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Abstract

In this work, we consider a transient thermal problem, with a nonlinear term coming
from the radiation boundary condition and a nonparametrized variability in the form
complex scenarios for the initial condition and the convection coefficients and external
temperatures. We use a posteriori reduced order modeling by snapshot Proper
Orthogonal Decomposition. To treat the nonlinearity, hyperreduction is required in our
case, since precomputing the polynomial nonlinearities becomes too expensive for the
radiation term. We applied the Empirical Cubature Method, originally proposed for
nonlinear structural mechanics, to our particular problem. We apply the method to the
design of high-pressure compressors for civilian aircraft engines, where a fast
evaluation of the solution temperature is required when testing new configurations.
We also illustrate that when using in the reduced solver the same model as the one
from the high-fidelity code, the approximation is very accurate. However, when using a
commercial code to generate the high-fidelity data, where the implementation of the
model and solver is unknown, the reduced model is less accurate but still within
engineering tolerances in our tests. Hence, the regularizing property of reduced order
models, together with a nonintrusive approach, enables the use of commercial
software to generate the data, even under some degree of uncertainty in the
proprietary model or solver of the commercial software.

Keywords: Nonlinear transient heat equation, Radiation boundary condition, Reduced
order modeling, Proper orthogonal decomposition, Empirical cubature method,
Nonparametrized variability

Introduction
When designing an aircraft engine, a particular attention must be paid to prevent in-
flight compressor surge. A cutaway schematic of a civilian aircraft engine is shown in
Fig. 1, with a highlight on the high-pressure compressor. The design of this part requires
engineering expertise (e.g., for the heat transfer coefficients), analysis of experiments, and
typically 2D and 3D finite element model simulations. In particular, transient evolutions
of the temperature field in the compressor need to be computed rapidly and accurately to
ensure efficient design iterations.
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Fig. 1 CF6-6 engine cutaway [1], with an emphasis on the high-pressure compressor

Many numerical algorithms are called “reduced order modeling” methods: for instance,
considering a coarser mesh or making use of the symmetry in a problem to reduced
the number of degrees of freedom can be considered as reduced order models. Statistical
meta-models in the formof nonlinear regressions can also be called reduced ordermodels,
see [2–4] for reviews in machine learning. Other methods consist in expressing the solu-
tion in the form tensor decompositions, see [5–7]. In this work, we consider a posteriori
reduced order modeling, which consist in having the reduced model solve the equations
of the physics, usually in the form of a Galerkin problem written on a reduced order basis.
Among these methods, the reduced basis method [8,9] is well adapted to parametrized
problems forwhichwe canderive an efficient aposteriori error bounds. Inwhat follows,we
use the snapshot Proper Orthogonal Decomposition, where a low rank structure is search
in the set of high-fidelity solutions by means of an eigenvalue problem written on the
matrix of the correlations between these solutions, see [10,11]. Depending on the prob-
lem and the considered variabilities, a particular treatment, usually called hyperreduction,
must be added to obtain an efficient reducedmodel. Threemethods have been introduced
simultaneously for the hyperreduction of nonlinear problems: the Missing Point Estima-
tion (MPE) [12], the Empirical Interpolation Method (EIM) [13], and the hyperreduction
[14], which coined the expression. Other methods have been introduced later, such as
the Best Point Interpolation Method (BPIM) [15], the Discrete Empirical Interpolation
Method (DEIM) [16], the Gauss–Newton with Approximated Tensors method (GNAT)
[17], the Energy Conserving Sampling andWeightingmethod (ECSW) [18], the Empirical
Cubature Method (ECM) [19] and the LP empirical quadrature procedure [20].
The contribution of this work consists in the adaptation of the Empirical Cubature

Method to a nonlinear transient thermal problem with nonparametrized variability, and
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the implementation of the reduced order model in a nonintrusive fashion, in a framework
developed at Safran [21]. While any of the previous cited hyperreduction method could
have been used, we choose the ECM for its ability to easily derive an approximation for the
assembling of a boundary term only, the regular distribution of the reduced integration
points on this boundary, and the fact that the approximated reduced operators conserve
the spectral properties of their high-fidelity counterpart.
We also illustrate that using a nonintrusive approach allows to reduce a problem with-

out knowing precisely the model, thanks to the underlying regularization property of
reduced order methods. Indeed, using the finite element software Z-set [22], for which we
know precisely the models, we were able to construct a ROM solving the same model and
obtained very accurate results. However, the models and solvers in the commercial soft-
ware Abaqus [23] are proprietary, and using the same ROM leads to less accurate results,
but still within engineering accuracy. Thus, the nonintrusivity of the method enables the
use of commercial software, even without knowing precisely the implementation of the
model or solver of the high-fidelity code.
In what follows, we first present the problem of interest in “High-fidelitymodel for tran-

sient thermal problemwith convection and radiation boundary conditions” section. Then,
the a posteriori reduced order modeling of this problem is introduced in “Reduced order
model” section, in the context of nonparametrized variability. Finally, the features andper-
formance of the reduced ordermodel are illustrated by numerical experiments in “Numer-
ical applications” section and conclusions are drawn in “Conclusion and prospects” sec-
tion.

