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Abstract

The hyper-reduction problem for reduced-order internal forces evaluation in transient,
nonlinear, explicit dynamics is reformulated, employing Mixed-Integer Programming
(MIP), taking into account consistency constraints. Constraint reduction is introduced.
Resulting quadratures, as well as reduced runs, are compared against the standard
Energy Conserving Sampling and Weighting (ECSW) scheme, on a reference example.
Rather than searching for optimal performance, the goal is to provide a benchmark
solution, for evaluation of heuristic hyper-reduction formulations along with a
non-greedy approach.
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Introduction
Simulation is widely used in the industry when designing and virtually testing new prod-
ucts. In constant search of a better approximation of reality, Finite Element (FE) models
are becoming increasingly complex. Last decade, the number of elements in models used
by car manufacturers when testing new cars in crash situations had increased by orders
of magnitude for, amongst others, fracture representation. Simultaneously, the need to
speed-up simulations has motivated the development of Model Order Reduction (MOR)
methods. Projection-basedReducedOrderModeling (PROM)approximates theunknown
field variable as a linear combination of a set of global, domain-spanning Reduced Basis
(RB) functions. The Proper Orthogonal Decomposition (POD) [1], originating from sta-
tistical data analysis [2], post-processes training data gathered from Full Order Model
(FOM) runs to build RBs used ’online’ in reduced simulations. POD has found extensive
applications in turbulent flow modeling [3–6] and computer graphics [7–10] as well as in
a variety of scientific fields such as modeling of composites [11], inverse problems [12,13]
and shape optimization [14–16]. However, when applied to explicit nonlinear dynamics
[17,18], POD does not reduce the complexity of evaluating internal variables and entails a
computational overhead in the ’online’ reduction phase due to the necessity of computing
internal forces over all elements. Hyper-Reduction (HR)methods are combined to PROM
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to tackle the internal forces computational complexity and achieve ’online’ speed-up by
selecting a representative subset of elements for internal forces approximation.
Miscellaneous HR methods exist in the literature: In the PGD context, the Reference

Point Method [19] may be considered as a HR technique. The Discrete Empirical Inter-
polationMethod (DEIM) [20–22] reduces the complexity of evaluating nonlinear internal
variables combining projection and interpolation. DEIM originates from the Empirical
Interpolation Method [23] and aims to approximate the projection of the internal forces
by using only a few of their components. This method is closely related to the magic
points method [24]. Other HR approaches directly approximate the projected internal
forces by building a reduced spatial integration scheme. The multidimensional ’a priori’
hyper-reduction (APHR) [25] creates a reduced integration domain without any knowl-
edge from the FOM. In the present work, we consider the Energy-Conserving Sampling
and Weighting (ECSW) [26] formulation of an optimization problem, based on data col-
lected from the FOM, to build a hyper-reduced integration scheme whose particularity is
to impose integrationweights positivity ensuring energy conservation of the reduced inte-
grator. Further evolution of this scheme introducing volume preservation is the Empirical
Cubature Method(ECM) [27]. ECSW is an ’a posteriori’ method as it relies on data from
full-scale simulations to train a hyper-reduced integration scheme, as opposed to ’a pri-
ori’ methods which use the knowledge of the physical problem rather than training data
[25]. The optimization problem that arises in the ECSW is NP-hard and is in practice
suboptimally solved by mean of the Sparse Non-Negative Least Square (SNNLS) greedy
algorithm. Similar numerical integration schemes, in which it is necessary to preserve the
consistency and compatibility during the shape functions integration, arise in Galerkin
meshless methods such as Diffuse Elements [28], and Element Free Galerkin [29–31].
Present work is motivated by the observation that, proceeding greedily by subsequent

enrichments, the SNNLS algorithm becomes computationally expensive in building large
hyper-reduced integration schemes , and that a reference method is needed to compare
performances of heuristic approaches. The ECSW optimization problem is reformulated
as a linear mixed integer one solved with [32], and illustrated on a benchmark FE model.
Different formulations incorporating consistency conditions and constraint reduction are
tested. Resulting integration schemes are compared in terms of number and position of
integration points, and error in the work of internal forces within the ’online’ reduction
phase.
The paper is organized as follows. “Projected hyper-reduced order model Notations”

section briefly reviews PROM and ECSW methods in a nonlinear explicit structural
dynamics framework. “Hyper-reduced integration” section develops the theory behind
the proposed linear MIP formulation, which is then tested in “Results and discussion”
section on a pierced plate under uniform tension FE model. Results are then discussed,
and recommendations are made regarding future developments.

Projected hyper-reduced order model
Notations
Throughout this paper, curly brackets designate vectors and square brackets designate
matrices. Following notations are sorted out in alphabetical order.
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{0N } - vector of size N with all coefficients equal to zero

{1N } - vector of size N with all coefficients equal to one

{α} - reduced unknown displacement, α ∈ R
k

b - plasticity hardening parameter

{b} - assembled training data

[C] - linear constraints matrix

[Cr] - reduced linear constraints matrix

E - Young’s Modulus

ε - strain tensor

εhr - training data approximation error

εint - work of internal forces approximation error

{fext} - space discretized external forces, {fext} ∈ R
N

{f̃ext} - reduced external forces, f̃ext = [�(B)]T fext ∈ R
k

{fint} - space discretized internal forces, {fint} ∈ R
N

{f eint} - internal forces in element e

{f̃int} - reduced internal forces, f̃int = [�(B)]T fint ∈ R
k

[G] - matrix of unassembled training data

[Gf ] - matrix of unassembled internal forces at all training times

[Gv] - matrix of elements volumes at all training times

[Gp] - Constraint matrix on polynomial integration

{g (e)} - center of element e, {g (e)} ∈ R
3

H - subset of elements in the hyper-reduced integration scheme,H ⊂ �1, ne�

k - size of the reduced basis

[K] - tangent stiffness matrix, [K] ∈ R
N×N

[M] - symmetric positive-definite mass matrix, [M] ∈ R
N×N

[M̃] - reduced mass matrix, [M̃] = [�]T [M][�] ∈ R
k×k

N - number of degrees of freedom in the FE space discretization

n - plasticity hardening exponent

ne - number of elements in the model

ns - number of snapshots in the training data set

ν - Poisson’s ratio

� - considered spatial domain, � ⊂ R
3

ωe - volume of element e

[�] - reduced basis, [�(B)] = [{φB(1)}, . . . , {φB(k)}] ∈ R
N×k

[
] - right singular vectors of the SVD decomposition of [S],

[
] = [ψ1, . . . ,ψm] ∈ R
ns×m

R≥0 - set of non-negative real numbers
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ρ - material density

