties (e.g. 1.5 for steel-reinforced concrete) and the effect of action is increased by
a partial safety factor considering the actions (e.g. 1.35 for permanent actions like dead
load). Generally, the load-bearing capacity of the structure is underestimated using the
safety factor concept as compared to a full probabilistic design. By activating these hidden
capacities, the efficiency of the design can be improved with decreasing costs.

In the present paper, this problem is addressed, on the one hand, by introducing an
efficient structural reliability analysis by using the advantages of model reduction tech-
niques to reduce the computational effort of evaluating the limit state function. On the
other hand, the surrogate will be used in an adaptive importance sampling method which
decreases the total number of required evaluations of the limit state function. As a key idea,
a goal-oriented procedure is proposed that automatically adapts the numerical computa-
tion of the failure probability based on the required accuracy. This includes in particular an
adaptive refinement procedure for the surrogate evaluated within the adaptive sampling
procedure.

Several numerical methods are available to estimate the failure probability of struc-
tures. Applying crude Monte-Carlo simulation, the limit state function is evaluated for
a sufficiently large number of realizations of the random parameters and the number of
samples within the failure domain is counted. For small failure probabilities (e.g. 107°),
the number of forward simulations is prohibitively large and thus computationally very
expensive [1]. There are many approaches to overcome this problem based on faster
approximations of the limits state function by surrogate modelling (e.g. first and second
order reliability (FORM, SORM) [2] or response surface method [3]) or sampling methods
which reduce the required number of evaluations (e.g. importance sampling [4]) as well
as combinations. The second group are the so-called variance-reducing sampling strate-
gies, e.g. importance sampling [4—6], directional sampling [7-9], asymptotic sampling
[1,10,11] or subset simulation methods [12-14], to name a few. In the importance sam-
pling method, an additional sampling density or weighting function is used to concentrate
the samples in the most important region, i.e. close to the design point. The design point is

'Eurocode—basis of structural design, European standard EN 1990:2002.
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the point on the (hyper-)surface that separates failure and save domain with the maximum
probability. The difficulty of this approach is the proper choice of this sampling density
function. Possible methods to define this function are e.g. the design point method [15],
kernel density estimator [16] or adaptive sampling strategies [17,18]. In the usually used
design point method, the design point is estimated by solving an additional optimization
problem often based on gradient methods. In contrast to that, in the adaptive strategies
the important region is found in an adaptive way based on presamples [18]. The idea of
directional sampling is to reduce the dimension of the failure probability integral. In this
case, the one-dimensional lines of randomly chosen directions starting from the origin or
mean of the joint probability function are investigated. The asymptotic sampling [1], the
subset [12] as well as the spherical subset simulation [19] decompose the problem into
sub-problems with a higher probability of failure than the one of the original problems.
Since the number of required samples increases with decreasing failure probability, events
with higher probability of failure can be estimate with lower computational effort. All these
approaches still require thousands of realizations of the limit state function to estimate
the failure probability. Simulating such huge numbers of the underlying FE model results
in an enormous computational effort. For that reason, the application of such methods
to real problems is often not feasible. Methods based on surrogate modelling address
this problem. The idea of these methods is to replace the true limit state function by a
surrogate that is computationally faster to evaluate. Different surrogates are discussed in
the literature. In case of response surface methods, the approximation is typically done
by first or second order polynomials. An application to structural reliability can be found
in [3] and one to fracture mechanics in [20]. The limit state function can also be repre-
sented using an Artificial Neural Network (ANN) model [21,22], a Kriging model [5,23], a
polynomial chaos expansion [24] as well as based on statistical learning theory [25]. These
surrogate models are usually black box models that rely on a set of training samples. The
training samples are full evaluations of the original limit state function used e.g. to learn
the ANN model or to define the coefficients of the polynomial. The probability of failure
can be estimated by means of Monte Carlo simulation after the definition of the surrogate.
All above-mentioned simulation-based sampling methods can be used, in which now the
surrogate is evaluated in each sample instead of the original model.

In other fields, a common way to reduce the computational effort of numerical sim-
ulations is the application of model order reduction techniques. The goal is to find the
lowest dimensional system, which can capture the dominant behavior of the investigated
system. Projection based model reduction methods, such as reduced basis [26—28] and
Proper Orthogonal Decomposition (POD) [29-31], are one of the most popular reduced
order models in structural mechanics. The key idea is to project the system onto a lower
dimensional subspace and to reduce the size of the underlying discrete equation system.
The approaches split the calculation into an offline and an online part. In the computa-
tionally expensive offline part, the lower dimensional subspace is defined by running unre-
duced test simulations with different parameter values and generating so-called snapshots
(solutions) from these test simulations. In the computationally efficient online part, this
subspace is used to reduce the size of the equation system. For nonlinear problems, the
reduction of the computational effort of such approaches is limited, because the reduced
equation system is still nonlinear. Furthermore, the evaluation of the components (stress,
stiffness) must be performed over the full domain, which means at each Gauss point of
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the original system. Many strategies to deal with these nonlinearities are published, e.g.
[32-37], to cite a few. The application of POD as surrogate combined with self-organizing
maps for real-time structural assessment could be found in [38]. An application of using a
reduced basis model as surrogate in a Monte Carlo sampling to estimate the failure prob-
ability was developed by [39]. A “generalization of the POD” [40] approach is the Proper
Generalized Decomposition (PGD) method. By means of the PGD approach, it is possible
to a-priori compute abacuses, with which all solutions of a system depending on many
parameters are simultaneously given. An overview of the PGD approach can be found in
[41] as well as [42] concerning their use for digital twins. The key ingredients of PGD are a
separated representation of the unknown solution field, a weak formulation over the mul-
tidimensional space and an iterative solution strategy. First, the space is extended by extra
coordinates representing these additional parameters. In the present paper, these param-
eters correspond to the random variables that define the reliability problem. Second, the
solution is approximated in a separated form as a product of PGD modes depending only
on a single PGD coordinate. Inserting this approach into the weak form formulated over
the whole multidimensional space leads to a complex nonlinear problem—even in case
of an originally linear problem. Therefore, an iterative solution method based on a fixed-
point iteration scheme is used to solve the PGD problem. Different PGD solvers have
been developed e.g. progressive PGD, Galerkin PGD, minimum residual formulation or a
Petrov Galerkin method [40]. In the last two decades, the PGD method has been developed
for a variety of applications, among these, surgery simulations [43], design optimization
[44,45], data-driven applications [46], viscoelastic [45], elastoplastic [47] as well as contact
problems [48]. Nouy [49,50] used the idea of a separated representation in his General-
ized Spectral Decomposition method to reduce the computational time of the stochastic
Galerkin method. The PGD approach for stochastic problems is applied to linear struc-
tural dynamics in [51]. Rubio et al. [52] coupled a Bayesian inference and a PGD model for
real-time identification and model updating. Gallimard et al. [53] used a PGD model of a
linear elastic structure for an efficient computation of the failure probability with FORM.

