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Abstract

We propose a hybrid interface preconditioner for the monolithic solution of
surface-coupled problems. Powerful preconditioning techniques are crucial when it
comes to solving large monolithic systems of linear equations efficiently, especially
when arising from coupled multi-physics problems like in fluid–structure interaction.
Existing physics-based block preconditioners have proven to be efficient, but their error
assessment reveals an accumulation of the error at the coupling surface. We address
this issue by combining them with an additional additive Schwarz preconditioner,
whose subdomains span across the interface on purpose. By performing cheap but
accurate subdomain solves that do not depend on the separation of physical fields, this
error accumulation can be reduced effectively. Numerical experiments compare the
performance of the hybrid preconditioner to existing approaches, demonstrate the
increased efficiency, and study its parallel performance.
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decomposition, Algebraic multigrid
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Introduction
In this paper, we propose a novel preconditioner for the monolithic solution of surface-
coupled multi-physics problems. A prominent representative of surface-coupled prob-
lems is the interaction of a fluid flow with solid bodies undergoing large deformation,
which is commonly referred to as fluid–structure interaction (FSI). In a wide range of FSI
applications, monolithic solvers as described in e.g. [1] were found to be a suitable solu-
tion strategy, in particular in scenarios that are prone to the artificial added mass effect
[2–5]. Monolithic solvers most often address the nonlinearity with a Newton scheme
[1,6–11]. Within the usually applied Krylov solver—most often theGeneralized Minimal
Residual (GMRES) method [12]—a good preconditioner is crucial for an efficient solution
process. As the system matrix exhibits a block structure, that is closely related to the
involved solid, fluid, and fluid mesh motion fields, preconditioners have been designed
that exploit this particular block structure of themonolithic systemmatrix. They are often
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referred to as physics-based block preconditioners. Such preconditioners can conveniently
be constructed from single-field preconditioners such as algebraicmultigrid (AMG)meth-
ods [13,14]. However, physics-based block preconditioning of surface-coupled problems
exhibits an accumulation of the error at the coupling surface. These errors primarily have
to be addressed by the outer Krylov method. We demonstrate this numerically and by
means of an error assessment. Since such preconditioners are build on the separation of
physical fields by the coupling surface, they cannot deliver smoothness of the solution
across the interface (see also [6]). The proposed preconditioner aims at reducing exactly
these accumulated errors at the interface and accelerating the overall solution process.
We address this issue with a novel hybrid interface preconditioner that combines the

multigrid performance of existing physics-based block preconditioners with an additional
interfacial Schwarz preconditioner. The latter one is constructed based on an overlapping
domain decomposition, whose subdomains intentionally span across the fluid-structure
interface. By using subdomain solvers that are insensitive to the separation of physics by
the interface a high-quality solution can be obtained. In combination with the physics-
based block preconditioners, the error accumulation at the interface can be reduced
effectively yielding reductions in iteration counts and total time to solution.
A variety of physics-based block preconditioning approaches has been reported in lit-

erature. Gee et al. [6] proposed physics-based block preconditioners by combining AMG
methods and block Gauß–Seidel (BGS) methods. An algorithmic modification, where the
BGS method is replaced by an approximate Schur complement, is described by Langer
and Yang [15] and has been extended to a fully parallel framework by Jodlbauer et al. [16].
Starting from the ideas in [6], an extension to the monolithic coupling of an arbitrary
number of fields is detailed in [17]. An open-source implementation byWiesner et al. [18]
makes such block AMG preconditioners available via the MueLu package [19,20] of the
Trilinos library.1 Heil [7] and Heil et al. [4] use block-triangular approximations to the
full Jacobian as preconditioner. A preconditioner based on pseudo-solid mesh updates is
proposed and analyzed by Muddle et al. [21]. Several preconditioner designs are briefly
sketched by Tezduyar and Sathe [11] in the context of space-time finite elements. By
extending the work of Crosetto et al. [22], a block preconditioner for the factorized and
statically condensed FSI matrix with a SIMPLE preconditioner for the fluid subproblem
has recently been proposed by Deparis et al. [23].
To assess the performance gains, that can be achieved by the novel preconditioner,

we study large-scale three-dimensional FSI examples. We analyze the solver performance
with ongoingmesh refinement and increasing numbers of processors. As reference solver,
we compare our preconditioner to the AMG-based preconditioners proposed in [6] on
FSI problems only. However, we stress that the proposed methodology is not limited to
specific FSI preconditioners, but can rather be seen as a general framework that reduces
error accumulation at the interface foranyphysics-basedblockpreconditioner for surface-
coupled problems. Besides FSI, contact mechanics or the transport of a scalar species
through a membrane pose promising applications for such a preconditioner.
The remainder of this manuscript is organized as follows: After a brief introduction to

the underlying FSI formulation and the monolithic solution scheme in “Fluid–structure
interaction in a Nutshell” section, existing physics-based AMG block preconditioning