High-fidelity model for transient thermal problemwith convection and
radiation boundary conditions
We denote our stucture of interest �, such that the boundary ∂� is partitioned in d = 39
surfaces: ∂� = ∪d

i=1�
(i), �(i)◦ ∩ �(j)◦ = ∅, 1 ≤ i, j ≤ d, where ·◦ denotes the interior of a

set, see Fig. 2.
From the first law of thermodynamics, the energy balance in the absence of work reads:

∫
�

∂u
∂t

(x, t)dx = −
∫

∂�

q(x, t) · n(x)dx +
∫

�

r(x, t)dx, (1)

where n is the exterior normal on ∂�, u is the volumic internal energy (in J m−3), q is
the heat flux density (in J s−1m−2, q · n|∂V is the heat lost per second to the exterior
through the boundary), and r a volumic heat source (in J s−1m−3). In our case, r = 0.
The divergence theorem applied to the surface integral in (1) yields the local relation
∂u
∂t (x, t) + ∇ · q(x, t) = 0. Let U be the massic internal energy (in J kg−1), so that u = ρU ,
where ρ is the density (in kg m−3).
In our case, the density is assumed to be uniform and constant in time, and the massic

internal energy is assumed to depend only on the temperature T, so that ∂u
∂t = ρcp ∂T

∂t ,
where the massic heat capacity cp (in J kg−1K−1) is supposed uniform and constant
in time. The heat-flux satisfies the Fourier law: q(x, t) = −λ∇T (x, t), where the heat
conductivity λ (in J s−1m−1K−1) is also supposed uniform and constant in time. More-
over, we model the heat exchanges between the structure and the exterior by convection
and radiation boundary conditions, namely q(x, t) · n(x) = h(x, t) (T (x, t) − T1,e(x, t)) +
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Fig. 2 Representation of the structure of interest �, composed of 3 bodies, with a partitioning of the
boundary ∂� = ∪d

i=1�
(i) , �(i)◦ ∩ �(j)◦ = ∅, 1 ≤ i, j ≤ d = 39

(σε)(x, t)
(
T 4(x, t) − T 4

2,e(x, t)
)
, for (x, t) ∈ ∂� × [0, tf ], where h denotes the convection

coefficient (in J s−1m−2K−1), σ the Stefan–Boltzmann constant (in J s−1m−2K−4), ε is the
emissivity coefficient (dimensionless),T1,e andT2,e are external temperature values. These
coefficients are uniform on each surface �(i), 1 ≤ i ≤ d, and the radiation coefficients are
also constant in time:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

h(x, t) = h(i)(t), �(i) × [0, tf ]

T1,e(x, t) = T (i)
1,e(t), �(i) × [0, tf ]

(σε)(x, t) = σε, ∂� × [0, tf ]

T2,e(x, t) = T2,e, ∂� × [0, tf ]

(2)

Hence, T (x, t), x ∈ �, t ∈ [0, tf ], is solution of the following system of equations:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρcp
∂T
∂t

(x, t) − λ	T (x, t) = 0, x ∈ �, t ≤ tf

λ∇T (x, t) · n(x) = h(i)(t)
(
T (x, t) − T (i)

1,e(t)
)

+ σε
(
T 4(x, t) − T 4

2,e
)
, x ∈ �(i), t ≤ tf

T (x, t = 0) = Tinit(x). x ∈ �, t = 0

(3)

Denote H1(�) := {u ∈ L2(�)|∇u ∈ L2(�)}, where L2(�) if the set of square
integrable functions set from � to R, i.e. v ∈ L2(�) if the L2(�) inner product
(v, v)L2(�) = ∫

�
v2(x)dx < ∞. The space discretization is obtained by using finite ele-

ments: consider a finite dimensional space V as a conforming approximation of H1(�):
V ⊂ H1(�), V = Span{ϕk}1≤k≤N , with {ϕk}1≤k≤N the considered finite element basis,
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andN the number of nodes on the mesh. The solution temperature is now searched in V :
T (x, sdt) = ∑N

k=1 Tk (s)ϕk , 1 ≤ s ≤ J . Denote T (s) ∈ R
N , the vector of components Tk (s).