The aim of this paper is to increase the efficiency of structural reliability analysis by using
the advantages of model reduction techniques and adaptive importance sampling. The key
of the proposed method is the integration of an iterative goal-oriented refinement of the
reduced order model in the most important region immediately controlling the accuracy
of the estimate for the failure probability. The proposed coupling idea is thus an extension
of similar surrogate approaches reviewed above and especially to [39,53]. In contrast
to standard surrogate models which are black box models relying on a set of training
samples, a reduced order model includes the real physical behavior of the structure in
the whole domain. Furthermore, it allows to perform convergence studies. Since the
accuracy of the failure probability depends on the accuracy of the surrogate near the
failure domain, the adaptive refinement procedure for the surrogate is an important issue
often missing in the literature. In [39], a reduced basis model and Monte Carlo sampling
is used whereas in [53] a PGD model is evaluated in a FORM reliability study. This paper
proposes to embed a PGD model in an adaptive importance sampling approach. The
advantage of using PGD instead of a projection-based model reduction is its possibility
to derive a limit state function in an affine separated representation containing modes
depending on the random parameters. Additionally, reduced basis, POD as well as hyper
reduction approaches require a significant higher computational effort in the online phase
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compared to PGD. Furthermore, by combining the reduced surrogate with a variance-
reducing sampling technique instead of using FORM or Monte Carlo the efficiency on
the sampling side is increased. The proposed method can be used for linear as well as
nonlinear limit state functions, opposite to FORM that always assumes a linear limit
state function close to the design point. The proposed adaptive importance sampling
algorithm minimizes the number of samples in total and a PGD reduced order model
increases the computational efficiency of the evaluation at each realization point [54].
The focus of the present paper is to study the proposed method for structural reliability
problems concerning convergence and errors by means of the reduced order model (mode
truncation and mesh discretization) as well as the sampling technique (number of samples,
approximation of design point). An iterative method is proposed to capture the different
error sources using the proposed reliability algorithm. By means of this iterative PGD
reliability procedure, the accuracy of the resulting failure probability is automatically
verified based on an iteratively refinement of the PGD model.

The paper is structured as follow. The PGD reliability method is developed by first
reviewing the general equations and definitions of computing the probability of failure.
Second, the PGD method is outlined, applied to structural mechanics with random param-
eters as extra coordinates and the error sources are discussed. Afterwards, the adaptive
importance sampling technique using the subset idea to define the importance sampling
density and a PGD surrogate is described. Finally, a general iterative PGD reliability pro-
cedure is derived to take the error sources of the method concerning the reduced model as
well as the sampling into account. Subsequently, the iterative PGD reliability procedure is
applied to a one- and a two-dimensional structural problem. The influence of the accuracy
of the PGD model against the FE model on the failure probability as well as the speed-up
are discussed.

Iterative PGD reliability method

This section introduces the proposed iterative PGD reliability method. It starts with a
short definition of the failure probability. Afterwards, the PGD reduction is reviewed and
applied to mechanical problems. The adaptive importance sampling strategy using a PGD
model is introduced. Furthermore, the errors in the coupled reliability method concerning
the reduced model as well as the sampling strategy are discussed. At the end, the fully
iterative PGD reliability method is derived based on a goal-oriented refinement of the
reduced PGD model and an adaptive estimation of the design point.

Probability of failure

The probability of failure P is defined as the integral over the failure domain F over
the n-dimensional joint distribution function fx of all given random parameters X =
(X1, Xo, .., Xy]

B = [ ) ax. M
F

For a review of reliability analysis, the authors refer to [2]. The limit state function g(X)
separates the random parameter space Q2 into a safe domain with g(X) > 0 and a failure
domain F with g(X) < 0. In structural reliability analysis [55], the limit state function can
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often be written as a function of the resistance R and the corresponding effect of action E
both depending on X

gX) = R(X) — E(X). (2)

The resistance is the capacity of a component of the structure to resist loading conditions
(actions) without failure (e.g. the material strength). The effect of action describes the
effect of loading conditions on structural members (e.g. the stresses or deflections) (see
footnote 1). Different definitions of the resistance and the effect of action in the limit
state with respect to the failure criterion exist. Practically relevant failure criteria are the
restriction of the stresses related to the strength of the material or a damage criterion for
the ultimate limit state as well as the restriction of the displacements for the serviceability
limit state. The effect of action E(X) is usually only implicitly given by the numerical
solution of an underlying structural model, usually a FE simulation. Following EC 0 (see
footnote 1) the required failure probabilities should be in the range of 10~% to 107° for
the ultimate limit state and 10~! to 1073 for the serviceability limit state.

Proper Generalized Decomposition for structural reliability
By means of the PGD approach, it is possible to compute numerical abacuses providing
solutions of complex systems for any parameter configuration within the bounds of the
abacus. An overview of the PGD approach can be found in [41,42]. The idea of PGD
is to approximate a parameter dependent solution field in a separated representation of
smaller dimensional components. By this, it can bypass the curse of dimensionality by
transforming a multidimensional integral into products of smaller dimensional integrals.
It resembles the canonical tensor decomposition, which is known as the most data sparse
representation of a tensor. For more information about tensor approximations, the reader
is referred to the work of [56] or [57] and their citations. In contrast to projection-based
model reduction approaches (reduced basis, POD, hyper reduction), all solutions of a
complex system can be computed by the evaluation of a few simple numerical functions
of small dimension. This function evaluations are computationally very efficient and there
is no need of solving any equation systems. In the following, the PGD ansatz is reviewed
for the example of structural reliability and its specifications. Additionally, the necessity of
extended convergence studies for PGD models to control the model quality is discussed.
In structural mechanics, the displacements # depend always on the physical space . In
addition, they are also influenced by the model parameters such as material parameters,
load configuration, geometry or boundary conditions. Classically, these model parame-
ters are assumed to be deterministic for the computation of the displacement field. In a
reliability study, some of these usually deterministic parameters become random param-
eters. A parameter dependent solution is needed for an efficient estimation of the failure
probability. The PGD idea is to include these parameters as extra coordinates and use a
separated representation of the displacement field

M d
u(e) ~ u =T Filie), 3)

i=1 k=1

which explicitly depends on the new parameters k. The sum in Eq. 3 consists of products
of d PGD modes F,i depending only on one coordinate «x with k € [1,d]. The PGD
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coordinates k can include all possible coordinates. In the context of a reliability analysis,
k is the space x enlarged with the n random parameters X according to Eq. 2:

M
uM o, X1, Xo, ., X)) = ) Fi() Fy(X1) F5(X2) F4(X3) . .. F1 (X,). (4)
i=1

The dimensionality of the PGD modes is defined by their coordinates & or X;, i.e. the
dimension of F/, (x) corresponds to the spatial dimension of the original problem whereas
all other modes are often one-dimensional. The PGD modes F,i can be defined using the
variational formulation of the problem’s differential equation. For structural problems,
the approximation #™ Eq. 3 is inserted into the balance of momentum and the weak form

d
is built by integrating over the multidimensional space Q% = | J Q%%
k=1

f o) 5eM (i) dQ? = / S () suM () d? + / t(ic) Su™ (1) dT,. (5)
Qd Qd I

In the last expression, o is the stress and & the strain tensor. The vector f, (k) describes
a volume load and £(k) a boundary load given by the Neumann condition 6n = £ on I';.
The homogeneous Dirichlet conditions are given as # = 0 on I',,. €™ gives the strains in

separated representation following the kinematic equation eM = grad (™). A (linear)

sym
material law 6(k) = Cjugic (k) : € (k) completes problem Eq. 5. ’
The PGD problem resembles the standard finite element weak formulation. Due to the
integration over a multidimensional space, it is much more complex and transformed
into a nonlinear problem. The benefit of the PGD idea using a separated approach is the

transformation of a multidimensional integral into the product of smaller dimensional
M , . .

integrals fou uM(x X1, X2) 44 = 3 [ [, i@ dQ" [y, FiX) d2 [ Fi(Xp) d2%].
i=1

For that reason, not only the displacement field but all input functions have to be approx-
imated by an affine separated representation. For a detailed study of the influence of
separated approximation of input data in the PGD approach, the reader is referred to
Zlotnik et al. [58]. Here, this means that the load functions as well as the material law are
also given in the form of

vy

Fre Xy Xo, o, X) = D Vi) V3(X1) V30G) ... Vi (X,),
i=1

T;
£ X0, Xo, ., X)) = Y Th() T5(X1) T3(X2) ... Tus1(Xn),
i=1

Ss
ox X1, X, .., X)) = ) S5 (x) SH(X1) S5(Xa) . .. Suy1 (Xa). (6)
i=1

Usually, these separations can be derived analytically. For the examples in this paper, this is
the case and the separations are shown later. If it is not possible to derive a decomposition
analytically, approximations must be used. The smaller dimensional functions can e.g. be
computed based on SVD or POD approaches [58].