1https://trilinos.github.io.

https://trilinos.github.io
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Fig. 1 Problem statement adopted from [25]—Left: The domain � is subdivided into a fluid domain �F and
a structural domain �S by the fluid-structure interface �FSI. Both subdomains are bounded by Dirichlet
boundaries �F

D and �S
D , Neumann boundaries �F

N and �S
N , and the common fluid-structure interface �FSI,

respectively. Right: At the interface, kinematic continuity as well as equilibrium of interface traction fields hF
�FSI

and hS
�FSI

are required

techniques tailored to FSI problems are briefly reviewed in “Physics-based block precon-
ditioning tailored to fluid–structure interaction” section. In “Hybrid interface precon-
ditioner for surface-coupled problems” section, we propose the novel hybrid interface
preconditioner and detail its requirements, setup, and application. Extensive numerical
experiments are reported in “Numerical experiments” section, where the presentedmeth-
ods are compared to each other and performance and efficiency are assessed in terms of
iterations and timings. Mesh refinement studies and simulations on large numbers of
cores are shown. Finally, we summarize our work in “Concluding remarks and outlook”
section. Appendix A briefly outlines our strategy to check for convergence of the iterative
linear and nonlinear solvers in case of a monolithic solution framework.

Fluid–structure interaction in a Nutshell
The FSI problem considered here consists of an incompressible fluid flow described in
an arbitrary Lagrangean–Eulerian (ALE) description which interacts with a solid body
undergoing large deformation. Adopted from our work on time step size adaptivity [24]
for FSI solvers, a only brief introduction to such fluid–structure interaction problems
is given, while a detailed description of the model, its discretization, and a thorough
derivation of the monolithic solution method have been presented by Mayr et al. [1].

Physical model

We couple two physical domains, namely a deformable fluid domain �F and a solid
domain �S, cf. Fig. 1.
To account for themoving fluid domain, anALE observer is used for the fluid field, while

the solid body is described in a purely Lagrangean fashion. The fluid field is governed by
the incompressible Navier–Stokes equations

ρF ∂uF
∂t + ρF

(
uF − uG

)
· ∇uF − 2μF

dyn∇ · ε
(
uF

)
+ ∇pF = ρFbF ,

∇ · uF = 0,

with the primary unknowns uF and pF being the fluid velocity and pressure field, respec-
tively. The fluid density and dynamic viscosity are denoted by ρF and μF

dyn, respectively,
while the strain rate tensor is computed as the symmetric gradient of the fluid velocity uF .
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Body forces in the fluid field are denoted by bF . As the fluid field is described in an ALE
fashion, the grid velocity uG needs to be computed from the grid displacement field dG.
For moderately deforming fluid domains, the grid displacement field dG is determined
by harmonic extension whereas large deformations require the assumption that the ALE
field behaves like a pseudo-elastic solid. The solid body with density ρS and body force bS0
per undeformed unit volume is governed by the balance of linear momentum

ρS
0
d2dS
dt2 = ∇0 ·

(
FS S

)
+ bS0

where the displacement field dS is the primary unknown. In this work, we assume a
hyperelastic strain energy function �S to compute the 2nd Piola–Kirchhoff stresses S =
2∂�S/∂C using the right Cauchy–Green tensor C = FSTFS with FS being the solid’s
deformation gradient. At the fluid-structure interface �FSI, we require kinematic conti-
nuity of fluid and solid velocity fields, i.e. uF�FSI

(x, t) = ∂dS�FSI/∂t (X, t), as well as equi-
librium of interface traction fields hF�FSI = det

(
FF

) (
pFI − 2μF

dyn∇ · ε
(uF))FF−TnF

0

and hS�FSI =
(
FS S

)
nS
0 with FF referring to the fluid domain’s deformation gradient

and nF
0 and nS

0 denoting the outward unit normal vector of the fluid and solid domain in
the undeformed configuration, respectively. The kinematic constraint is enforced weakly
via a Lagrange multiplier field λ, which allows for an interpretation of the Lagrange mul-
tiplier field as the interface traction that acts onto the solid side of the interface, read-
ing λ = hS�FSI = −hF�FSI .