Using a backwards Euler for the timediscretization on {0, dt, ..., Jdt} and aGalerkinmethod
for the space discretization on V , the problem writes: find T (s + 1) ∈ R

N , 0 ≤ s ≤ J − 1,
such that

{
Tl(0) = (Tinit,ϕl)L2(�) , 1 ≤ l ≤ N,

Fs,l(T (s + 1)) = 0, 0 ≤ s ≤ J − 1, 1 ≤ l ≤ N,
(4)

where, for V ∈ R
N , Fs(V ) ∈ R

N , 0 ≤ s ≤ J − 1, is such that

Fs,l(V ) = ρcp
dt

N∑
k=1

(∫
�

ϕk (x)ϕl(x)dx
)
(Vk − Tk (s)) + λ

N∑
k=1

(∫
�

∇ϕk (x) · ∇ϕl(x)dx
)
Vk

− σε

∫
∂�

⎛
⎝

[ N∑
k=1

Vkϕk (x)
]4

− T 4
2,e

⎞
⎠ϕl(x)dx

−
d∑
i=1

h(i)(s + 1)
∫

�(i)

( N∑
k=1

Vkϕk (x) − T (i)
1,e(s + 1)

)
ϕl(x)dx. (5)

At time step s+1, the system of nonlinear equations (4) is solved by aNewton algorithm:

⎧⎨
⎩
T (0)(s + 1) = T (s)
DFs
DV

(
T (p)(s + 1)

) (
T (p+1)(s + 1) − T (p)(s + 1)

)
= −Fs

(
T (p)(s + 1)

)
, 1 ≤ k ≤ N,

(6)

where T (p)(s + 1) ∈ R
N denotes the p-th iteration at time step s + 1, T (s) is the known

solution at the previous time step s, and where DFs
DT

(
T (p)(s + 1)

)
∈ R

N×N is such that

(
DFs
DV

)
k,l

(
T (p)(s + 1)

)
= ∂Fs,k

∂Vl

(
T (p)(s + 1)

)

= ρcp
dt

∫
�

ϕk (x)ϕl(x)dx + λ

∫
�

∇ϕk (x) · ∇ϕl(x)dx

− 4σε

∫
∂�

[ N∑
k ′=1

T (p)
k ′ (s + 1)ϕk ′ (x)

]3

ϕk (x)ϕl(x)dx

−
d∑
i=1

h(i)(s + 1)
∫

�(i)
ϕk (x)ϕl(x)dx, 1 ≤ k, l ≤ N. (7)

We denote bext(s + 1) ∈ R
N the vector of external loading such that

bextl (s+1) = σεT 4
2,e

∫
∂�

ϕl(x)dx+
d∑
i=1

h(i)(s+1)T (i)
1,e(s+1)

∫
�(i)

ϕl(x)dx, 1 ≤ k ≤ N. (8)
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The iterationsof theNewtonalgorithm (6) are stoppedwhen

∥∥∥T (p+1)(s+1)−T (p)(s+1)
∥∥∥
2‖bext(s+1)‖2

≤ εHF
tol ,

where‖·‖2 denotes here theEuclideannormonRN . The systemofnonlinear equations (4),
solved by the Newton algorithm (6), is our reference high-fidelity model.
The evolution of the coefficients (2) are computed using a 1D nodal network (in-house

code), and the nonlinear transient thermal problem is solved using finite element solvers:
in this study, we consider Abaqus and Z-set commercial softwares.

Reduced order model
Reduced order techniques can be used to accelerate the computation of the high-fidelity
problem (4). We define the speedup as the ratio between the durations of the compu-
tation of the high-fidelity model (HFM) and the reduced order model (ROM). ROM
techniques are usually decomposed in two stages: the offline stage, where information
from the high-fidelity model is learned, and the online stage, where the reduced order
model is constructed and exploited. In the offline stage occur computationally demanding
tasks, whereas the online stage is required to be efficient, in the sense that only operations
in computational complexity independent of the number N of degrees of freedom of the
high-fidelity model are usually allowed.

Nonparametrized variability

In the offline stage, the high-fidelity problem (4) is solved for given configurations. In the
general case, the variations between the candidate configurations are quantified using a
low-dimensional parametrization, leading to a parametrized reduced order model. In this
work, we consider nonparametrized variations between the configurations of interest,
which we call variability and denote μ. The variability contains the time steps s, as well
as a nonparametrized description of the configuration, which in our case is the loading
referred to with a label “conf” for configuration. For instance, μ = (s; “computation 1”),
means that we consider the time step s and a description conf = “computation 1” of the
configuration, consisting of

• initial condition Tinit (nonparametrized),
• convection coefficients h(i)(sdt), 1 ≤ i ≤ d, 1 ≤ s ≤ J ,
• external temperatures T (i)

1,e(sdt), 1 ≤ i ≤ d, 1 ≤ s ≤ J .

The surface partitioning �(i), 1 ≤ i ≤ d, and the coefficients ρ, cp, λ, σ , ε and T2,e
are supposed constant between the considered variabilities. We denote Poff . the set of
variabilities encountered during the offline stage.