There exist different ways to solve the problem in Eq. 5 in a discrete way [40]. The
standard approach is the progressive PGD strategy [59], which is used in this paper as



Robens-Radermacher and Unger Adv. Model. and Simul. in Eng. 5¢i.(2020)7:29 Page 8 of 29

e loop over enrichment step m > 1
— initialize R
— loop over fixed point iteration I € [1, Linaaz]

d
1. compute R!: solve eq. (5) with du™ = §R' T] R
k=

2
d
2. compute RL: solve eq. (5) with su™ =§R, [ R
k=1,k#2

=~

3. ...

d
d. compute Rfi: solve eq. (5) with du™ = 5Rfi IT R
k=1, k#d

PO

d+1. check convergence: max|RL — RL7!k € [1,d] < tol — stop (with Ry, = Ry /||Rl|r2 )
d
— update PGD solution ™ = u™ ! + [] Rp(x)
k=1

— check amplitude eq. (8) — stop M = m

Fig. 1 Progressive PGD algorithm

well. For a prove of the convergence of the progressive PGD for elliptic problems, the
authors refer to Falco et al. [60]. The problem is solved iteratively

M-1 d

d
' = 3" [T Fia) + [ ] Retoer) = =1+ T Recer). @)

i=1 k=1 k=1 k=1

The enrichment functions Ry for each enrichment step m > 1 are computed in a fixed-
point iteration. This solution approach is also known as alternative direction method.
In each enrichment step m, d small dimensional problems—one for each PGD variable
kx—are considered. These small dimensional problems are solved using the preferred
discretization schema (FE) in a loop until the enrichment functions Ry are converged.
Afterwards, the solution u#”” is updated following Eq. 7 with M = m. As a stopping

criterion for the enrichment steps, the amplitude

d
A" =TT IEf ()12 < tol 8)
k=1

according to Zou et al. [61] is used. If the tolerance is reached the enrichment loop stops
and the final solution is given with M = m summations. The implemented PGD algorithm
is summarized in Fig. 1.

The accuracy of the proposed PGD reduction is influenced by different aspects. For
an accurate representation, the problem must be separable. This also implies that the
input of the problem must be separable. Otherwise, the accuracy of the PGD solution will
be influenced by the approximation error on the input side. For this paper, we assume
that this is always the case. Furthermore, the two main influences on the accuracy are
the discretization error for each coordinate and the truncation error [58], i.e. stopping the
summation in Eq. 3 after a finite number M. A converged PGD approach is needed in terms
of a converged mesh for all PGD coordinates and converged number of modes to minimize
these errors. Only if a sufficient quality of the reduced model is verified, it is possible to
quantify the influence of the reduced model compared to the full FE model on the accuracy
of the results. In the literature, a very fine discretization for all PGD extra coordinates
is suggested (e.g. [62]). Nevertheless, it is generally not clear what exactly is fine and
sufficient. A combination of PGD with an adaptive h-refinement on the space coordinate
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can be found in [63]. In this paper, a goal-oriented refinement procedure considering
both influences are included in the proposed iterative PGD reliability method to reach an
accurate estimation of the PGD model in the region of interest and, consequently, of the
failure probability.

Adaptive importance sampling coupled with PGD

The main idea of importance sampling is an additional density generating samples directly

in the region of interest. The key equations are reviewed following the notations in [4].
The integral (1) is rewritten as

KV)

B IV) fx (V)
F= ) hvv)

% hy(V)dV, 9)

hy(V)dV = Q/

using the importance sampling density sy and the indicator function (V) = 1ifg(V) <0,
otherwise I(V') = 0. This new density function is used to generate samples directly in the
region of interest—near the design point. The design point is the point on g = 0 with
the minimum distance to the origin in the Gaussian normal space (fy is a maximum).
Non-Gaussian as well as correlated variables can be transformed into the Gaussian space
based on e.g. Nataf [64] or the Rosenblatt transformation [65]. The probability of failure
can then be estimated as

E(Py) ~ Py = Z[ ) o) (10)

hV Vi)

using N samples v, generated by /y. The variance of the failure probability in Eq. 10
reads:

2
Var(Py) = [ Z (o) U hV(Vk } 11)

In the following, the estimated failure probability is denoted as Py instead of Pf to simplify
the notation.

A proper choice of /1y can significantly reduce the variance of the estimator Py. Various
methods to define the importance sampling density exist, e.g. [4,5,15-18]. A common
choice is the design point method, where the mean of the original density function fx
is shifted towards the design point while keeping the original covariance matrix. The
design point can be computed e.g. by means of solving an optimization problem. Here,
we propose to use an adaptive way based on the idea of subset simulation to estimate the
design point and with it the importance sampling density.

In the subset simulation [12] approach, the problem is decomposed into subproblems
with larger probabilities. In particular, the intermediate failure events are chosen as a
decreasing sequence of p nested failure events

={gX) <¢} witheg>c3>--->¢,=0. (12)

The constants ¢; shift the limit state (g; = 0) into regions of higher probabilities (see Fig.
2). It is possible to choose the constants ¢; in an adaptive way using a threshold py for the
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conditional probabilities [13]. The probability of failure, Py, can then be expressed as a
product of conditional probabilities P(g;+1|g;) and the probability of the first failure event

P(g1) [12]

m—1

Pp=P(gn) =P (ﬂ&') =P(@) [ | Plgir1lg)- (13)
i=1

i=1

In the literature, the conditional probabilities are usually estimated using conditional
sampling by means of Markov Chain Monte Carlo simulation [12,13,66,67]. The efficiency
of such subset simulation approaches depends on the chosen intermediate failure events
¢; and the threshold py, respectively. This influences the number of subsets as well as
the required number of samples for each subset. An extension of the subset simulation
technique for dynamical systems is developed by [68] and extended for multiple limits
states [69]. In the community of rare event probability, the subset simulation method is
also known as sequential Monte Carlo [67] or splitting Monte Carlo method [66].

In contrast to these original subset simulation approaches based on conditional sampling
algorithms, this idea of adaptively moving the limit state function is used to define the
design point and /1. Furthermore, the sampling is coupled with a PGD surrogate defined
in the last section. Of course, using a PGD model as a surrogate in a reliability analysis is
not limited to this sampling method. It would speed up any other sampling procedure to
compute the failure probability. The proposed PGD reliability method is summarized in
Fig. 2.