Themonolithic solution method for FSI

To establish a monolithic solution method for the coupled FSI problem, where all equa-
tions are solved simultaneously, spatial and temporal discretization is performedfield-wise
before the final assembly of the monolithic system of equations. For the spatial discretiza-
tion of the solid and the fluid field, we employ the finite element method. In the solid field,
displacement-based first-order Lagrangean finite elements are utilized, while techniques
to deal with locking phenomena can be employedwhere necessary. In the fluid field, equal-
order interpolated finite elements are used that require residual-based stabilization like
Streamline Upwind Petrov–Galerkin (SUPG) [26], Pressure-Stabilized Petrov–Galerkin
(PSPG) [27], and a grad-div term [28]. The stabilization parameter follows the definition
by [29]. The Lagrangemultiplier field is discretizedwith a dualmortarmethod [30,31] that
results in mortar coupling matrices that allow for a cheap condensation of the Lagrange
multiplier degrees of freedom from the monolithic system of equations. In the context of
mortar methods, either the solid or the fluid field can be chosen as the master side, result-
ing in two distinct solver formulations, cf. Mayr et al. [1] for details. Time discretization is
based on finite differencing and allows for an independent choice of the time integration
schemes in the solid and the fluid field in a temporally consistent manner [1] with the
possibility to control temporal accuracy via an adaptive time stepping scheme based on a
posteriori error estimation, cf. Mayr et al. [24].
Putting the residual expressions rS, rG and rF from the solid, the ALE, and the fluid

field as well as the kinematic constraint rcoupl together yields the monolithic nonlinear

residual vector rFSIT =
[
rS rG rF rcoupl

]T
that needs to vanish in every time step. The
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nonlinearity is treated by a Newton–Krylov method. The outer Newton loop address the
nonlinear character of the FSI problem and requires the consistent linearization of the
residual vector rFSI in order to setup a linear problem to compute the Newton step incre-
ment �x. Each linear system is then solved using a Krylov subspace method, in particular
preconditioned GMRES [12]. The preconditioners are tailored to the physics-based block
structure of the FSI system matrix and are detailed in “Physics-based block precondi-
tioning tailored to fluid–structure interaction” and “Hybrid interface preconditioner for
surface-coupled problems” sections. Further details are given in our previous work [1,6],
while others also use similar approaches [10,23].
After assembly, consistent linearization, and subsequent static condensation of the

Lagrange multiplier and slave side interface degrees of freedom, the monolithic system of
linear equations schematically reads

⎡
⎢⎣

S CSF

A CGF

CFS CFG F

⎤
⎥⎦

⎡
⎢⎣

�xS
�xG
�xF

⎤
⎥⎦ = −

⎡
⎢⎣
rS
rG
rF

⎤
⎥⎦ . (1)

ThematricesS,A, andF on themain diagonal reflect the solid, theALE, and the fluid field
residual linearizations, respectively. The coupling among the fields is represented by the
off-diagonal blocks Cij , where superscripts i, j ∈ {S,G,F} indicate the coupling between
the fields. Note the arrow-shaped structure of the matrix, that lays the foundation for
the development of physics-based block preconditioners. A practical strategy to check for
convergence of the linear and nonlinear iterative solver in case of monolithic approaches
is outlined in Appendix A section.

Physics-based block preconditioning tailored to fluid–structure interaction
A variety of preconditioners for block matrices as given in (1) is available in literature.
Common to all these approaches is that they exploit the block structure of the system
matrix. The block structure usually corresponds to the grouping of the unknowns of
the different physical fields, while the coupling between the fields is reflected by the off-
diagonal blocks. Thus, such preconditioners are often referred to as physics-based block
preconditioners. Two particular AMG-based approaches from [6] are summarized briefly,
because they will be used as baseline preconditioners to which the proposed interface
preconditioner is applied and compared.

A block-iterative approach with internal algebraic Multigrid preconditioners

A block version of the Gauß–Seidel method, referred to as block Gauß–Seidel (BGS), can
be used as preconditioner for the monolithic system of equations (1). It can be achieved
by dropping the upper-triangular coupling blocks in (1), yielding the forward BGS pre-
conditioner

M−1
BGS =

⎡
⎢⎣

S

A

CFS CFG F

⎤
⎥⎦

−1

. (2)

For efficiency and scalability, the block inverses S−1,A−1, and F−1 are approximated by
preconditioning operationsM−1

S ,M−1
G , andM−1

F based on AMG hierarchies tailored to
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each field. Since this preconditioner uses a BGS method on the outside with embedded
AMG preconditioners for each physical field, it is denoted by BGS(AMG).
Obviously, even if the block inverses can be computed exactly, the error after one

application of the preconditioner concentrates at the fluid-structure interface since the
interface is only treated by the less powerful BGS method. To reduce those errors, quite
some additional Krylov iterations need to be performed. This is expensive, especially in
the context, that one needs to deal with the full system just to reduce the error in a small,
but important portion of it.