Remark 1 (nonparametrized variability)Onecould argue that the variabilities are actually
parametrized: N parameters for Tinit, and 2dJ parameters for h and T1,e. However, the
dimension of the parametrization is too large for a strategy based on precomputing the
variabilities to be efficient: many terms would need to be recombined in the online stage
to derive the reduced loading, which would strongly penalize the speedup. 
�

Derivation of the reduced order model

In what follows, we consider a posteriori reduced order modeling, which means that
our reduced model involves an efficient Galerkin method no longer written on the finite
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element basis {ϕk}1≤k≤N , but on a reduced order basis {ψk}1≤k≤n, with n � N , adapted
to the problem at hand. The reduced solution temperature is written

T̂ (·, sdt; conf) =
n∑

k=1
T̂k (s; conf)ψk , (9)

with initial condition T̂k (0; conf) = (Tinit(conf),ψk )L2(�), 1 ≤ k ≤ n. In what follows, we
no longer write explicitly the variability conf for clarity of the presentation.
The same derivations as the previous section are carried-out on this basis. The obtained

reduced Newton algorithm at time step s+ 1 and variability conf reads: Find T̂ (p)(s+ 1) ∈
R
n such that

⎧⎪⎨
⎪⎩
T̂ (0)(s + 1) = T̂ (s)

DF̂s
DV

(
T̂ (p)(s + 1)

) (
T̂ (p+1)(s + 1) − T̂ (p)(s + 1)

)
= −F̂s

(
T̂ (p)(s + 1)

)
,

(10)

where the vector F̂s
(
T̂ (p)(s + 1)

)
∈ R

n and the matrix DF̂s
DV

(
T̂ (p)(s + 1)

)
∈ R

n×n are
obtained respectively as (5) and (7) by replacing the finite element basis {ϕk}1≤k≤N by the
reduced order basis {ψk}1≤k≤n. Define also the reduced external loading vector b̂ext(s+1)
in the same fashion as (8). The iterations of the reducedNewton algorithm (10) are stopped

when

∥∥∥T̂ (p+1)(s+1)−T̂ (p)(s+1)
∥∥∥
2∥∥∥b̂ext(s+1)

∥∥∥
2

≤ εROM
tol , where ‖ · ‖2 denotes here the Euclidean norm on

R
n.
Following the vocabulary introduced in [21], the offline stage is composed of the three

following steps:

• data generation: this corresponds to the generation of the numerical approximation
of the solutions to (4), using the Newton algorithm (6). Multiple temporal solu-
tions are considered, for different loading conditions. The set of theses solutions
{T (·,μi)}1≤i≤Nc is called the snapshots set, where Nc is the number of high-fidelity
solutions computed at the considered variabilities μ = (s; conf).

• data compression: this corresponds to the generation of the reduced order basis,
obtained by looking for a hidden low-rank structure of the snapshots set. In this
work, we employ the snapshot Proper Orthogonal Decomposition (POD), using the
L2(�)-inner product to compute the correlations between the snapshots. The POD
modes are obtained by truncating the eigenvalue decomposition of the correlation
matrix: we denote εPOD the tolerance for the truncation.

• operator compression: this step contains all the precomputations required to ensure
that the reduced problem is computed in complexity independent ofN . In our nonlin-
ear setting, this task requires hyperreduction: we use the Empirical CubatureMethod
(ECM).

ECMwas originally proposed for structural mechanics, we derive in this work a version
for transient nonlinear thermal problems. In our problem, only the radiation term in (4)
is nonlinear. Hence, we can precompute the assembling of all the other terms: define

θ�
i,j =

∫
�

ψi(x)ψj(x)dx, 1 ≤ i, j ≤ n, (11a)



Casenave et al. Adv. Model. and Simul. in Eng. Sci.           (2020) 7:22 Page 8 of 19

β�
i,j =

∫
�

∇ψi(x) · ∇ψj(x)dx, 1 ≤ i, j ≤ n, (11b)

θ�(r)
i =

∫
�(r)

ψi(x)dx, 1 ≤ r ≤ d, 1 ≤ i ≤ n, (11c)

θ�(r)
i,j =

∫
�(r)

ψi(x)ψj(x)dx, 1 ≤ r ≤ d, 1 ≤ i, j ≤ n, (11d)

θ∂�
i =

∫
∂�

ψi(x)dx, 1 ≤ i ≤ n. (11e)

These tensors are computed by integrating directly the reduced order basis over the
domain � and keeping a numerical complexity linear with respect to the number
of elements of the mesh. Once these tensors have been precomputed, the matrix
DF̂s
DV

(
T̂ (p)(s + 1)

)
and the vector F̂s

(
T̂ (p)(s + 1)

)
in (10) can be computed as:

DF̂s
DV i,j

(
T̂ (p)(s + 1)

)
= ρcp

dt
θ�
i,j + λβ�

i,j −
d∑

r=1
h(r)θ�(r)

i,j

− 4σε

∫
∂�

[ n∑
k=1

T̂ (p)
k (s + 1)ψk (x)

]3

ψi(x)ψj(x)dx, 1 ≤ i, j ≤ n,

(12)

and

F̂s
(
T̂ (p)(s + 1)

)
= b̂ints

(
T̂ (p)(s + 1)