[S] - training data set, [S] = [{u(t1)}, . . . , {u(tns )}] ∈ R
N×ns

σ - stress tensor

σeq - equivalent stress

σY - plastic yield stress

t - time, t ∈ [0, T ]

{ti} - training times, i ∈ �1, ns�

u(x, t) - continuous unknown displacement field

{u} - space discretized unknown displacement field, {u} ∈ R
N

{ũ} - displacement field approximation in the reduced model, ũ = [�(B)]α ∈ R
N

{û} - displacement projection on the reduced basis, û = [�(B)][�(B)]Tu ∈ R
N

Vimp - imposed velocity

Wint - work of internal forces

x - point in �

{ζ } - weights of the hyper-reduced integration scheme

ζmax - maximal weights value

Projected reduced order model

We focus on semi-discretized equations used in nonlinear explicit FE solvers

[M]{ü(t)} + {fint ({u(t)}, {u̇(t)}, t)} = {fext (t)}, (1)

where {u(t)} ∈ R
N is the vector of nodal Degrees of Freedom (DoF), {fint} ∈ R

N is
the vector of nonlinear internal forces and {fext} ∈ R

N is the vector of external forces.
N denotes the number of DoF and is referred to as the FOM size. [M] ∈ R

N×N is
the symmetric positive-definite mass matrix. In explicit nonlinear structural dynamics,
industrial FE solvers frequently use a lumpedmass approach yielding diagonal [M]. Hence,
inversing the mass matrix is trivial, and the computational effort concentrates on the
internal and contact forces evaluation.
The explicit central difference method [33] is used for integration in time domain.
Given a RB [�] ∈ R

N×k of size k , the ROM approximates the FOM solution {u} with
{ũ},

{u(t)} ≈ {ũ(t)} =
k∑

i=1
αi(t){φi} = [�]{α(t)}. (2)

Above approximation is injected into the FOM (1) which is then projected on the RB,
yielding the PROM

[M̃]{α̈(t)} + [�]T {fint ([�]{α(t)}, [�]{α̇(t)}, t)} = [�]T {fext (t)}. (3)

{α} ∈ R
k is the ROM unknown and [M̃] = [�]T [M][�] ∈ R

k×k is the reduced mass
matrix. [�] is usually [M]-orthonormalized so that [M̃] is the identitymatrix [Idk ] ∈ R

k×k .
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The ROM is of size k , much smaller than N ,

{α̈(t)} = [�]T
(
{fext (t)} − {fint ([�]{α(t)}, [�]{α̇(t)}, t)}

)
. (4)

Projecting the FOM (1) employing an orthogonal matrix [�] potentially increases the
critical time step ensuring numerical stability. A rigorousmathematical proof of this prop-
erty is provided in [34]. However, in applications to explicit structural dynamics, PROM
methods generally yield a computational overhead. First, there is no real gain in reducing
the model size to k when the lumped mass approach is used in the FOM (1) as a diagonal
mass matrix inverse is computed with negligible computational effort. Second, internal
forces have to be computed for all elements, involving the time-consuming integration
of the constitutive law, and two additional steps are required: expansion of reduced DoF
{u} = [�]{α} and contraction of internal forces {f̃int} = [�]T {fint}. The same goes for
kinematic conditions, as well as any requested output.
However, as internal forces vector of size N is to be projected on the reduced space of

size k spanned by the columns of the RB [�] and k << N , it may not be necessary to
compute the whole internal forces vector to have a good approximation of its projection
on the reduced space, and this is where hyper-reduction takes place. The following section
briefly reminds the ECSW scheme motivating this work.

Energy-conserving sampling and weighting (ECSW)

The Galerkin method used in FE analysis in the divide and conquer spirit successively
computes internal forces {f eint} ∈ R

N in each of ne elements of the model and assembles
respective contributions

{fint} =
ne∑

e=1
{f eint} (5)

In the ROM (4), internal forces are projected on [�] ∈ R
N×k

[�]T {fint} = [�]T
ne∑

e=1
{f eint}. (6)

Hyper-reduction computes internal forces only for a subset H ⊂ �1, ne� of elements
indexes and applies weights ζ ∗

e to the elemental contributions ahead of summation and
projection on the reduced space

[�]T {fint} ≈ [�]T
ne∑

e=1
ζ ∗
e {f eint} = [�]T

∑

e∈H
ζ ∗
e {f eint}, (7)

where {ζ }∗ = (ζ ∗
1 , ζ

∗
2 , . . . , ζ ∗

ne )
T ∈ R

ne≥0 contains weights associated with all elements in
the model. ζ ∗

e = 0 if and only if element e is not selected (e /∈ H). The ECSW method
imposes also ζ ∗

e > 0 for selected elements to maintain the integrator positivity.
The hyper-reduced integration scheme, given by the subset of selected elementsH and

associated weights {ζ ∗}, is obtained through optimization. Given a RB [�] and unassem-
bled internal forces ({f eint (ti)})(e,i)∈�1,ne�×�1,ns�, the hyper-reduced quadrature scheme inte-
grates the projected unassembled internal forces training data set up, to a user-defined
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precision, while selecting the fewest possible elements inH. First, ns unassembled inter-
nal forces snapshots are collected at training times (ti)i∈�1,ns�. Without loss of generality,
snapshots may as well be taken at different model parameters values. Once collected,
unassembled internal forces ({f eint (ti)})(e,i)∈�1,ne�×�1,ns� ⊂ R