It starts with generating N}, samples by means of fy (Fig. 2a) based on a Latin Hypercube
(LHC) sampling. The random LHC design matrix with centered entries is generated based
on [70].> From these first samples, the limits of the PGD extra coordinates, which are the
random parameters X; of the reliability analysis, can be defined. One option is to use the
minimum and maximum of the sample points as the interval ranges for X;. In this case,
an update of the PGD solution is needed for each step in the adaptive design point that
is used to estimate /x thus resulting in additional computational effort. Therefore, the
intervals are enlarged using the range of a multiple of the standard deviation (£ - sx;)
around the median of each random parameter X; i € [1, n]. The PGD problem is then
solved for this enlarged parameter space. The PGD abacus is used to efficiently evaluate
the limit state function g(X) in the adaptive design point estimation (Fig. 2a—c). After each
step, the interval ranges for the random parameters are verified and—if necessary—the
PGD problem is solved again for an adapted parameter space. In the first step (Fig. 2a),
the constant c; is set equal to the po-percentile of the ordered limit state function values
g(vi) evaluated at each sample point v for k € [1, Np]. For that choice P(g1) = po is
satisfied. py is a given threshold for the intermediate failure events based on the adaptive
subset simulation approach. Typically, itis in the range of 0.1 [13]. Afterwards, the samples
lying in the failure domain F; are averaged and used as the new mean for the importance
sampling density in the next step. In the subsequent steps (Fig. 2b), the shifted limit state
functions g; i € [2, p] are chosen so that

P(g) = po - P(gi—1) = ph. (14)

2Module diversipy. Sample in hypercube, select diverse subsets and measure diversity, version 0.8. Available at https://
pypi.org/project/diversipy/.


https://pypi.org/project/diversipy/
https://pypi.org/project/diversipy/
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Fig.2 PGD reliability analysis based on adaptive design point estimation a-c and the estimation of Pr by
means of importance sampling (d)

Based on the assumption of nested limit state functions, the statement in Eq. 14 resembles
the condition in the adaptive subset simulation in [13]. Using the importance sampling
ansatz with /i, these probabilities can be estimate as

N,
N 1 & fx(vi) _
P(g) ~ Fp kX:; o (v ) (Vk) N Z (Vi) og (V). (15)

As mentioned above, the mean of /x, is defined as the average of the sample points lying
in the previous failure domain F;_;. The pg-percentile cannot be used to define the next
limit state function. Instead, the samples and weights are ordered in increasing order of
their magnitude of the limit state function g;. The weights are summed up until py is
reached. ¢; is than found as the value of the limit state function g; for the last sample point
included in the sum. This procedure is repeated until ¢; becomes negative. At this point
the original failure event F,, with ¢, = Oisreached. At that last step (Fig. 2c), an estimation
of the design point is computed by averaging samples around g = 0. Therefore, 10% of
N, samples lying closest to the failure surface and located in the failure as well as in the
safe domain are averaged.
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Finally, the probability of failure Py is computed using a standard importance sampling
based on Eq. 10 with the sampling density /1y shifted towards the adaptively defined design
point approximation (Fig. 2d). The number of samples N in the final estimation of the
failure probability is generally chosen significantly larger than the number of samples in
the preceding adaptive steps to estimate the design point, thus N > N,.

The derivation of the proposed adaptive importance sampling method has been shown
for problems with a single design point. For multiple design points, extensions such as
proposed in [16] can be implemented. If the geometry of the limit state gets to complex,
further extensions must be considered guaranteeing that the global optimum will be
reached [71].

Iterative PGD reliability procedure (it PGDrel)

As discussed in the preceding sections, the sampling algorithm as well as the PGD model
both influence the accuracy of the presented PGD reliability method. The mesh discretiza-
tion and the mode truncation influence the accuracy of the PGD model used to evaluate
the limit state function. The number of samples as well as the chosen threshold for the
adaptive design point estimation directly influences the accuracy of the estimate for the
failure probability. For that reason, an iterative PGD reliability procedure (1 tPGDrel)
summarized in Fig. 3 is proposed. It is based on a goal-oriented refinement of the PGD

START:
Ny, po, meshes kg,
it = 0 (“’hit_l = 0)

adaptive PGD design point refined PGD, it4+ = 1
estimation (itPGDrel-DP) O

Hp,,
PGD reliability A ‘ol PGD refinement
(itPGDrel-PF) | ves B < tolg no i
= o A= |ur ¥ (itPGDrel-ref)
with ;. an = |Hhiyy T Hhg g

at g, .
increasing N O hit

Pf with
Var(Py) < toly

Fig.3 lterative PGD reliability (1 t PGDrel) procedure based on it PGDrel-DP defined in Fig. 2a—c,
1tPGDrel-ref step detailed defined in Fig. 4 and i t PGDrel -PF shown in Fig. 2
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model around the adaptively defined design point describing the important region. In this
way, the accuracy of the PGD model is verified at least at an approximated design point.
The difficulty is that the design point is not known a-priori, so that the iterative PGD
model refinement must be embedded into the adaptive importance sampling procedure.

The 1tPGDrel process starts with a coarse discretization for each coordinate «; for
the initial PGD model. Furthermore, the adaptive parameters N, and pg are chosen. In
the numerical example section, a general discussion on how to choose these parameters
is included. With this initial parameters and discretization, an initial (i¢ = 0) design point
approximation is calculated using the above presented adaptive PGD design point esti-
mation defined in Fig. 2a—c and abbreviated by 1tPGDrel-DP in the following. After
several runs of that itPGDrel-DP an average approximation of the design point wy, is
used to improve the PGD model in the PGD refinement step called itPGDrel-ref.
The stochastic distribution is due to the different random seeds in the sampling proce-
dure. In order to obtain an accurate estimate of the failure probability, the quality of the
PGD model close to the design point is most important. For that reason, the criterion of the
refinement step 1t PGDrel-ref is based on the limit state function value at u,: g(ny, ).
The itPGDrel-ref processis summarized in Fig. 4 and will be explained in detail, later.
With the refined PGD model, again a new approximation (it = 1) of the design point u;,
is computed repeating the adaptive PGD design point estimation itPGDrel-DP step
starting now from g, . Since the intervals of the PGD coordinates of the refined PGD
model are defined around the design point approximation of it — 1 (), the mean of
the random parameters might not generally be included. Therefore, the adaptive sam-
pling in itPGDrel-DP starts with an importance sampling density centered in p, ,
instead of the mean of the random parameters as shown in Fig. 2a. The new design point
approximation gy, is compared to the previous design point p,, . If the design point
approximation has not changed significantly, i.e. the difference in the distance § of the
design point in the standard normal space lLZ_ from the origin is smaller than a given
tolerance: AB < tolg, the failure probability is computed in step itPGDrel-PF using
the PGD reliability method according to Fig. 2 starting from the current design point u,,, .
Otherwise, a new 1t PGD-ref step is performed followed by a new 1 tPGDrel-DP step.