)
− b̂exts , (13)

where, for 1 ≤ i ≤ n,

b̂ints,i

(
T̂ (p)(s + 1)

)
= ρcp

dt

n∑
j=1

θ�
i,j

(
T̂ (p)
j (s + 1) − T̂j(s)

)
+ λ

n∑
j=1

β�
i,j T̂

(p)
j (s + 1)

−
d∑

r=1
h(r)(s + 1)

n∑
j
T̂ (p)
j (s + 1)θ�(r)

i,j − σε

∫
∂�

[ n∑
k=1

T̂ (p)
k (s + 1)ψk (x)

]4

ψi(x)dx,

(14)

and

b̂exts,i = σεT 4
2,eθ

∂�
i +

d∑
p=1

h(r)(s + 1)T (p)
1,e (s + 1)θ�(r)

i , 1 ≤ i ≤ n. (15)

In (12) and (14), there remains some terms whose assembling still require integrations
over the high-fidelity mesh. Due to the nonlinear dependence of these terms with respect
to the reduced temperature, we cannot precompute the assembling of these terms with
order-2 tensors. Consider the radiation part of the reduced internal forces vector:

b̂int,radi

(
T̂ (p)(s + 1)

)
:= −σε

∫
∂�

[ n∑
k=1

T̂ (p)
k (s + 1)ψk (x)

]4

ψi(x)dx, 1 ≤ i ≤ n.

(16)
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Recall the notation for the snapshots set {T (·,μj)}1≤j≤Nc , corresponding to the set of high-
fidelity solutions. The reduced internal forces vector taken at the snapshots is in practice
computed using quadrature formulas adapted to the used finite-element basis:

b̂int,radi (T (·,μj)) = −σε

∫
∂�

T 4(x,μj)ψi(x)dx = −σε
∑
e∈E

ne∑
k=1

ωkT 4(xk ,μj)ψi(xk ),

(17)

where E denotes the set of elements of the mesh, ne denotes the number of integration
points for the element e,ωk and xk are the integrationweights and points of the considered
element. ECMconsists in replacing this high-fidelity quadrature (17) by an approximation
adapted to the snapshots set {T (·,μj)}1≤j≤Nc and the reduced order basis {ψi}1≤i≤n, and
involving a small number of integration points:

b̂int,radi (T̂ (p)(s + 1)) ≈ −σε

d∑
k ′=1

ω̂k ′

⎡
⎣ n∑

j=1
T̂ (p)
j (s + 1)ψj(x̂k ′ )

⎤
⎦
4

ψi(x̂k ′ ), 1 ≤ i ≤ n,

(18)

where d � NG := ∑
e∈E ne (NG is the total number of integration points), the reduced

integration points x̂k ′ , 1 ≤ k ′ ≤ d, are taken among the integration points of the high-
fidelity quadrature (17) and the reduced integration weights ω̂k ′ are positive. In (18), the
term in brackets corresponds to the reduced prediction taken at the reduced integration
points. An approximation of the radiation part of the reduced internal forces vector can
now be assembled in complexity independent of N (more precisely independent of the
number of nodes on the boundary ∂�).
We now briefly present how this reduced quadrature formula is obtained. We denote

hq := −σεT 4(·,μ(q//n)+1)ψ(q%n)+1 ∈ L2(∂�), where // and%are respectively the quotient
and the remainder of the Euclidean division, Z is a subset of [1;NG] of size d, with NG
the number of integration points, and JZ ∈ R

nNc×d and g ∈ N
nNc are such that for all

1 ≤ q ≤ nNc and all 1 ≤ k ′ ≤ d,

JZ =
(
hq(xZk′ )

)

1≤q≤nNc, 1≤k ′≤d
, g =

(∫
�

hq
)
1≤q≤nNc

, (19)

where Zk ′ denotes the k ′-th element of Z and where we recall that n is the
number of POD modes. Let ω̂ ∈ R

+d . From the introduced notation, (JZ ω̂)q =
−σε

∑d
k ′=1 ω̂k ′T 4(xZk′ ,μ(q//n)+1)ψ(q%n)+1(xZk′ ), 1 ≤ q ≤ nNc, which is a candidate

approximation for−σε
∫
∂�

T 4(·,μ(q//n)+1)ψ(q%n)+1 = gq , 1 ≤ q ≤ nNc. The best reduced
quadrature formula of length d for the reduced internal forces vector is obtained as

(ω̂,Z) = arg min
ω̂′>0,Z ′⊂[1;NG]

∥∥JZ ′ ω̂′ − g
∥∥
2 , (20)

where ‖·‖2 stands for the Euclidean norm. If we wish to optimize the length of the reduced
quadrature as well in the objective function, we obtain a NP-hard optimization problem.
In [18] a SparseNonNegative Least-Squares (NNLS) algorithm, proposed in [24], is used to
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reach a solution in reasonable time. Here, we consider a modification of the NonNegative
Orthogonal Matching Pursuit algorithm, see [25, Algorithm 1] and [21, Algorithm 2],
which are variants of the Matching Pursuit algorithm [26] adapted to the nonnegative
requirement. This algorithm consists in a greedy construction of the reduced quadrature
scheme, with a stopping criterion on the accuracy of the quadrature over the values of the
radiation part of the internal forces vector for the available snapshots, with a tolerance
denoted εECM.
In Newton algorithms, the tangent operator does not need to be computed very accu-

rately. Hence, we use the previously obtained reduced quadrature formula to compute the
radiation contribution to the reduced tangent operator (12).