N are projected on the reduced
space, yielding ([�]T {f eint (ti)})(e,i)∈�1,ne�×�1,ns� ⊂ R

k , and are organized in the matrix

[G] =

⎡

⎢⎢⎢⎢⎣

Gf (t1)
Gf (t2)

...
Gf (tns )

⎤

⎥⎥⎥⎥⎦
∈ R

k∗ns×ne , (8)

where

[Gf (ti)] = [�T ][{f 1int (ti)}, {f 2int (ti)}, . . . , {f neint (ti)}] ∈ R
k×ne , ∀i ∈ �1, ns�. (9)

Using this notations, the non-reduced assembly process (5) writes

{b} = [G]{1ne} ∈ R
k∗ns , (10)

with {ζ ∗} = {1ne } corresponding to the selection of all elements with integration weights
equal to 1 and {b} ∈ R

k∗ns is the ’exact’ projection of all internal forces snapshots on [�],
used as reference to train theweights. Finally, given a targetedprecision τ , the optimization
problem of the hyper-reduced integration scheme is stated as

⎧
⎪⎪⎨

⎪⎪⎩

{ζ ∗} = argmin
{ζ }∈AECSW

(‖{ζ }‖0)

AECSW = {{ζ } ∈ R
ne≥0 | ‖[G]{ζ } − {b}‖2

‖{b}‖2 ≤ τ }

(11)

The threshold τ on the approximation precision constraint is imposed in the admissible
space AECSW alongside weights positivity, ‖ • ‖0 denotes the zero-norm associating the
number of its non-zero coefficients to a vector, equivalent to the number of selected finite
elements, to beminimized. However, the zero norm is not differentiable, making (11) NP-
hard. In practice (11) is suboptimally solved with greedy algorithms such as SNNLS [26]
(Algorithm 1). Alternatives such as the LASSO algorithm have been compared to SNNLS
in [35]. In the present work, (11) is reformulated and solved using MIP optimization,
yielding an optimal method used in this paper as a reference to assess the performances
of the heuristic SNNLS procedure on an academic example.

Hyper-reduced integration
MIP formulation

IBM CPLEXMIP [32] solves problems involving both integer and real variables based on
a combinatorial Branch And Bound [36,37] algorithm for integer unknowns and simplex
algorithm for real variables. (11) is transformed into a problem that may be solved using
MIP in the following steps. An additional boolean unknown {ξ} ∈ {0, 1}ne is introduced
to take account of the elements affiliation toH

ξe =
{

1 , e ∈ H
0 , e ∈ �1, ne�\H.
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Algorithm 1: SNNLS([G],{b}, {ζ } , τ )
1 n = 0 % number of selected elements
2 {h} = {0}N % vector of selected elements indices
3 l1 =TRUE
4 while (l1) do
5 {μ} = [G]T ({b} − [G]{X})
6 i = max_value_index({μ})
7 n = n + 1
8 {h}(n) = i
9 l2 =TRUE

10 while (l2) do
11 {ζtmp} = argmin

{ζ }∈Rn
(‖[G(:, {h(1 : n)})]{ζ } − {b}‖2) % solved with least square

12 if ({ζtmp} > 0) then
13 {ζ ({h(1 : n)})} = {ζtmp}
14 l2 =FALSE
15 else
16 α = min

{i|{ζ }({h}(i))>{ζtmp}(i)}
( {ζ }({h}(i))
{ζ }({h}(i))−{ζtmp}(i) ) % least feasible step to keep the solution

positive
17 {ζ ({h(1 : n)})} = {ζ ({h(1 : n)})} + α({ζtmp} − {ζ ({h(1 : n)})})
18 Recompute {h} and n (eventual zeroed values)
19 end
20 end
21 if ((n ≥ size([G], 2)) OR ( ‖[G]{ζ }−{b}‖2

‖{b}‖2 ≤ τ )) then
22 l1 = FALSE
23 end
24 end

Mixed optimization variables are thus ({ζ }, {ξ}) ∈ R
ne≥0 × {0, 1}ne . The link between the

non-negative real weights and the Boolean selectors is: if ξe = 0 for a given element e,
the element is not selected and ζe = 0 is imposed. A maximal value for the weights is
prescribed

−∞ ≤ ζe − ζmaxξe ≤ 0, ∀e ∈ �1, ne�, (12)

bounding each selected element weight with ζmax and each unselected element weight
with 0 and linearizing the problem. Together with the weight non-negativity condition,
(12) ensures

(12) ∩ ({ζ } ∈ R
ne≥0) ⇒

⎧
⎨

⎩
ζe = 0 if ξe = 0

0 ≤ ζe ≤ ζmax if ξe = 1.

Similarly, a minimal value ζmin is imposed on each selected element weight by the con-
straint

0 ≤ ζe − ζminξe ≤ ∞, ∀e ∈ �1, ne�. (13)

(13) imposed with ζmin = 1 ensures that each selected element counts at least for itself
while avoiding over-fitting.



Phalippou et al. Adv. Model. and Simul. in Eng. Sci.           (2020) 7:36 Page 8 of 23

Additionally, defining ξmin and ξmax, the minimal and maximal number of elements in
H, respectively (1 ≤ ξmin ≤ ξmax ≤ ne)

ξmin ≤
∑

e∈E
ξe ≤ ξmax, (14)

allows to target prescribed intervals for the number of selected elements. In contrary to
the ECSW implementation in [26], this constraint allows to directly start searching for
solutions from a given ξmin or assess unattainability of the targeted precision for a given
ξmax, reducing computation time by shrinking the admissible space.
Finally, for a given threshold τ , the MIP optimization problem writes

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

({ζ ∗}, {ξ∗}) = argmin
({ζ },{ξ})∈AMIP

(
∑

e∈�1,ne�
ξe)

AMIP = {({ζ }, {ξ}) ∈ R
ne≥0 × {0, 1}ne |

⎡

⎢⎣
{b} − τ

−{∞}
ξmin

⎤

⎥⎦ ≤ [C]
[
{ζ }
{ξ}

]
≤

⎡

⎢⎣
{b} + τ

{0ne }
ξmax

⎤

⎥⎦}.