A fully coupled algebraic Multigrid preconditioner

Assuming the existence of field-specificmultigrid restriction operatorsRS
� ,RG

� , andRF
� as

well as prolongation operators PS
� , PG

� , and PF
� associated with the level transfer between

levels � and � + 1 for solid, ALE, and fluid field, respectively, a representation of the
monolithic system of linear equations is constructed on every level � ∈ [0, n� − 1] with n�

being the number of levels of themultigrid hierarchy. It consists of the coarsened Jacobian
matrix

J�+1 =
⎡
⎢⎣
RS

�

RG
�

RF
�

⎤
⎥⎦

⎡
⎢⎣

S CSF

A CGF

CFS CFG F

⎤
⎥⎦

�

⎡
⎢⎣
PS

�

PG
�

PF
�

⎤
⎥⎦

=
⎡
⎢⎣

RS
� S�PS

� RS
� C

SF
� PF

�

RG
� A�PG

� RG
� C

GF
� PF

�

RF
� CFS

� PS
� RF

� CFG
� PG

� RF
� F�PF

�

⎤
⎥⎦ ,

(3a)

while the residual vector r�+1 is computed as restriction of the fine level residual vector,
reading

r�+1 =
⎡
⎢⎣
RS

�

RG
�

RF
�

⎤
⎥⎦

⎡
⎢⎣
rS
rG
rF

⎤
⎥⎦

�

=
⎡
⎢⎣
RS

� rS�
RG

� rG�
RF

� rF�

⎤
⎥⎦ . (3b)

FSI-specific block methods are applied on each level of the fully coupled AMG hierarchy.
This strongly enhances the preconditioning effect, since interface-related errors can be
tackled by the coarse grid correction effectively. On fine and medium levels, the BGS
method (2) is applied, while the actions of the block inverses are approximated with
the same field-specific one-level preconditioners, that already have been used as level
smoothers in the internal AMG hierarchies of the BGS(AMG) approach. On the coarse
level, usually a BGS(LU), i.e. a block Gauß–Seidel method with exact block inverses, is
preferred over a direct solve on the fully coupled coarse level matrix to avoid the assembly
into a single sparse matrix. Since the FSI coupling terms are incorporated on the coarse
levels � > 0, this approach is referred to as fully coupled algebraicmultigrid preconditioner
and is denoted by AMG(BGS).
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Following the arguments in [6] when comparing the fully-coupled AMG precondi-
tioner to the block-iterative approach from “A block-iterative approach with internal
algebraic multigrid preconditioners” section, a certain amount of improvement can be
expected, since the interface coupling is transferred to the multigrid coarse levels and,
thus, the coarse level corrections reflect the interface coupling. However, the basic issue
of a block preconditioner that relies on the physics-based block structure of the matrix
is still present. Thinking in terms of AMG(BGS), the fine and coarse level coupling is
still only addressed by means of the BGS method, even if the block inverses inside
the BGS method are computed exactly. Hence, a concentration of error at the fluid-
structure interface is still expected, even if it is less pronounced as for the BGS(AMG)
approach.

Remark 1 Physics-basedblockpreconditioners are often implemented in aparallel setting
with distributed data based on a domain decomposition that respects the boundaries of the
physical fields (see [6,7,15,16,23] for example). Therefore, the computational domain �

is partitioned into the solid domain �S and the fluid domain �F . Afterwards, an over-
lapping domain decomposition is generated for each physical subdomain �S and �F

and distributed among all parallel processes involved. As a result, subdomain boundaries
coincide with the fluid-structure interface �FSI. However, the partitioning of �S and �F

does not necessarily match at �FSI as will be detailed in “Partitioning and setup of the
domain decomposition” section.

Error assessment for physics-based block preconditioners

To lay the foundation for a later analysis of the proposed preconditioner, we now study
the error matrices and error propagation associated with such physics-based block pre-
conditioners. In general, the error matrix is given as

EM = J − M (4)

with J being the Jacobian matrix from (1) and M denoting the preconditioner to be
studied. By multiplying (4) with −M−1 from the left, the error propagation operator EP

is obtained as

EP = I − M−1J (5)

with I denoting identity.
To gain detailed insight, we further split each vector of unknowns into interior and

interface degrees of freedom, denoted by subscripts (•)I and (•)� , respectively. Interface
degrees of freedom are associated with nodes located at the fluid-structure interface,
while interior degrees of freedom represent nodes that reside in the interior of the solid,
fluid, andALEdomain. Exemplarily, we study the case of fluid-handled interfacemotion as
introduced in [1], where the interfacemotion is solely represented by fluid field unknowns,
while the solid and ALE interface degrees of freedom have been condensed along with
the Lagrange multiplier unknowns. Then, the Jacobian matrix and an exemplary BGS
preconditionerMBGS yield the error matrix
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EM
BGS = J − MBGS