PGD refinement at design point approximation K,
1  adaptive h-refinement
— FE model with given parameter values as P,
— automated goal-oriented error controlled algorithm [72]
— goal function: g(,u,hit)
— converged mesh for « at Mg,
2 iterative uniform refinement
— PGD model with converged & mesh from step 1
— iterative successively uniform refinement of the PGD extra coordinates
— refinement criterion: g(phit)
— converged meshes for PGD extra coordinates X;
3 truncation of PGD modes
— PGD model with converged meshes «; from step 1 and 2
— increasing number of PGD modes
— truncation criterion: relative error of g(p,,, ) based on PGD model and FE model eq. (16)
— select PGD model based on relative error eq. (16)

Fig.4 PGD refinement (it PGDrel-ref): iterative refinement of the PGD solution (discretization and
mode truncation) at the current Lh,
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In the final PGD reliability step 1tPGDrel-PF, a convergence study for the required
number of samples N in the importance sampling part (see Fig. 2d) is needed to estimate
the failure probability with the given accuracy tol,. Therefore, in the importance sampling
part of the i tPGDrel-PF (Fig. 2d), the number of samples N is successively increased
until the estimator of the variance of Py is smaller than tol,.

The PGD refinement process 1t PGDrel-ref in this 1tPGDrel procedure is subdi-
vided into three steps. In a first step, the mesh in space «x is considered. A converged »
mesh is derived by running an adaptive h-refinement on the standard FE model with the
random parameters set to the current design point u,,, . In this case, standard refinement
solvers can be used. In the present paper, an automated goal-oriented error control algo-
rithm based on the framework of an auxiliary linearized adjoined (dual) problem provided
in [72] is used. The limit state function acts as the goal function for the refinement algo-
rithm. In the second step, a PGD model with the converged # mesh and coarse meshes
in the directions of the random parameters is set up. The meshes concerning the random
parameters (the PGD extra coordinates) are then refined successively until the changes
in the limit state function value g(p,,) is smaller than a given tolerance value. Here, a
uniform refinement is used. After the first run (all coordinates were refined successively
one time), the successively refinement starts again using the meshes of the first run as start
meshes. In this way it is an iterative successively uniform refinement. In each refinement
step, the PGD solution is generated from scratch. As an alternative, it would be possible
to use a projection of the coarse PGD modes onto the fine mesh as the initial guess for
the next refinement step. If converged meshes in all directions are found, the required
number of modes M needs to be determined, in the last step. Therefore, the relative error

of g(my,)

. \grGp(mp,) — grEM (i, )|

6
\geEm (i, )| (16)

is used as selection criteria. In the latter expression, grgar denotes the limit state function
based on the FE model with the current discretization and gpgp the one based on the
PGD model with the current discretization and a certain number of modes. The number
of modes M in the PGD model is successively increased until the relative error is smaller
as a given sought value.

Numerical results and discussion

In the following examples, the presented methods® are discussed based on a one- and a
two-dimensional structural reliability problem. First, the influence of the adaptive sam-
pling parameters (po and Np) is investigated for a simple uniaxial truss using the PGD
reliability algorithm (Fig. 2) with an analytic limit state function. Furthermore, the pro-
posed itPGDrel analysis is demonstrated and the influence of the selection criteria Eq. 16
of the itPGDrel-ref step onto the failure probability is investigated. Second, a more com-
plex two-dimensional cross-section of a roadway bridge is used to apply the itPGDrel
analysis to a more realistic structural problem. The convergence of the failure probability

3The method is implemented in python “Python Software Foundation. Python Language Reference, version 3.6. Avail-
able at http://www.python.org” using the standard python packages such like NumPy, SciPy . .. and the open-source
tool FEniCs “FEniCs Project version 2018.1. Available at https://fenicsproject.org/” [73] as solver for the variational
problems.


http://www.python.org
https://fenicsproject.org/
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influenced by the model error of the PGD model against a FE model and the number of
samples is shown. Furthermore, the savings in computational time using the proposed
method are discussed. All results (estimator as well as its variance) of stochastic compu-
tations (1t PGDrel-DP and itPGDrel-PF) are computed from 50 runs.

PGD reliability analysis of an linear elastic uniaxial truss

At first, the proposed PGD reliability analysis is applied to a simple structural problem.
The uniaxial truss in Fig. 5 is clamped on both sides and loaded with a line load n(x, A, ®) =
A - [cos(x + ®) + sinh(x + ®)] along x € [0, L]. That artificial load function is chosen to
generate a problem which needs a small number of modes in the PGD solution. Linear
elastic material is assumed 0 = E - ¢ with the Young’s modulus E. The cross-section and
the length of the truss are given as deterministic values as A = 1.0 and L = 1.0. The
load parameters A and ® as well as the Young’s modulus E are investigated as random
parameters with normal distributions given in Table 1. The limit state is defined by the
restriction of the maximum displacement located at x4

g(®, 2 E) = wiipmir — |uumax, D, 4, E)|. (17)

Ujimiz is chosen as 0.33, which results in a failure probability in the order of 107, In this

example, ¥;qx = 0.52 L is chosen.*

In total, three random parameters are considered so that the PGD approximation of the
displacement function is given by

u(x, ®, ), E) ~ Z Fi(x) Fi(®) Fi(A) FL(E). (18)

The input functions (load and material law) can be analytically separated in an affine way.
The load function needs four function products
p, &, 1, E) = cos(x) - cos(®P) - A - 1.0 + (—sin(x)) - sin(P) - A - 1.0
+ sinh(x) - cosh(®) A - 1.0 + cosh(x) - sinh(®) - A - 1.0
4
=Y Vi) Vi(®) Vi) VL(E). (19)

i=1

The material law is given in separated form as

o(x @, 4 E) (®) - F&(A) - E Fi(E). (20)

||M§

In this first example, the displacement field can be solved analytically. Using this ana-
lytical function for #, the limit state function Eq. 17 is given as

g(q)x A E) = Ulimit — |M(xumax; D, A, E)|

A
U(Xymax, Y, A E) = E_A [cos(Fumax + D) — sinh(Xymax + P)

4The location of the maximum displacement value has been derived numerically at the first design point approximation
in the 1t PGDrel procedure. It is here fixed at the beginning to derive a simple analytic expression for the limit state
function.
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Fig.5 Example 1D truss with geometry, boundaries and loading conditions with n(x, ®, A) =
A - [cos(x + @) + sinh(x + )]

Table1 Distributions of random parameters in example 1D truss

Random parameter Distribution
Load parameter & N(0.0,0.22)
Load parameter A N(1.0,0.12)
Young's modulus £ N(1.0,0.052)

Xumax

— cos(®P) + sinh(D)].

- (= cos(L + @) + cos(P) + sinh(L + ®) — sinh(P))

(21)

The latter limit state function based on the analytical solution is used as reference for the

PDG model in the following investigations.

Influence of adaptive sampling parameters

In Tables 2 and 3, the influence of the adaptive sampling parameters pg and N, on the

failure probability is summarized. The data are averages based on 50 runs of the presented

adaptive importance sampling method (summarized in Fig. 2) using an analytic limit state

function instead of a PGD surrogate with N = 5000 and varying adaptive parameters pg

and N,. For this discussion, the number of samples N in the last importance sampling

step (Fig. 2d) is of minor importance but must be fixed for the estimation and comparison

of Pr. With N = 5000 samples Py can be estimated very accurately with a coefficient of

variation (CoV) smaller than 0.1. For comparison purposes, the failure probability is given

with respect to a reference value Py, e That value is the average of 50 estimations with

N, = 1000, po = 0.1 and N = 25, 600.