(15)

Note, that the threshold τ on the hyper-reduced quadrature scheme precision is now
imposed in L∞ norm and not in L2 norm in contrary to the ECSW optimization prob-
lem (11). The linear constraint matrix is

[C] =
⎡

⎢⎣
[G] {0ne }T
[Id] [diag(ζmax{1ne })]

{0ne }T {1ne }T

⎤

⎥⎦ , (16)

with [G] defined by Eq. (8).

Consistency constraints

When internal forces functions are strongly varying in space and time, such as in car-
crash analysis, exact domain integration may not be possible. Exactness in the projected
Galerkin hyper-reduced scheme is not guaranteed even if the RB functions possess suf-
ficient completeness to represent the solution. A similar problem arises in the Element
Free Galerkin context [28,38], where the exactness in the Galerkin approximation, condi-
tioned by the numerical verification of volume and divergence equalities, is met provided
additional zero and first-order integration constraints, respectively. The present work also
investigates the impact of adding consistency conditions at training times (ti)i∈�1,ns� such
as exact volumic and polynomial integration up to a given degree. Volume preservation
writes

ne∑

e=1
ζeωe(ti) =

ne∑

e=1
ωe(ti), (17)
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where ωe(ti) denotes the volume of element e at training time ti, i ∈ �1, ns�, without
loss of generality, sampled at the same training times as unassembled internal forces.
Constraint (17) is expressed in the MIP formalism by appending [Gv] to (16)

[Gv] =

⎡

⎢⎢⎣

ω1(t1) . . . ωne (t1)
...

...
ω1(tns ) . . . ωne (tns )

⎤

⎥⎥⎦ ∈ R
ns×ne . (18)

In a similar fashion, first degree polynomials integration is imposed at training times
ti, i ∈ �1, ns�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ne∑

e=1
ζeωe(ti)g (e)1 (ti) =

ne∑

e=1
ωe(ti)g (e)1 (ti)

ne∑

e=1
ζeωe(ti)g (e)2 (ti) =

ne∑

e=1
ωe(ti)g (e)2 (ti)

ne∑

e=1
ζeωe(ti)g (e)3 (ti) =

ne∑

e=1
ωe(ti)g (e)3 (ti).

(19)

(20)

(21)

A single integration point per element is considered at the center of element e, {g (e)(ti)} =
(g (e)1 (ti), g (e)2 (ti), g (e)3 (ti))T at training time ti. Constraints on first degree polynomials are
prescribed by further appending the following matrix [Gp] to [G]

[Gp] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω1(t1)g (1)1 (t1) . . . ωne (t1)g
(ne)
1 (t1)

...
...

ω1(t1)g (1)1 (t1) . . . ωne (tns )g
(ne)
1 (tns )

ω1(t1)g (1)2 (t1) . . . ωne (t1)g
(ne)
2 (t1)

...
...

ω1(t1)g (1)2 (t1) . . . ωne (tns )g
(ne)
2 (tns )

ω1(t1)g (1)3 (t1) . . . ωne (t1)g
(ne)
3 (t1)

...
...

ω1(t1)g (1)3 (t1) . . . ωne (tns )g
(ne)
3 (tns )

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (22)

while {b} in the left and right members of (15) is computed using Eq. (10) with modified
[G].

Constraints reduction

Overfitting is a significant concernwhen training ahyper-reduced integration schemeover
a set of collected data. Redundant snapshots may eclipse others and result in inadequate
internal forces approximation in the online reduction phase. Moreover, an excessively
large data setmay lead to anunnecessarily large number of linear constraints, deteriorating
performances of the MIP solver. A constraint reduction in the optimization problem (15)
is thus proposed to address those two issues.
In this section and the remainder of the paper, [G] dimensions are denoted m × ne.

Data is decomposed using Singular Value Decomposition (SVD). Note, that as the SVD
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decomposes the second dimension of the matrix and, in the present case, the constraints
are to be reduced, the decomposition is performed on [G]T of a presumably lower number
of lines

[G]T = [ϒ][diag({λ})][�]T , (23)

yielding [ϒ] of dimensions ne × ne and [�] of dimensions m × ne as well as [λ] =
diag(λ1, λ2, ..., λne ) ∈ R

ne×ne containing singular values λ1 ≥ λ2 ≥ · · · ≥ λm arranged in
descending order. Using (23), the constraint [G]{ξ} = [G]{1ne} writes

[�][diag({λ})][ϒ]T {ζ } = [�][diag({λ})][ϒ]T {1ne } ⇒ [ϒ]T {ζ } = [ϒ]T {1ne }. (24)

The size of [ϒ] makes the problem numerically non-tractable. Therefore, the idea is to
keep only l < ne columns of [ϒ], yielding the first form of the reduced constraints,

[ϒ̃]T {s} = [ϒ̃]T {1ne }, (25)

with

[ϒ̃] = [ϒ]:,1:l ∈ R
ne×l , (26)

Choosing l so that λ1 ≥ · · · ≥ λl > 0 ensures the kernel to be of size ne − l. As a matter
fo fact, [ϒ̃] has l linearly independent columns and the rank theorem yields

ker([ϒ̃]T ) = ne − rank([ϒ̃]T )

= ne − rank([ϒ̃])

= ne − l > 0.

ker([ϒ̃]T ) is non-empty and may be identified with QR factorization.

[ϒ̃] = [[Q1], [Q2]]
[

[R]
{0(ne−l)×l}

]
(27)

with [Q1] ∈ R
ne×l and [Q2] ∈ R

ne×(ne−l) orthonormal matrices and [R] ∈ R
l×l an upper

triangular matrix. Constraints (25) rewrite

[ϒ̃]T {ζ } = [ϒ̃]T {1ne } ⇒ [ϒ̃]T ({ζ } − {1ne }) = {0l}.