=

⎡
⎢⎢⎢⎣

SII CSF

AII CGF

FII FI�
CFS CFG F�I F��

⎤
⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎣

SII
AII

FII
CFS CFG F�I F��

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

0 0 0 CSF

0 0 0 CGF

0 0 0 FI�
0 0 0 0

⎤
⎥⎥⎥⎦ .

(6)

The non-zero blocks in EM
BGS are associated with the FSI interface coupling terms of J,

clearly demonstrating the error accumulation at the fluid-structure interface. When
assuming exact block inverses, the error propagation for the forward BGS preconditioner
reads

EP
BGS =

⎡
⎢⎢⎢⎣

0 0 0 −CSFF−1
��

0 0 0 −CGFF−1
��

0 0 0 −FI�F
−1
��

0 0 0 I − F−1
���

⎤
⎥⎥⎥⎦ (7)

with the Schur complement

� = F�� − CFSS−1
II CSF − CFGA−1

II CGF − F�IF
−1
II FI� . (8)

As a consequence of (6), the error propagation vanishes at all interior degrees of free-
dom (•)I of all three fields, but does not vanish at the fluid-structure interface.
For the sake of brevity, the respective analysis for a fully coupled AMG preconditioner

with BGS level smoothers described in “A fully coupled algebraic multigrid precondi-
tioner” section is not shown here, since it follows exactly the same line of argument and
the key result is the same.

Hybrid interface preconditioner for surface-coupled problems
Both preconditioning approaches presented in “Physics-based block preconditioning tai-
lored to fluid–structure interaction” section exploit the block structure of the FSI system
matrix, that is related to the separation of physical fields by the fluid-structure interface.
A commonality of all physics-based block preconditioners is the concentration of error
at the coupling surface as already indicated at the end of “A block-iterative approach
with internal algebraic multigrid preconditioners” section. The present section aims at
particularly addressing this issue. The goal of reducing the error at the coupling sur-
face can be achieved by combining the existing physics-based block preconditioners with
an additional interface preconditioner that is based on a purposely ’non-physics-based’
overlapping domain decomposition. By neglecting the location of the interface when gen-
erating the parallel domain decomposition, the resulting subdomains span across the
fluid-structure interface on purpose. The use of high-quality solves, i.e. direct or close-to-
direct solves, on the patches across the interface reduces the accumulated error stemming
from the physics-based block preconditioner effectively. Of course, the subdomain solves
have to be of a type that does not rely on a separation of physics.
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Some aspects of overlapping domain decomposition and Schwarz methods

In this work, only overlapping domain decompositions (DD) methods are used, while the
case of non-overlapping DD methods is not treated at all. In overlapping DD methods,
the entire computational domain � is decomposed into M overlapping subdomains �m
withm = 1, . . . ,M. Then, theproblem is reformulated as a localDirichlet-typeproblemon
each subdomain guaranteeing thewell-posedness of all subdomain problems. Exchange of
information among the subdomains happens via the overlap of the subdomains. In parallel
computer architectures, subdomains �m are often assigned to processes m to allow for
parallel execution and speed-up of the computation.
Two elementary methods, known as additive Schwarz method and multiplicative

Schwarz method, will play an important role in defining the FSI preconditioners [32–34].
Both are based on an overlapping DD. Starting from a matrix representation that groups
unknowns according to subdomains one ends up with an additive Schwarz method by
dropping all off-diagonal blocks, which equals a block-Jacobi-like approach. It can be
expressed as

M−1
ad =

M∑
m=1

M−1
m . (9)

Solutions on all subdomains �m can be computed simultaneously, since they do not
depend on the current iterate of other subdomains. In opposite, multiplicative Schwarz
methods are obtained by dropping only the upper-triangular off-diagonal blocks, yielding
a block-Gauß–Seidel-like approach, which is usually expressed as

M−1
mu = I − (I − M−1

M A)(I − M−1
M−1A) . . . (I − M−1

1 A). (10)

Solving for each subdomain needs to be done sequentially since the lower-triangular
off-diagonal blocks couple the subdomains and, thus, require the current iterate in subdo-
mainm− 1 to be known in order to solve on subdomainm. Following [34], combinations
of additive and multiplicative Schwarz methods are often referred to as hybrid Schwarz
methods. For further details the reader is referred to literature [32–34].