Table 2 1D truss: influence of the number of samples N, with a fixed po = 0.1 in the
adaptive design point estimation using the analytic limit state function (50 runs with

N = 5000)
N 1Py =Py, | —
b Po Niotar R std(Pr) (Var(Py)
5 0.1 5039.8 045 593.10/ 125107/
10 0.1 5071 181072 2251077 153-1077
50 0.1 5332 7141073 6.66-108 5671078
100 0.1 5646 3.25.1073 6.97 1078 6.05-1078
200 0.1 6276 4111073 5711078 536-10~8
1000 0.1 11,020 598.10~* 546.1078 502-1078

The failure probability is given with respect to Py, =118 x 10~° computed with N, = 1000, po = 0.1 and N = 25,600 in

50 runs

Page 16 of 29
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Table 3 1D truss: influence of the adaptive parameters N, and po using the same relation
(Np - po = 10) in the adaptive design point estimation using the analytic limit state
function (50 runs with N = 5000)

1P =P, |

Np Po Notalt P std(Pr) (Var(Pr)
50 0.2 5464 234.1073 593.1078 6.04-1078
100 0.1 5646 3.25.1073 6.97-1078 6.05-1078
200 5.1072 6000 7.56-1073 584.1078 563-1078
1000 1.1072 8000 2.79-1073 4611078 5.26-108
The failure probability is given with respect to Pfre/ = 1.18 x 10~% computed with Np = 1000, pp = 0.1 and N = 25,600 in
50 runs

In the first comparison (Table 2), the threshold py is fixed to 0.1 and the number of
samples for each step N, is increased. This means that the accuracy of the adaptive steps
is improved. The total number of samples (N, per step plus fixed N) increases with
increasing N,. But, the effect on the accuracy (relative Py and std(Py)) is not significant as
long as N, is sufficient to approximate probabilities in the range of po (here N, > 10). If
the number of runs is increased an unbiased estimation should be reached. In that case the
average of the failure probability will not change anymore. In Table 3, the product N, - pg
is fixed to 10. In that case, exactly 10 samples fall into the corresponding failure domain.
It is demonstrated that the adaptive sampling parameters pg and N, do not significantly
influence the accuracy of the failure probability. Furthermore, the average over the 50
runs of the variance estimator values (column “\/(Var(Pf)" of Tables 2 and 3) are in the
same range as the standard deviation of the failure probabilities computed with 50 runs
(column “std(Pyr)”). For that reason, the study verifies the variance estimator Eq. 11 for
the adaptive importance sampling algorithm.

Furthermore, a crude Monte Carlo simulation of the example with 107 samples yields an
average failure probability of 1.198 10~ (50 runs) with a coefficient of variation (CoV) of
0.33. Compared to the results in the tables, the presented adaptive importance sampling
method can provide the same accuracy with significantly less sample evaluations.

From this study, we propose the adaptive sampling parameters to be chosen in the way
that N, - po > 10. Therefore, in the following examples N, = 100 and py = 0.1 is used
without further discussion.

Iterative PGD reliability analysis

In the next step, the iterative PGD reliability analysis (itPGDrel) procedure is applied to
the example. As starting conditions N, = 100, po = 0.1 and 2 linear elements in each
direction are chosen. The PGD refinement step i t PGDrel-ref for the first design point
approximation g, calculated in 50 runs of the adaptive PGD design point estimation
itPGDrel-DP is demonstrated in Figs. 6 and 7.

In Fig. 6, the adaptive h-refinement of the spatial mesh in x (step 1 of 1tPGDrel-ref)
is shown. The relative error of the limit state function value at the design point approx-
imation between the FE model and the analytic model is plotted against the number of
elements in x. As expected, the relative error decreases with increasing number of ele-
ments. From this convergence study, an x-mesh with 361 linear elements is chosen. Using
this mesh, the relative error to the analytic solution is about 107°.
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Fig. 6 1D truss: error of the FE solution (mesh in x) gre () relative to the analytic value gana(pp,) over the
number of elements (1t PGDrel-ref step 1)
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Fig.7 1D truss: error of PGD limit state function at the first design point approximation g, over the number

of PGD modes M and different PGD mesh discretization (1 t PGDrel-ref step 2 and 3). The number of
linear elements in @, A, E is given in the legend (in x 361 linear elements)

In the next steps 2 and 3 of the PGD refinement itPGDrel-ref, the PGD model is
refined. The interval ranges of the PGD extra coordinates ®, A and E are defined by the first
design point approximation g, and the standard deviations of the random parameters
s; and are chosen as u;, & 10 - s. In Fig. 7, the relative error Eq. 16 of the limit state
function value g(;,) between a PGD and FE based limit state function is plotted against
the number of PGD modes for different mesh sizes for ®, A and E. Linear elements are used
for the extra coordinates. The refined meshes are determined by iteratively refining the
PGD coordinates as explained in Fig. 4. As expected, the error decreases with increasing
number of modes and increasing number of elements. Using more than three PGD modes,
the changes in the error is neglectable. The second parameter A is always discretized with 2
linear elements (the start value), because displacements depends linear on the load factor.
From that first 1tPGDrel-ref performance, a sufficiently refined PGD model has to
be chosen for the following adaptive PGD design point estimation step 1t PGDrel-DP
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Fig.8 1D truss: first three PGD modes of the refined PGD solution at the first design point approximation
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Table 4 1D truss: summary of itPGDrel process is given by the averaged design point
K, in the normal space, the difference in the distance A as well as the failure probability
with N = 1600 based on PGD and FE model (50 runs, pg = 0.1, N, = 100, & = 10)

it nY ny ny AB mean(Pr)pGp mean(Pf)apalytic
0 3.14 177 —1.28 383 7.16-107° 1.19.107°
1 3.72 237 —1.66 092 1.18-107° 1.19.1076
2 369 247 —1.68 9.76 -10~2 1.18-107° 1.19.107%

with it = 1. This will be done based on the selection criterion Eq. 16, the relative error
of the limit state function value at u;, computed with a PGD surrogate compared to the
one computed with a FE model and shown in Fig. 7. Here, a refined PGD model with a
relative error of 10 is used which consists of 1024 linear elements in ®, 2 in A and 128
in E and three PGD modes. This discretization corresponds to a refinement tolerance of
10~%. The first three modes of each PGD coordinate are plotted in Fig. 8.

In the next iteration step (it = 1), the refined PGD model is used in the PGD design point
estimation step i t PGDrel-DP and a new design point approximation g, as average of
50 runs is computed. These two steps (1 t PGDrel-ref and 1t PGDrel -DP) are repeated
until the new approximation of the design point is similar to the previous one: Ag < 0.1.
Afterwards, the failure probability can be estimated performing the PGD reliability step
itPGDrel-PF.

In Table 4, the iterative process 1tPGDrel is summarized. The coordinates of the
design point approximation transformed into the normal standard space as well as the
resulting difference in the distance B (see Fig. 3) are given for each iteration step it.
Additionally, the failure probability estimated with N = 1600 samples by means of the
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Fig.9 1D truss: convergence of failure probability (left) and its standard deviation (right) over the number of
samples N running 1t PGDrel-PF forit = 1 (50 runs, pg = 0.1, N, = 100, Ny = 25,600 and & = 10)
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Fig. 10 1D truss: influence of the refinement degree of the PGD model (given by Eg. 16) on the failure

probability Pr based on 50 runs of i tPGDrel-PF with varying PGD solutions regarding mesh discretization
and number of modes (Ip, from the initial iteration it = 0 and pg = 0.1, N, = 100 and N = 1600 are used)

current PGD model and uy,, as well as by means of the analytic limit state function are
given for each iteration step for comparison purposes—usually the failure probability will
only be calculated at the end for the converged iteration step (see Fig. 9). The CoV for
that values with N = 1600 is 0.07. Already after two iterations, the difference in 8 is
sufficiently small (using tolg = 0.1). The reason for the proposed refinement step can be
seen by comparing the failure probabilities. The computed failure probability using the
coarse initial PGD model shows a large deviation from the reference value computed with
the analytic limit state function. After the first PGD refinement step around the first design
point approximation, the computed failure probability is very close to the reference value
(it = 1). A further refinement will not significantly improve the accuracy of the estimation
for Py (it = 2).