Substituting variable {ζ } = {1ne } + {w}

⇒ [ϒ̃]T {w} = {0l}

and injecting QR factorization (27) yields

⇒ ([R]T [Q1]T + [0(ne−l)×l]T [Q2]T ){w} = {0l}
⇒ [Q1]T {w} = {0l}
⇒ ∃{χ} ∈ R

(ne−l) such that {w} = [Q2]{χ}.
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The final form of the unknown integration weights is

{ζ } = {1ne} + [Q2]{χ}. (28)

For every {χ} ∈ R
ne−l , {ζ }definedbyEq. (28) verifies implicitly (25). Constraint onweights

non-negativity writes

({ζ } ∈ R
ne≥0),⇒ −{1ne } ≤ [Q2]{χ} ≤ ∞ (29)

and constraint (12) implies

(12) ⇒ −{∞} ≤ [Q2]{χ} − ζmax{ξ} ≤ −{1ne }. (30)

Finally, the reduced optimization problem is

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

({χ∗}, {ξ∗}) = argmin
({χ},{ξ})∈AMIP

(
ne∑

e=1
ξe)

ARMIP = {({χ}, {ξ}) ∈ R
(ne−l)
≥0 × {0, 1}ne |

⎡

⎣
−{1ne }
−∞
ξmin

⎤

⎦ ≤ [Cr ]
[{χ}
{ξ}

]
≤

⎡

⎣
∞

−{1ne }
ξmax

⎤

⎦},

(31)

with the reduced constraint matrix

[Cr] =
⎡

⎢⎣
[Q2] {0ne }T
[Q2] [−diag(smax)]

{0(ne−l)}T {1ne }T

⎤

⎥⎦ . (32)

In this problem there are 2ne + 1 linear constraints and 2ne − l MIP unknowns, yielding
more contraints than unknowns. Yet, depending on the value of ξmin, ξmax and smax, it is
not always possible to find a solution. With (ξmin, ξmax) = (1, ne) and smax ≥ 1, a trivial
solution is {χ} = {0} and {ξ} = {1ne }. Non-trivial solutions exist for every ξmax greater or
equal to (ne − l), ξmin = 1. As a matter of fact, the kernel of [ϒ̃], being spanned by the
columns of [Q2] of dimension l, it is possible to satisfy the constraints by selecting less
than ne − l elements.

Results and discussion
Approaches proposed in the present work are implemented in the industrial FE solver
Altair Radioss [39] modified for research purposes. The mixed optimization problems are
solved with CPLEX [32]. In this section, different hyper-reduced integration schemes are
computed with the state-of-the-art SNNLS algorithm and compared with the proposed
approaches in terms of numbers and positions of selected elements, offline training data,
and online work of internal forces approximation errors.
The model used for comparison is presented in Fig. 1 using the unit system

[T,mm, s,MPa]. The plate is of dimensions 1000 × 2000 × 100 mm3 and is composed
of steel of density ρ = 7.89E − 9 Tmm−2 modeled with Johnson-Cook elasto-plastic
material law. Parameters of the material law are: Young modulus E = 210000 MPa,
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Fig. 1 Test case model scheme
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Fig. 2 Imposed velocity magnitude for the pierced plate

Poisson ratio μ = 0.3, yield stress σY = 290 MPa, hardening parameter b = 50
and hardening exponent n = 0.25. The plate is stretched with prescribed velocity
V = ±10000.{ex} mms−1, progressively imposed as shown on Fig. 2. 30 ms of the
phenomenon are simulated. Three planar symmetries allow simulating only an eighth of
the plate usingN = 444 degrees of freedomandne = 55 elements. Final configuration and
Von Mises constraints are represented in Fig. 3. No parametric variations are considered
in this work and the training times correspond to different discrete times (ti)i∈�1,ns� of the
same simulation. In this test case, an RB [�] of size eight is used, and ns = 1148 unassem-
bled internal forces snapshots are taken at training times (ti)i∈�1,ns� uniformly distributed
every 50 time cycle during the simulation. For consistency conditions, elements’ centers
and volumes are gathered at the same simulation times as unassembled forces snapshots.
Results obtained in this example are presented in two groups. The impact of adding con-

sistency conditions is first studied in “Consistency conditions” section while constraints
reduction is tested in “Constraints reduction” section.
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Fig. 3 Von Mises constraints for the pierced plate in traction final configuration

Consistency conditions

In this section, the following hyper-reduced formulations are tested both in the offline
training phase, in terms of training data approximation error at given quadratures size,
and in the online reduction phase, in terms of the work of internal forces reconstruction.
These tests include:

• SNNLS greedy algorithm presented in Algorithm 1 solving the ECSW optimization
problem (11);

• MIP optimization problem (15);
• MIP + V, MIP optimization problem (15) with the consistency conditions (18) on

volume integration;
• MIP + V + P1, MIP optimization problem (15) with the consistency conditions (18)

on volume integration and (22) on first order polynomial integration;
• MIP + G1, MIP optimization problem (15) with a minimal weight value ζmin = 1.

The reduced run using the RB [�] of size eight without hyper-reduction is used as
reference to investigate the impact of the different hyper-reduction methods.
Figure 4 shows the error on unassembled internal forces snapshots training data

εhr = ‖[G]{ζ } − {b}‖2
‖{b}‖2 . (33)

Consistency constraints are not appended to [G] when computing this error for respective
hyper-reduced quadratures.
Figure 5 shows the approximation error of work of internal forces within the online

reduction phase. The work of internal forces Wint is defined as the integral over the
domain � of the tensor dot product between the stress ε and the strain σ tensors

Wint (t) =
∫

�

ε : σdV. (34)
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Fig. 5 Online approximation error of the work of internal forces approximation error (35) for SNNLS and
proposed methods hyper-reduced integration schemes sizes ranging from 6 to 17

The approximation error of the work of internal forces εint is defined as

εint = max
t∈[0,T ]

( | Wint (t) − W̃int (t) |
Wint (t)

)
, (35)

with Wint , and W̃int , the work of internal forces of the reference and the hyper-reduced
simulations, respectively.
Element subsetsH selected by the different methods are compared for hyper-reduction

schemes of size 7, 10, and 14 in Figs. 6, 7, and 8. On those examples, and as mentioned
above, results are extended to the full pierced plate through three planar symmetries. This
choice allows for a better comparison of element selection as, on a full model, hyper-
reduction may indiscriminately select among symmetric elements. Consequently, each
selected element is represented eight times in the symmetric parts of the model.
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Fig. 6 Element selection for the hyper-reduced integration schemes of size seven computed with the
different methods