Partitioning and setup of the domain decomposition

A typical overlapping domain decomposition for purely physics-based block precondi-
tioners is illustrated in Fig. 2a.
The entire computational domain � is separated into a solid domain �S and a fluid

domain �F by the fluid-structure interface �FSI. To speed up computations on parallel
hardware architectures, each physical field can be partitioned amongM parallel processes
by an overlapping domain decomposition, cf. ’proc 0’, ’proc 1’, and ’proc 2’ in Fig. 2a.
For simplicity of illustration, coloring of the subdomains is done based on the ’interior’
nodes of each subdomain, while the overlap is not visualized. There are independent
domain decompositions of the solid and the fluid field,where subdomain boundaries at the
interface inside the solid domain do not necessarily coincide with subdomain boundaries
of the fluid field such that every process handles a portion of each field, i.e. owns nodes of
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ΓFSIΩF ΩS

proc 1proc 0 proc 2 physical fields

a Physics-based overlapping domain decomposition

ΓFSIΩF ΩS

proc 1proc 0 proc 2 interface patch

b Overlapping domain decomposition based on mono-
lithic graph

Fig. 2 Overlapping domain decompositions of a FSI problem—Top: At the fluid-structure interface �FSI, the
domain is partitioned into solid and fluid subdomains indicated by dashed lines. Each field can further be
distributed among several processes by an overlapping domain decomposition indicated by the colored
patches. Overlap of subdomains is not depicted for clarity of presentation. Bottom: In a decomposition based
on a monolithic graph, subdomains span across the interface like ’proc 0’ and ’proc 2’. They are crucial for the
effectiveness of the proposed preconditioner. Some processes might not own portions of both fields, e.g.
’proc 1’. Overlap of subdomains is not depicted for clarity of presentation

both solid and fluid subdomains. This is not necessarily the case in other implementations
but arises naturally in a multi-physics framework that deals with one field after another.2

We overcome themismatch of subdomains at the interface by basing the partitioning on
amonolithic graph, that consists of the solid and fluid graphs and also reflects the interface
coupling. It is created as the combination of the solid and the fluid graph with additional
insertion of off-diagonal coupling entries for the interface coupling. In our particular
formulation, the coupling can be extracted from the mortar projection operator where a
non-zero entry in row i and column j indicates the coupling between the ith degree of
freedom of the slave field to the jth degree of freedom of the master field and vice versa.3

Then, a topological graph-based partitioner will produce subdomains that are likely to

2Alternative layouts may exist which of course depend on software design. We focus on a modular object-oriented
design that handles each physical field inside a multi-physics framework as an independent entity.
3For details on the Mortar formulation in the context of fluid-structure interaction problems, the reader is referred to
[1,30].
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span across the interface as illustrated in Fig. 2b. Interface-spanning subdomains can be
fostered further by using a weighted graph with higher weights across and in the vicinity
of the interface. At the interface, neighboring solid and fluid subdomains now reside on
the same process, namely ’proc 0’ and ’proc 2’ in Fig. 2b. These processes, that ’own’
patches spanning across the interface, will play a key role in the design of the proposed
preconditioner. On the other hand, some processes might not own a portion of each field,
for example ’proc 1’ in Fig. 2b, that only owns solid nodes, but no fluid and ALE nodes.
Again, coloring of the subdomains is done based on the ’interior’ nodes of each subdomain,
while the overlap is not visualized for simplicity of illustration.
We rewrite the linear system (1) as

Ax = b (11)

with A, x and b replacing the system matrix J, the solution increment vector �x, and
the right-hand side vector −r. This indicates that the actual block structure is of no
importance. Sorting all unknowns by their affiliation to parallel subdomains (rather than
according to physical fields) yields the matrix representation

A =

⎡
⎢⎢⎢⎢⎣

A00 A01 · · · A0n
A10 A11 · · · A1n
...

...
. . .

...
An0 An1 · · · Ann

⎤
⎥⎥⎥⎥⎦

(12)

distributed among n subdomains, where n usually equals the number of processes nproc.
Matrices Aii are restrictions of the global matrix A to process i, while off-diagonal matri-
ces Aij and Aji account for the coupling between neighboring subdomains on processes i
and j. For non-neighboring subdomains i and j, it isAij = 0 andAji = 0. All process-local
matrices in (12) are sparse. We stress that this partitioning is not aligned with the FSI
interface �FSI.