In Fig. 9, the influence of the number of samples N in the PGD importance sampling of
the PGD reliability step 1t PGDrel-PF is demonstrated. The failure probability as well
as its standard deviation for the converged iteration step (it = 1) as well as for the case
using the analytic limits state function is plotted against the number of samples N. The
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estimation of Py converges as expected according to Eq. 11 proportional to 1/ VN which
is shown in the linear decrease of the standard deviation in logarithmic scale.

Summarizing, the presented iterative PGD reliability procedure it PGDrel can reduce
the error influences of the PGD model. Based on convergence studies, an accurate estimate
of the failure probability can be obtained.

Influence of the PGD model on failure probability

After verifying the 1tPGDrel method, the sensitivity of the degree of refinement of
the PGD surrogate (performed in the i t PGDrel -ref step) on the failure probability is
discussed. The goal is to refine the PGD model only as much as required for an accurate
estimation of the failure probability. For that purpose, the sensitivity of the selection
criteria Eq. 16—that characterizes the accuracy of the PGD approximation—with respect
to the computed failure probability in PGD reliability step 1 t PGDrel -PF is investigated.

For the first iteration iz = 0, the failure probability is computed (using i t PGDrel-PF)
for each PGD model in the refinement step 1 tPGDrel-ref, thus illustrating the influ-
ence of the discretization error as well as the mode truncation error on Ps.

In Fig. 10, these failure probabilities are plotted against the selection criteria Eq. 16 (the
relative error of g(p,,) between the PGD and FEM model) separately for the PGD models
obtained during i tPGDrel-ref step 2 (discretization: different uniform refinements of
PGD extra coordinates) and step 3 (truncation: changing the number of PGD modes). In
this way, the effect of the PGD model accuracy (measured at one point) on the failure
probability is shown. The failure probability computed based on the analytic limit state
function is given as reference. For a selection criterion in the range of 10~3 and better, the
reference failure probability can be obtained. Furthermore, the source of the model error
(i.e. finer discretization or more PGD modes) is not important.

Summarizing the first numerical example, general rules for choosing the adaptive sam-
pling parameters N, and pg are given. The 1t PGDrel procedure is verified and the impor-
tance of including a model refinement step 1 t PGDrel-ref in an adaptive way is demon-
strated. The iterative method converged very fast. In this example one 1 tPGDrel-ref
step is sufficient to find a PGD surrogate for estimating the failure probability efficiently
and sufficiently accurate. Furthermore, it is shown that a refined PGD model can be
obtained by a selection criterion measuring the relative error of the limit state function
computed using the PGD model compared to a FE model at the design point. Failure
probabilities within the same accuracy as using an analytic limit state function can be
generated by refined PGD models with a selection criterion less than 1073, It was demon-
strated that the required accuracy of the PGD surrogate is directly related to the desired
accuracy of the estimated failure probability.

PGD reliability analysis of a roadway cross-section

As a second structural example, a 2D roadway cross-section of a T-beam bridge is inves-
tigated. The geometry, boundary and loading conditions are shown in Fig. 11. The traffic
is modelled by means of constant values over each lane of the three-lane roadway. The
structure behaves linear elastic using a plane strain assumption. The mean value of the
Young’s modulus is defined as E = Ag - Ep. Other deterministic as well as random param-
eters are given in Table 5. The limit state is defined by the restriction of the deflection ()
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Fig. 11 T-beam cross-section with geometry in (m), loading and boundary conditions

at the right end of the cross-section (point P at (6.45, —0.1) (m))
g()\; )\E; U) = Ulimit — |My(xp, A )‘E) V)| (22)

Ujimiz is chosen as 80 mm, which yields a failure probability around 107>,
Three random parameters are considered, thus the PGD approximation of the displace-
ment field is given by the product of four PGD modes:

M

u(x, 2 g, v) ~ Y F(x) F5(A) F5() F4(0). (23)
i=1

The product of the approximation consists of a single two-dimensional function depend-
ing on the spatial coordinates and three one-dimensional functions depending on the
random variables. The corresponding separated representations for the external load as
well as the material law can be derived analytically. The separated functions for the loads
read

q1(x, %, Ap, v) = Gi(®) - A - 1.0- 1.0 = G1(x) G2(A) G3(Ag) Ga(v)

q2(x, %, Ag, v) = Hy(x) - & - 1.0 - 1.0 = Hy(x) Ha (1) H3(Ag) Ha(v). (24)
G1(x) and Hj(x) are given as piecewise constant functions (g1 and g3 in y-direction see

Fig. 11). The linear elasticity matrix for plane strain in two dimensions can be decomposed
into the following parts in Voigt notation

C——1 weEo-10| P e -1 app 10| P TE
S ooy MERMO N T gy ER Y L
2
=) Ci®) Cy(n) C5(rg) CL(v), (25)
i=1

depending on the chosen PGD coordinates x, A, Ag and v.
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Table 5 Definition of deterministic and random parameters of the 2D cross-section

example

Deterministic parameters Value Random parameter Distribution
Load amplitude g, 1.25 N/mm Load scaling parameter A N(1.0,0.1%)
Load amplitude g, 4.5 N/mm E Scaling parameter Ag N(1.0,0.05%)
Young's modulus £ 35,000 N/mm 2 Poisson ratio v N(0.2,0012)

Iterative PGD reliability analysis

The iterative PGD reliability analysis 1t PGDrel is applied to the bridge cross-section
example. The results are summarized in Table 6 and Fig. 12. As starting conditions N, =
100, po = 0.1, 404 quadratic elements in the space dimension x and 2 linear elements in
the directions A, Ar and v are chosen. The interval ranges for the PGD extra coordinates
are set to & = 10 around the mean of the random parameters. The refinement after the
initial PGD design point estimation step itPGDrel-DP (it = 0 — py,) is done with
a tolerance of 10~ for both refinement steps (it PGDrel-ref step 1 and step 2). The
goal function of the adaptive h-refinement of the step 1 of 1tPGDrel-ref to achieve a
converged mesh in x is defined by the limit state function. Due to the implementation of
the refinement algorithm in FEniCS [72], the integral over the displacement u, located at
the edge of point P (see Fig. 11) divided by the length of the edge is used. In this example,
that average displacement at the edge is very close to the displacement at point P.

In Table 6, the changes in the design point approximation transformed into the normal
space, as well as the differences of the distance 8 and the failure probability (with N =
1600) over the iteration steps are shown. As reference, the solution of Py with N = 1600
based on a FE limit state function is given. It is demonstrated that the algorithm again
converges in only two steps (with zolg = 0.1) and the resulting Py by means of the PGD
model is very accurate compared to the full FE model.