Fig. 7 Element selection for the hyper-reduced integration schemes of size ten computed with the different
methods

Fig. 8 Element selection for the hyper-reduced integration schemes of size fourteen computed with the
different methods

Hyper-reduced integration weights obtained with the different formulations are repre-
sented in boxplots in Fig. 9.
Figure 4 assesses the performances of the greedy SNNLS algorithm in the offline train-

ing phase. Among the hyper-reduced quadratures of size seven, the SNNLS algorithm
solution offers the less accurate approximation in the offline phase. However, for larger
hyper-reduced quadratures, proposedMIP formulations do not always offer better offline
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Fig. 9 Hyper-reduction weights boxplots for consistency constraints formulations in comparison with the
SNNLS and MIP methods

approximations than the SNNLS. This is in part due to the incapacity to express the con-
straints on training data integration in L2 norm in the proposed linear methods, thus,
they don’t share the same admissible space with the SNNLS. Moreover, the MIP formu-
lations do not minimize the offline training data approximation error but only keeps it
under a prescribed threshold. On the other hand, quadratures obtained with the MIP
approach may also be unattainable with the SNNLS algorithm due to its greedy nature.
Unassembled training data approximation quality is overall quite similar between the dif-
ferent approaches and adding consistency constraints does not deteriorate the training
data approximation at a given quadrature size.
The maximal online work of internal forces approximation error is presented in Fig. 5.

While the SNNLS shows very good online performances for an heuristic approach, the
proposed MIP approach offers better online work of internal forces reconstruction on
the given example. Adding consistency constraints to the proposed method does not
enhance online internal forces approximation, in particular, it tends to deteriorate the
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MIP+V

approximation on larger integration schemes. A good correlation between offline and
online performances is observed.
SNNLS andMIP select elements in a similar pattern, as shown in Figs. 6, 7, and 8. Most

selected elements are located in the necking zone near the hole and few elements, with
larger integration weights, summarize internal forces behavior on the outer parts of the
model. Element selection at size 7, presented in Fig. 6, is quite similar for the SNNLS and
MIP methods but tends to diverge as more elements are selected. As a matter of fact, the
SNNLS greedy procedure allows the deselection of one element in subsequent enrichment
only if the associated weight is set to zero when computing the least feasible step (lines
15, 16 and 17 of SNNLS presented in Algorithm 1). Thus, on the three figures, elements
selected by the SNNLS at a given quadrature size are still selected in larger integration
schemes, which is not the case for the proposed methods.
Boxplots in Fig. 9 show that the proposed method including consistency conditions

on polynomial integration suffer from weight overfitting as it consistently yield most
significant integration weights. On this example, adding contraints on volume integration
prevents overfitting, as observed comparing theMIPquadrature of size 16with theMIP+V
quadrature of the same size. On the other hand, weights computed with the SNNLS
procedure are uniform.
The volume integration is tested for quadratures originating from the SNNLS and MIP

+ V on Fig. 10. In this figure, volume obtained by integrating with different quadratures
is averaged over all ns = 1148 training times. Quadratures computed with the SNNLS
do not preserve the volume while the proposed MIP+V formulation does independently
of the number of elements. Results show that it is possible to add constraints to the
hyper-reduced quadrature without deteriorating offline and online performances.

Constraints reduction

In this section, results are presented for the two following formulations of the hyper-
reduction problem without consistency condition:
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Fig. 11 Offline training data relative L2 error (33) of SNNLS and proposed hyper-reduced methods.
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Fig. 12 Online work of internal forces approximation error (35) of SNNLS and proposed hyper-reduced
integration schemes. Hyper-reduced integration schemes sizes range from 6 to 17

• Reduced MIP optimization problem (31);
• Reduced MIP + LS, optimization problem (31), the element selection {ξ} is kept

but weights are recomputed by a single pass of the SNNLS algorithm (least squares
problem on the full matrix [G] and least feasible step to ensure weight positivity).

Figure 11 plots the offline unassembled internal forces data approximation errors for
hyper-reduced quadratures size ranging from 6 to 17 while associated online work of
reconstructed internal forces is presented in Fig. 12. Selected elements are illustrated in
Figs. 13, 14 and 15 for integration schemes of size seven, ten and fourteen. Weights are
represented in boxplots in Fig. 16.
While offline performances, plotted in Fig. 11, are very similar between the different

methods, reducing constraints has improved online performances, except for integration



Phalippou et al. Adv. Model. and Simul. in Eng. Sci.           (2020) 7:36 Page 19 of 23

Fig. 13 Element selection for the hyper-reduced integration schemes of size seven computed with the
different methods

Fig. 14 Element selection for the hyper-reduced integration schemes of size ten computed with the
different methods

schemes of size 12 to 15 for which the MIP offers better internal forces approximation, as
seen on Fig. 12.
We remark that being accurate over the training data does not ensure good perfor-

mances in the online reduction phase. As a matter of fact, overfitting over the training
data is observed with the ReducedMIP + LSmethod. This phenomenonmay be explained
by the relatively sparse sampling of the training data, thus, even when reproducing the
same test case, online results may differ. The Reduced MIP + LS is always more accurate
than the Reduced MIP in the offline training phase as weights have been reoptimized on
the unreduced training data. Nevertheless, it does not outperform the Reduced MIP in
the online reduction phase, the latter offering better online internal forces approximation
for hyper-reduced quadratures of size 8, 11, 12, 13, 14, and 16.
Elements are similarly selected by the different approaches, as observed in Figs. 13,

14, and 15 where most selected elements concentrate in the necking zone around the
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Fig. 15 Element selection for the hyper-reduced integration schemes of size fourteen computed with the
different methods
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Fig. 16 Hyper-reduction weights boxplots for constraints reduction formulations in comparison with the
SNNLS and MIP methods

hole. By contrast with the proposedmethod, the SNNLS does not deselect elements when
quadrature size increases, leading to different quadratures for similar prescribed precision
in the learning phase. Differences are more visible on intermediate-size quadratures. In
Fig. 15, Reduced MIP and the Reduced MIP + LS did not select the same elements.
Obviously, when all elements are selected, results are the same for all methods. The
Reduced MIP + LS solution corresponds, in fact, to the Reduced MIP for 15 elements in
which one element has been unselected by the single pass in the SNNLS algorithm.
Weights comparison in Fig. 16 indicates overfitting issues of both reduced approaches in

some cases. Overfitting issue is most pronounced in quadratures of small and large sizes,
while quadratures of size eleven and thirteen exhibit uniformweight repartition regardless
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of the method. Neither constraints reduction nor adding weights re-optimization seem to
circumvent this issue. Overall, the SNNLS algorithm still provides themost homogeneous
weights repartition.