Setup and application of the preconditioner

To set up the hybrid preconditioner, two building blocks are necessary, namely one of the
aforementioned physics-based block preconditioners from “Physics-based block precon-
ditioning tailored to fluid–structure interaction” section (or the reader’s favorite choice)
plus the additional interface preconditioner. We denote the physics-based block precon-
ditioner byM−1

B , while the additional interface preconditioner is referred to asM−1
γ .

For the construction ofM−1
γ , we define two distinct sets

Sγ = {�i | �i ∩ �FSI �= ∅} and Sι = {�i | �i ∩ �FSI = ∅} ∀i ∈ {0, 1, . . . ,M},

where Sγ contains all subdomains �i that are intersected by the interface �FSI and Sι

is the complementary set containing all subdomains that do not own any portion of the
interface. Naturally, Sγ ∩ Sι = ∅ and Sγ ∪ Sι = �.
We now rearrange the matrix A according to the sets Sι and Sγ and rearrange entries

according to a subdomain-based splitting yielding

A =
[
Aιι Aιγ

Aγ ι Aγ γ

]
.
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The diagonal blocks Aιι and Aγ γ contain all matrix entries associated with Sι and Sγ ,
respectively. The off-diagonal blocks Aιγ and Aγ ι represent the connection of adjacent
subdomains in Sι and Sγ , respectively. A pure interface preconditioner M̂−1

γ based on
additive Schwarz principles now is defined as

M̂
−1
γ =

[
I

Aγ γ

]−1

=
[
I

A−1
γ γ

]
. (13)

It directly addresses error accumulation at the interface since its subdomains are inten-
tionally spanning across the interface. However, it is sub-optimal in terms of parallel
efficiency since it only operates on interface-spanning subdomains in Sγ , leaving pro-
cesses assigned to subdomains in Sι idle. Without loss of the beneficial smoothing effect
across the interface, we rather define the interface preconditioner as

M−1
γ =

[
Aιι

Aγ γ

]−1

=
[
A−1

ιι

A−1
γ γ

]

=

⎡
⎢⎢⎢⎢⎣

A−1
00

A−1
11

. . .
A−1
nn

⎤
⎥⎥⎥⎥⎦

(14)

with n being the total number of parallel processes, M. Note that both M̂
−1
γ and M−1

γ

satisfy our initial goal to reduce error accumulation at the fluid-structure interface and,
thus, are able to alleviate deficiencies of the non-overlapping DD of physics-based block
preconditioners.
We employ incomplete LU (ILU) factorizations [35–37] to approximate the block

inverses in (13) and (14). Note that ILU is insensitive to the mixed solid/fluid nature
of the interface-related matrix blocks Aγ γ . The costs in terms of wall clock time ofM−1

γ

do not rise compared to M̂
−1
γ when for example an ILU factorization is computed on all

subdomains rather than on the interface-spanning ones only due to the parallel treatment
of all subdomains.
The physics-based block preconditioner M−1

B and the additional interface precondi-
tionerM−1

γ are chained together to form the hybrid interface preconditioner. Equally, the
shorter expression hybrid preconditioner is used in the remainder of this manuscript. It is
constructed in a multiplicative Schwarz fashion, reading

M−1
H = M−1

γ ◦ M−1
B ◦ M−1

γ (15)

where the additional interface preconditionerM−1
γ is applied before and after the physics-

based block preconditionerM−1
B . InGMRES iteration k , the preconditioner (15) is applied

to the linear system (11) via three stationary Richardson iterations

zkI = ωγM
−1
γ s

zkII = zkI + ωBM
−1
B

(
s − AzkI

)

zkIII = zkII + ωγM
−1
γ

(
s − AzkII

)
(16)
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with damping parameters ωγ and ωB and the initial search direction s generated by the
outerKrylovmethod. Intermediate steps after thefirst and secondRichardson iteration are
denoted by zkI and zkII, respectively, while the final result of the preconditioning operation
is the preconditioned search direction zkIII. In principle, it is possible to perform multiple
iterations of each of the three Richardson iterations in (16), however this possibility is not
exploited here. Additionally, damping parameters are chosen as ωγ = 1 and ωB = 1 in
this work since the step length is determined by the outer Krylov solver.

Remark 2 The hybrid preconditioning method (15) employs the interface precondi-
tionerM−1

γ twice, namely once before and once after the application of the physics-based
block preconditionerM−1

B .One could drop either the pre- or the post-application ofM−1
γ ,

though this approach is not pursued here as it involves the same setup cost but less gain
in performance than the original approach (15).