Remark 2 (Polynomial nonlinearities) In the literature, some polynomial nonlinearities
have been treated without hyperreduction, for example, the advection term in fluid
dynamics (with a ROM based on a Galerkin method in our context) only requires the
precomputation of an order-3 tensor in the form

∫
�

ψi · (
ψj · ∇)

ψk , 1 ≤ i, j, k ≤ n, see
[27] for the reduction of the nonlinear Navier-Stokes equations, with an exact operator
compression step. Other examples can be found in structural dynamics with geometric
nonlinearities, where order-2 and 3 tensors can be precomputed, see [28, Section 3.2] and
[29].
Such a strategy can be derived in our case also. Define

θ∂�
i,j,k,l,m =

∫
∂�

ψi(x)ψj(x)ψk (x)ψl(x)ψm(x)dx, 1 ≤ i, j, k, l, m ≤ n. (21)

The nonlinear terms reduced by ECM in (12) and (14) can be precomputed as

∫
∂�

[ n∑
k=1

T̂ (p)
k (s + 1)ψk (x)

]3

ψi(x)ψj(x)dx

=
n∑

k,l,m
T̂ (p)
k (s + 1)T̂ (p)

l (s + 1)T̂ (p)
m (s + 1)θ∂�

i,j,k,l,m, (22)

and

∫
∂�

[ n∑
k=1

T̂ (p)
k (s + 1)ψk (x)

]4

ψi(x)dx

=
n∑

j,k,l,m
T̂ (p)
j (s + 1)T̂ (p)

k (s + 1)T̂ (p)
l (s + 1)T̂ (p)

m (s + 1)θ∂�
i,j,k,l,m. (23)

However, the fact that the tensor θ∂�
i,j,k,l,m is of order five is very detrimental to the compu-

tation time, both for the offline stage for the computation of this tensor, and for the online
stage, where the coefficients of this tensor are recombined to assemble the reduced prob-
lem. In practice in our numerical experiments, for more than 20 POD modes, the offline
stage becomes untractable (computing the fifth-order tensor takes more than 70 times
the duration of the high-fidelity solves) and no practical speedup is obtain in the online
stage. For these reasons, the use of hyperreduction is mandatory for our applications. 
�
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Remark 3 (Initial condition) Without any parametrization for the initial condition, the
first step of the reduced Newton algorithm (10) at the first time step (s = 0) requires to
compute scalar products on the mesh �, whose computational complexity depends on
N : T̂ (0)(1; conf) = T̂ (0; conf), where T̂k (0; conf) = (Tinit(conf),ψk )L2(�), 1 ≤ k ≤ n.
However, this computation is made only once per online run. If the variability of Tinit
with respect to conf was parametrized in an affine fashion (or if we considered only a
pre-known set of initial conditions Tinit in the online stage), the scalar products (·, ·)L2(�)
could have been precomputed during the offline stage. 
�

Nonintrusive reduced order modeling library

This work has been implemented in an in-house nonintrusive reduced order modeling
library developed at Safran, see [21]. Thanks to the nonintrusive implementation, the
high-fidelity snapshots can be generated by a commercial software. In our case, we use
the commercial versions of Abaqus [23] and Z-set [22].
The nonintrusivity is gained from having coded routines to read solutions and meshes

from the used finite element software into an in-house format, and having recoded all
the finite element assembling routines in our library. Then, considering nonparametrized
variability is now readily available: we can, at the beginning of the online stage, for a new
variability, assemble the reduced loading terms using these available assembling routines.
We will see in “Advantages of the nonintrusivity” section that the nonintrusivity of

our ROM library, together with a regularizing property of ROM techniques, enables to
reduce problems using snapshot generated by a commercial software under some model
uncertainty.

Data format for the reduced solution

In our application, the quantity of interest is the temperature field over the complete
structure. As a consequence, the time spent to write the reduced prediction over the
complete structure should be included in the duration of the ROM for the definition of
the speedup. In our applications, this time for writing the solution on disk takes 10% of
the duration of the HFM. Hence, to obtain speedups larger than 10, we use the PXDMF
format [30], where the POD modes are written on disk during the offline phase, and only
the coefficients T̂k (s; conf), 1 ≤ k ≤ n, in (9) are saved during the online stage. The
solution is reconstructed on the complete mesh each time it is needed, for instance for
visualization purposes, the reconstruction is carried out on the fly by a paraview [31]
reader, see Fig. 3.