Discussion

The SNNLS algorithm shows out to be an excellent heuristic to solve the optimization
problemarising in the ECSWtraining phase. It provides goodperformances on the pierced
plate example both in offline and online phases compared with the proposed approach.
Adding consistency conditions to the MIP formulation seems to deteriorate online

performances. On the contrary, constraints reduction improved online performances.
Further testing should include the effect of the maximal weight value ζmax, introduced

in “Hyper-reduced integration” section, on both offline and online performances.
Both offline and online accuracy of the different methods have been investigated in

details. A computationally expensive method for the NP-Hard quadrature problem has
been used to find a near-optimal solution to be used as a reference. While the computa-
tional cost of the training phasemay be considered as a secondary issue, it rapidly becomes
excessive when the size of the problem increases, making a proper convergence study dif-
ficult. Concerning CPU times, the online phase depends only on the quadrature’s size,
it is therefore similar for different methods. In the offline phase, further progress can be
obtained by properly choosing ξmin and ξmax which is clearly problem dependent.

Conclusion
The contribution of this paper is the formulation of the hyper-reduction problem in terms
of a linearmixed-integer optimization problem, imposing a threshold on the infinity norm
of the training data reconstruction error. This formulation enables optimal solution by
IBM CPLEX algorithm, which is then compared to the standard SNNLS heuristic from
the literature.
The impact of additional consistency constraints on volume preservation and polyno-

mial integration is studied.
Due to high computational cost, the problem is reformulated using reduced constraints

set.
All results are compared in both offline and online phases of projected Galerking ROM

on an explicit nonlinear transient dynamics case.
The differentmethods are implemented in a research development branch of the indus-

trial FE solver Altair Radioss [39].
The obtained results may be used as reference for evaluating different hyper-reduction

schemes. While the proposed MIP method remains costly for larger problems, the use of
infinity norm in the offline trianing phase enhances online performances and the proposed
constraints reduction allows also for further research on heuristic schemes.
This work is focused on the technical aspect of hyper-reduction. Nevertheless, further

research is required on the influence of hyper-reduced Galerkin ROM on such topics as
timestep, wave propagation, precision of acceleration.

Acknowledgements
This work is supported by the ANRT and the French car manufacturer PSA Group. ALTAIR Engineering France provided
the source code of the solver, permitting implementation of our work in an industrial solver and enabling the use of post
and pre-treatment softwares.



Phalippou et al. Adv. Model. and Simul. in Eng. Sci.           (2020) 7:36 Page 22 of 23

Authors’ contributions
PP, PhD. student, did actual work including implementation and tested the proposed methods. The PhD. is supervised by
PB and co-supervised by SB. PV, emeritus professor at the UTC, was consulted on the mathematical aspects of the
contribution. MZ, industrial partner, proposed the problem and furnished benchmark cases. All authors read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details
1Altair Engineering France, 5 rue de la Renaissance, 92160 Antony, France, 2Laboratoire Roberval, Centre de recherche de
Royallieu, FRE 2012 UTC-CNRS Université de Technologie de Compiègne, rue Personne de Roberval, 60205 Compiègne,
France, 3PSA Group, Route de Gisy, 78140 Vélizy-Villacoublay, France.

Received: 4 November 2019 Accepted: 30 May 2020

References
1. Chatterjee A. An introduction to the proper orthogonal decomposition. Curr Sci. 2000:808–17.
2. Kosambi D. Statistics in function space. J Indian Math Soc. 1943;7:76–88.
3. Berkooz G, Holmes P, Lumley JL. The proper orthogonal decomposition in the analysis of turbulent flows. Ann Rev

Fluid Mech. 1993;25:539–75.
4. Holmes P, Lumley JL, Berkooz G, Rowley CW. Turbulence, coherent structures, dynamical systems and symmetry.

Cambridge: Cambridge University Press; 2012.
5. Sirovich L. Turbulence and the dynamics of coherent structures. i. coherent structures. Quart Appl Math.

1987;45(3):561–71.
6. Xiao M, Breitkopf P, Coelho RF, Knopf-Lenoir C, Sidorkiewicz M, Villon P. Model reduction by cpod and kriging. Struct

Multidiscipl Optim. 2010;41(4):555–74.
7. An SS, Kim T, James DL. Optimizing cubature for efficient integration of subspace deformations. ACM Trans Graph.

2008;27:165.
8. Von Tycowicz C, Schulz C, Seidel H-P, Hildebrandt K. An efficient construction of reduced deformable objects. ACM

Trans Graph. 2013;32(6):213.
9. Brandt C, Eisemann E, Hildebrandt K. Hyper-reduced projective dynamics. ACM Trans Graph. 2018;37(4):80.
10. Teng Y, Meyer M, DeRose T, Kim T. Subspace condensation: full space adaptivity for subspace deformations. ACM