In Fig. 12, the convergence over the number of samples N in the 1 t PGDrel-PF step is
illustrated. The plots show the failure probability as well as its standard deviation over the
number of samples N for the converged iteration step 1. With 1600 samples, the failure
probability can be computed with a CoV of 0.05. Increasing the number of samples by a
factor of four halves the CoV, as expected. The refined PGD model of iteration step 1 is
discretized with 12, 122 quadratic elements in # and 2 linear elements in A, 1024 in Ar and
128 in v. Three PGD modes are used for each coordinate. The selection criteria Eq. 16 of
that refined PGD model that describes the relative error of the PGD solution compared
to the FEM at the design point is 2 - 107> and thus already very small.

Finally, the influence of the refinement degree of the PGD model chosen in the
itPGDrel-ref step on the failure probability computed in the PGD reliability step
itPGDrel-PF is investigated. Again, the intermediate PGD models obtained during the
refinement step 1t PGDrel-ref it = 0 are used to estimate the failure probability. The
failure probability over the value of the selection criteria Eq. 16 of each of these PGD
models is given in Fig. 13. The failure probability computed with a PGD surrogate with a
relative error less than 1072 in the design point approximation fits very good the refer-
ence values generated by means of a FE model. As already seen in the first simple example,
there is no need of a perfectly fit between the PGD surrogate and its reference model to
compute an accurate estimate of the failure probability.
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Fig. 12 Cross-section: convergence of failure probability (left) and its standard deviation (right) over the
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Fig. 13 Cross-section: influence of the refinement degree of the PGD model (given by Eq. 16) on the failure
probability Pr based on 50 runs of 1tPGDrel-PF with varying PGD solutions regarding mesh discretization
and number of models (wy, from the initial iteration it = 0 and pg = 0.1, N, = 100, N = 1600 are used)

Table 6 Cross-section: summary of it PGDrel process is given by the averaged design
point i, in the normal space as well as the failure probability ranges with N = 1600 based
on PGD and FE model (50 runs, po = 0.1, N, = 100 and § = 10)

it ny ny ny AB mean(Ps)pcp mean(Py)pg
0 317 —275 -0.12 42 133.107° 9.13.107°

1 322 —2.79 —0.17 8.1-.1072 9.05-107° 9.13.107°

2 3.25 —2.79 —0.15 3861072 9.06-107° 9.13.107°
Computational time

The main advantage of using a PGD surrogate in a reliability analysis is the saving of
computational cost for each model evaluation at the samples of the random variables. In
the standard case, a full FE model must be computed in each sample for the evaluation of
the limit state function. In the cross-section example, this means the computation of a 2D
structural problem with varying parameters. Using a PGD model, only the computation
of the PGD solution for a given parameter space is computationally expensive. In the fixed
point iteration to compute this solution, several 2D simulations with a computational
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cost comparable to the sample evaluations by means of the standard FE based analysis
are needed to generate the M F ‘1 () PGD modes. Afterwards in each sample, the model
evaluation is done by only evaluating the PGD modes at specific positions. It is a pure
function evaluation without solving any equation system. The key point is that for the
presented PGD coupled method the evaluation at each sample used to estimate Py is
computationally very fast and has only a minor influence on the total computational
effort.

For that reason, the number of required solving’s of a 2D equation system are counted in
each part of the proposed 1 t PGDrel procedure in Table 7—either using a PGD surrogate
or a FE model. The 2D systems do not have the same size, because of the iterative nature
of 1tPGDrel including a discretization refinement. Additionally, the total number of
samples including all adaptive samples N, as well as the samples in the last importance
sampling step N is given. In case of a 1t PGDrel with a FE model, the number of 2D sys-
tem solutions is equal to the total number of samples, because at each sample point a new
FE simulation is required. Furthermore, a small number of simulations are needed in the
adaptive h-refinement of the mesh (x). In contrast, using a PGD model requires much less
2D system solutions compared to the total number of samples. In this example, the compu-
tation of the initial PGD model requires 25 times the solution of the 2D system to generate
the M F il(x) modes. After that, the 500 samples in the first i tPGDrel-DP step can be
computed without solving any equation systems based on the efficient evaluation of the
PGD solution. In the further it PGDrel-DP steps as well as in the final 1tPGDrel-PF
step, no system of equations must be solved either, because the current PGD model can be
used. Therefore, the computational cost is almost negligible and performing several runs
to compute averages and standard deviations can be done very efficiently. However, for
the PGD refinement procedure 1t PGDrel-ref, significantly more 2D system solutions
are needed compared to the approach based on a FE model. This is because in case of
PGD 3 additional meshes must be successively refined. So, several PGD problems must
be computed, where each includes around 25 times the solution of the 2D system to gen-
erate the M F 11 (x) modes. Of course, this depends on the initial meshes of the PGD extra
coordinates as well as the refinement factor. Starting with a fine discretization for these
extra coordinates decreases the required number of 2D solutions significantly.

In the current implementation, using the PGD surrogate is around 100 times faster than
using the FE model. In this way, instead of around 20 min, the final 1 tPGDrel-PF step
with a fixed N = 1600 samples is done in a few seconds using a PGD model. Of course,
the speed-ups are problem dependent and increase with the complexity of the underlying
structure. For example, in the first 1tPGDrel-DP step—where a very coarse mesh is
used—the speed-up of using the PGD surrogate instead of the FE model is only around 5.

Conclusion

In the present paper, an iterative approach for an efficient reliability analysis for structures
is introduced. The developed method paves the way for using full probabilistic approaches
in industrial applications. The first idea is to combine adaptive importance sampling to
minimize the required number of samples with a PGD reduced model as surrogate of the
structure which saves computational effort at each sample evaluation. The second idea is
the integration of a goal-oriented model refinement in the reliability analysis to control the
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Table 7 Cross-section: comparison of the number of required solutions of the 2D equation
system to compute « (FE) or F; (PGD) in the i tPGDrel analysis (N;y¢, total number of

samples)
Num. samples Num. solving 2D system
Ntotal PGD FE
1tPGDrel-DPit = 0(1 run) 500 25 500
itPGDrel-ref 492 12
1tPGDrel-DPit =1 (1 run) 200 0 200
itPGDrel-ref 421 1
1tPGDrel-DPit = 2 (1 run) 100 0 200
1tPGDrel-PF (1 run)
N = 1600 1700 0 1700
N = 6400 6500 0 6500
N = 25,600 25,600 0 25,600

error of the failure probability caused by model errors in an automatic manner. Therefore,
the PGD model of the limit state function is iteratively refined around the adaptively
approximated design point based on the error to a FE limit state function at this point.

The developed method was validated for a uniaxial truss structure as well as a cross-
section of a roadway bridge. In both cases, an accurate estimation of the failure probability
could be obtained in a few iteration steps. The computed failure probability was verified
by an estimation with an analytical limit state function, in the first case, and with an FE
based limit state function, in the second case. A speed-up of around 100 was reached in the
second example compared to the estimation with a FE model. The importance of the PGD
refinement step is shown by studying the influence of the different refined PGD model on
the failure probability. In both examples, a refined PGD model chosen with a relative error
of the PGD limit state function value at the approximated design point compared to the
FE limit state function value less 1073 yields failure probability within the accuracy of the
reference values. The validation of the approach to general nonlinear structural problems
will be addressed in future work of the authors.

With the proposed 1tPGDrel analysis, it is possible to estimate the failure probability
in a very efficient way compared to standard approaches. Based on its iterative nature,
it is possible to control and differentiate the error sources of the failure probability. The
influence of model errors is considered by an iterative goal-oriented refinement of the
PGD surrogate in the region of interest.
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