Numerical applications
In this section, we consider the model order reduction of the problem (4) using the
procedure described in “Reduced order model” section.

Validation on academic test cases

Simple test case with convection only using Z-set

We consider a very simple test case consisting of a square mesh with N = 676 degrees of
freedom, a uniform initial condition of 100 ◦C, 100 time step for a duration of 1000 s, and a
convection boundary condition with h = 1000 J s−1m−2K−1 and T1,e oscillating between
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Fig. 3 PXDMF format reconstruction of the ROM prediction on-the-fly; top-left: first POD mode �1,
bottom-left: first temporal coefficient T̂1(s; conf) with respect to the time step s, see (9), right: solution
temperature field at the final time step

Table 1 Simple test case with convection only using Z-set (durations for the offline and
online stages)

Offline stage Online stage

POD 0.39 s Compute online loading 0.01 s

ECM – ROM 0.05 s

Remaining 1.62 s Write solution in ROM format 0.02 s

Total 2.01 s Total 0.08 s

100 and 1000 ◦C with a period of 600 s. A HFM solution is computed using Z-set, then a
ROM is computed on the same configuration for validation purposes. The training data
contains 100 snapshots. The POD selects 11 modes with εPOD = 10−6, and ECM is not
computed here since radiation is not considered. The durations for the offline and online
stages are given in Table 1, where “Remaining” refers to all the remaining operations
including the reading of the snapshots and the operations required for the nonintrusive
approach and where “compute online loading” refers to the computation of the reduced
external forces vectors and the extraction of the sequences of coefficients h(i)(t) andT (i)

1,e(t)
from the input files, see “Nonintrusive reduced ordermodeling library” section. TheHFM
duration is 3.82 s, leading to a speedup of 48 in this case.
The comparison provided in Fig. 4 shows that the ROM is able to correctly reduce

computations featuring convection boundary conditions.
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Fig. 4 Simple test case with convection only using Z-set

Table 2 Simple test case with radiation only using Z-set (durations for the offline and
online stages)

Offline stage Online stage

POD 0.40 s Compute online loading 0.01 s

ECM 0.60 s ROM 0.13 s

Remaining 1.80 s Write solution in ROM format 0.02 s

Total 2.80 s Total 0.16 s

Simple test case with radiation only using Z-set

We consider again a very simple test case consisting of the same square mesh as the
previous section, withN = 676 degrees of freedom, a uniform initial condition of 1000 ◦C,
100 time step for a duration of 1000 s, and a convection boundary condition with σε =
3.9683 × 10−8 J s−1 m−2 K−4 and T2,e oscillating between 100 and 1000 ◦C with a period
of 600 s. A HFM solution is computed using Z-set, then a ROM is computed on the same
configuration again for validation purposes. The training data contains 100 snapshots.
The POD selects 9 modes with εPOD = 10−6, and ECM selects 19 integration points with
εECM = 10−6. The durations for the offline and online stages are given in Table 2. The
HFM duration is 5.87 s, leading to a speedup of 37 in this case.
The comparison provided in Fig. 5 shows that the ROM is able to correctly reduce

computation featuring radiation boundary conditions.
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Fig. 5 Simple test case with radiation only using Z-set

Industrial application

In this section, we apply our nonintrusive reduced order strategy on an industrial study
of the high-pressure compressor presented in “Introduction” section, where we recall
that the number of degrees of freedom is N = 4785 . Various temporal scenarios of
convection coefficients h(i) and external temperatures T (i)

1,e for each of the 39 surfaces �(i)

are considered, see Fig. 6. The physical duration of the simulation is now tf = 600 s,
and Abaqus is chosen to compute the snapshots. We use the high-fidelity data from the
scenarios 1 to 7 (defined in from Fig. 6) in the offline stage, while the accuracy of the ROM
will be tested at the variability of scenario 8. We precise that the variability of our model
is not parametrized by Tmin, Tmax and τ : these are parameters for a precomputing step
handled by the in-house 1D nodal network code, which generates the nonparametrized
time series h(i)(t) and T (i)

1,e(t), 1 ≤ i ≤ 39, which are the input of our problem.
The POD selects 13 modes with εPOD = 10−3, and ECM selects 39 integration points

with εECM = 10−3. The durations for the offline and online stages are given in Table 3. In
this case, the POD part is relatively long (the computation of the matrix containing the
correlations between the snapshot takes 38.2 s alone), because the training data contains
7 scenarios of 300 snapshots each, which means that the correlation matrix is a dense
2100 × 2100 matrix. The HFM duration is 52 s, leading to a speedup of 91 in this case.
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Fig. 6 Definition and description of the considered scenarios

Table3 Industrial application (durations for the offline and online stages)

Offline stage Online stage

POD 41.1 s Compute online loading 0.09 s

ECM 7.7 s ROM 0.45 s

Remaining 17.3 s Write solution in ROM format 0.03 s

Total 66.1 s Total 0.57 s

Table 4 Industrial application (comparison of the ROM performances for various values of
εPOD)