Trans Graph. 2015;34(4):76.
11. Madra A, Breitkopf P, Raghavan B, Trochu F. Diffuse manifold learning of the geometry of woven reinforcements in

composites. Comptes Rendus Mécanique. 2018;346(7):532–8.
12. Meng L, Breitkopf P, Raghavan B, Mauvoisin G, Bartier O, Hernot X. On the study of mystical materials identified by

indentation on power law and voce hardening solids. Int J Mater Form. 2018:1–16.
13. Meng L, Breitkopf P, Le Quilliec G, Raghavan B, Villon P. Nonlinear shape-manifold learning approach: concepts, tools

and applications. Archi Comput Methods Eng. 2018;25(1):1–21.
14. Raghavan B, Breitkopf P, Tourbier Y, Villon P. Towards a space reduction approach for efficient structural shape

optimization. Struct Multidiscipl Optim. 2013;48(5):987–1000.
15. Raghavan B, Hamdaoui M, Xiao M, Breitkopf P, Villon P. A bi-level meta-modeling approach for structural optimization

using modified pod bases and diffuse approximation. Comput Struct. 2013;127:19–28.
16. Raghavan B, Xiao M, Breitkopf P, Villon P. Implicit constraint handling for shape optimisation with pod-morphing. Eur

J Comput Mech. 2012;21(3–6):325–36.
17. Kerfriden P, Gosselet P, Adhikari S, Bordas SP-A. Bridging proper orthogonal decompositionmethods and augmented

Newton-Krylov algorithms: an adaptive model order reduction for highly nonlinear mechanical problems. Comput
Methods Appl Mech Eng. 2011;200(5–8):850–66.

18. Kerfriden P, Goury O, Rabczuk T, Bordas SP-A. A partitioned model order reduction approach to rationalise computa-
tional expenses in nonlinear fracture mechanics. Comput Methods Appl Mech Eng. 2013;256:169–88.

19. CapaldoM,Guidault P-A, NéronD, Ladevèze P. The referencepointmethod, a “hyperreduction” technique: application
to pgd-based nonlinear model reduction. Comput Methods Appl Mech Eng. 2017;322:483–514.

20. Chaturantabut S. Nonlinear model reduction via discrete empirical interpolation. PhD thesis, Rice University. 2011.
21. Dedden RJ. Model order reduction using the discrete empirical interpolation method. Master’s thesis, Delft University

of Technology. 2012.
22. Tiso P, Dedden R, Rixen D. Amodified discrete empirical interpolationmethod for reducing non-linear structural finite

element models. In: Proceedings of the ASME design engineering technical conference. 2013.
23. Barrault M,Maday Y, NguyenNC, Patera AT. An ’empirical interpolation’method: application to efficient reduced-basis

discretization of partial differential equations. Comptes Rendus Mathematique. 2004;339(9):667–72.
24. Maday Y, Nguyen NC, Patera AT, Pau GS. A general, multipurpose interpolation procedure: the magic points. 2007.
25. Ryckelynck D, Vincent F, Cantournet S. Multidimensional a priori hyper-reduction of mechanical models involving

internal variables. Comput Methods Appl Mech Eng. 2012;225:28–43.
26. Farhat C, Avery P, Chapman T, Cortial J. Dimensional reduction of nonlinear finite element dynamicmodels with finite

rotations and energy-based mesh sampling and weighting for computational efficiency. Int J Numer Methods Eng.
2014;98(9):625–62.

27. Hernandez JA, Caicedo MA, Ferrer A. Dimensional hyper-reduction of nonlinear finite element models via empirical
cubature. Comput Methods Appl Mech Eng. 2016.



Phalippou et al. Adv. Model. and Simul. in Eng. Sci.           (2020) 7:36 Page 23 of 23

28. Breitkopf P, Rassineux A, Savignat J-M, Villon P. Integration constraint in diffuse element method. Comput Methods
Appl Mech Eng. 2004;193(12–14):1203–20.

29. Puso MA, Chen JS, Zywicz E, Elmer W. Meshfree and finite element nodal integration methods. Int J Numer Methods
Eng. 2008;74(3):416–46.

30. Fougeron G, Pierrot G, Aubry D. Recovery of differentiation/integration compatibility of meshless operators via local
adaptation of the point cloud in the context of nodal integration. In: Proceedings of the 7th European congress on
computational methods in applied sciences and engineering. 2016.

31. Chen J-S, Hillman M, Rüter M. An arbitrary order variationally consistent integration for galerkin meshfree methods.
Int J Numer Methods Eng. 2013;95(5):387–418.

32. IBM: ILOG CPLEX version 12.1.7.0. 2017. https://www.ibm.com/products/ilog-cplex-optimization-studio.
33. Belytschko T, Lin JI, Chen-Shyh T. Explicit algorithms for the nonlinear dynamics of shells. Comput Methods Appl

Mech Eng. 1984;42(2):225–51.
34. Bach C, Song L, Erhart T, Duddeck F. Stability conditions for the explicit integration of projection based nonlinear

reduced-order and hyper reduced structural mechanics finite element models. arXiv preprint arXiv:1806.11404. 2018.
35. Chapman T, Avery P, Collins P, Farhat C. Accelerated mesh sampling for the hyper reduction for nonlinear computa-

tional models. Int J Numer Methods Eng. 2017;109(12):1623–54.
36. Clausen J. Branch and bound algorithms-principles and examples. Department of Computer Science, University of

Copenhagen. 1999. p. 1–30.
37. De Bruin A, Kan AHR, Trienekens HW. A simulation tool for the performance evaluation of parallel branch and bound

algorithms. Math Program. 1988;42(1–3):245–71.
38. Chen J-S, Wu C-T, Yoon S, You Y. A stabilized conforming nodal integration for galerkin mesh-free methods. Int J

Numer Methods Eng. 2001;50(2):435–66.
39. ALTAIR Engineering: Altair RADIOSS 2017 Reference Guide. Troy. ALTAIR Engineering. 2017.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.ibm.com/products/ilog-cplex-optimization-studio
http://arxiv.org/abs/1806.11404

	Remarks on mixed-integer formulations for hyper-reduction schemes in nonlinear dynamics
	Abstract
	Introduction
	Projected hyper-reduced order model
	Notations
	Projected reduced order model
	Energy-conserving sampling and weighting (ECSW)

	Hyper-reduced integration
	MIP formulation
	Consistency constraints
	Constraints reduction

	Results and discussion
	Consistency conditions
	Constraints reduction
	Discussion

	Conclusion
	References