εPOD nbe PODmodes nbe ECM points Duration offline Speedup Ē
10−5 62 114 335 s 0.2 7.6 × 10−4

10−4 31 78 110 s 2 8.4 × 10−4

10−3 13 39 66 s 91 2.5 × 10−3

10−2 4 19 57 s 96 2.3 × 10−2

The comparison provided in Fig. 7 shows the prediction of the ROM for the variability
of the scenario 8, which was not in the training data. The points B and C are chosen to
monitor the largest discrepancies, and an error close to −11 ◦C has been measured at t =
24 s (which correspond to a relative error of 2.4% at this time).
We now carry out an error analysis on this industrial test case, to assess the accuracy of

the prediction with respect to the hyperparameter εPOD.

We define the time-dependent relative error as E(t) := ‖T̂ (·,t)−T (·,t)‖L2(�)
‖T (·,t)‖L2(�)

, where

‖v‖L2(�) :=
√
(v, v)L2(�) is the L2(�)-norm and where T and T̂ are respectively the HFM

and ROM predictions at the variability defined in scenario 8. The time-averaged relative
error is defined as Ē := 1

J
∑J

s=1 E(sdt). The performances of the ROM for various values
of εPOD are evaluated in Table 4 and Fig. 8, where εECM = 10−3. In our experiments,
the value of εECM does not have a significant impact (for values 10−2, 10−3 or 10−4),
the reasons could be that the errors are dominated by the POD truncation or that the
polynomial nonlinearities in our case are well approximated by few reduced integration
points. In [21], where we considered nonlinear structural mechanics with elastoviscoplas-
tic materials, the tolerance εECM had a significant impact on the accuracy of the ROM.
We notice also that for values of εPOD smaller than 10−3 the speedup is not interesting,
and for values below 10−4 the accuracy of the prediction does not increase anymore.
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Fig. 7 Industrial application

Fig. 8 Industrial application. Time-dependent relative error E (t) with respect to time for various values of
εPOD
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Fig. 9 Absolute error between the HFM and the ROM at the last time step (top) and over time on three
nodes (bottom) using Z-set generated snapshots (left) and Abaqus generated snapshots (right)

Advantages of the nonintrusivity

In this section, we consider the same high-pressure compressor as the previous section,
and simulate the evolution of the temperature during 200 s. We compute the offline stage
using only one scenario (of initial and boundary conditions), and a ROM prediction for
the same scenario, then compare this ROM prediction with the HF prediction, using both
Z-set and Abaqus. Since Z-set cannot deal with time dependent convection coefficients
h, we keep them constant in time. The tolerance coefficients for the reduction and hyper-
reduction are respectively εPOD = 10−6 and εECP = 10−5, which should lead to very
accurate results. The comparisons are illustrated in Fig. 9.
We observe that the results with Z-set are 3 orders of magnitudemore accurate that the

ones with Abaqus. Even though we used the commercial version of Z-set in our nonintru-
sive framework, we have the source of the code at our disposal, and we have checked that
our reduced model, in the online stage, implements the same model as the one in Z-set.
Abaqus being a commercial code, the exact implementation of the solvers and models is
proprietary and not known. However the accuracy of the ROM using Abaqus generated
snapshot is still within engineering tolerances, even in the context of the nonparametrized
variability detailed in “Industrial application” section. This robustness with respect to the
model is provided by the a posteriori reduced order modeling technique, where regularity
features are transported from the snapshots to the modes. In [32], a reduced order model
is constructed from Large Eddy Simulations snapshots, but a resolution of the Navier–
Stokes equations with no turbulencemodel is carried out in the online stage, with accurate
results. In our application, we illustrate that the nonintrusive framework enables, thanks
to themodel robustness provided by the ROMtechnology, to reduced computationsmade
by software without knowing the exact model and solver.
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Conclusion and prospects
In this work, we propose a nonintrusive reduced order modeling strategy for nonlinear
transient thermal problems with convection and radiation boundary conditions, under
nonparametrized variability in the form of complex scenarios for the initial and boundary
conditions. The Empirical Cubature Method is applied to derive a reduced quadrature
scheme for the radiation boundary term, ensuring a fast construction of the reduced
problem. In a 2D setting representative of the design process of a high-pressure com-
pressor, the approach can successfully reduce the transient temperature prediction under
the nonparametrized variability of the boundary condition scenarios, coming from aweak
coupling with an in-house 1D code, with a speedup of 91 and an accuracy within engineer-
ing tolerances. The nonintrusivity of the approach enables the use of a commercial code
to generate the snapshots, and the construction a reduced model without the knowledge
of the exact high-fidelity model and solver.
In a future work, we plan to extend the method to a fully nonlinear setting, where

the heat capacity and the heat conductivity depend on the temperature in a nonlinear
fashion. Themethod needs to be challenged on larger 3D cases, for which better speedups
are expected.
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