Remark 3 One-level additive Schwarz methods, e.g. such asM−1
γ , are known to result in

increased iteration counts when the number of subdomains is increased and the element
overlap is constant [33]. Thus, the additive Schwarz preconditionerM−1

γ is always applied
in the hybrid setting together with a physics-based multigrid preconditioner, e.g. as given
in (15), to enable mesh independence as will be demonstrated in the numerical example
in “Performance analysis” section.

Remark 4 The physics-based block preconditionerM−1
B depends on the ordering of the

unknowns, exemplarily evidencedby the forwardBGSpreconditionerM−1
BGS defined in (2),

which relies on the ordering of the unknowns to be S− G−F. In the context of BGS pre-
conditioners, this ordering matters, and a different ordering affects the solution process.
For Schur complement preconditioners, different orderings have been studied by Langer
and Yang [15]. However, the additional interface preconditioner M−1

γ does not make
any assumption about a particular ordering of unknowns. The proposed hybrid precondi-
tioner is constructed such that it can be used not only withM−1

BGS type physics-based block
preconditioners, but also with physics-based block preconditioners that employ different
orderings of unknowns.

Error assessment for the hybrid interface preconditioner

In “Error assessment for physics-basedblockpreconditioners” section,wehave introduced
the error of the preconditioning operation when using physics-based block precondition-
ers. We now perform such an analysis for the additional interface preconditioner Mγ .
Therefore, we utilize the splitting of all subdomains into the sets Sι and Sγ .
The error matrix for the interface preconditionerMγ from (14) is given as

EM
γ = J − Mγ =

[
Aιι Aιγ

Aγ ι Aγ γ

]
−

[
Aιι 0
0 Aγ γ

]
=

[
0 Aιγ

Aγ ι 0

]
(17)

and the error propagation EP
γ accordingly reads

EP
γ = I −

[
A−1

ιι 0
0 A−1

γ γ

] [
Aιι Aιγ

Aγ ι Aγ γ

]

=
[

0 −A−1
ιι Aιγ

−A−1
γ γAγ ι 0

]
.

(18)
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We stress that the error vanishes in subdomains �i ∈ Sγ , i = 0, . . . ,M − 1. Errors
only occur at the inter-process subdomain boundaries between subdomains �i ∈ Sγ

and �j ∈ Sι with i, j = 0, . . . ,M − 1, i �= j.
A direct comparison of the error propagation EP

BGS in (7) for the physics-based block
preconditioner with EP

γ for the interface preconditioner reveals the complementarity of
both preconditioners. In particular,EP

BGS is solely populated in entries related to the fluid-
structure interface �FSI, whereas EP

γ does not exhibit any error propagation in interface-
spanning subdomains �i ∈ Sγ , i = 0, . . . ,M − 1.

Numerical experiments
Weevaluate the performance of the proposed preconditioning technique using two exam-
ples. First, the well-known pressure wave example is studied, which is often seen as a
benchmark case to assess the performance of FSI solvers. We also assess the hybrid pre-
conditioner using a computational model of a Coriolis flow meter where the fluid flow is
highly convective.
To assess the performance impact of the proposed preconditioner, we consider (i) the

number of necessary Krylov iterations until convergence, (ii) the wall clock time spent in
the solution process excluding setup of the preconditioner, and (iii) timings including the
setup of the preconditioner. This allows to evaluate the overall performance impact and
to quantify total speed-ups.

Pressure wave through an elastic tube

As a benchmark problem for monolithic FSI solvers, the well-known pressure wave
through an elastic tube, originally proposed in [38], is studied. It is designed to mimic
hemodynamic conditions, especiallyw.r.t. to thematerial densitieswith the ratioρS/ρF ≈
1. Mayr et al. [1] used this example to discuss the influence of different time integration
schemes on the solution and also demonstrated correctness of the solution via temporal
and spatial convergence studies.Adetailed analysis of the performanceof the linear solvers
has been performed in [6] where classical versions of the FSI-specific AMG precondition-
ers from “Physics-based block preconditioning tailored to fluid–structure interaction”
section have been applied. Simulations with non-matching interface discretizations have
been reported in literature, either employing a dual mortar method [30] or radial basis
function inter-grid transfer operators [39–41]. It is often used as a benchmark for parti-
tioned [42–47] and monolithic solvers [2,8,15,22,23,48] among others.
The geometry is depicted in Fig. 3. The solid tube is clamped at both ends. The fluid

is initially at rest. For the duration of 3 · 10−3 s, it is loaded with a surface traction h̄F =
1.3332 · 104g · cm/s2 in z-direction at z = 0. At z = �, fluid velocities are prescribed
to zero, meaning that the tube is closed at that end. As a result, a pressure wave travels
along the tube’s longitudinal axis and is reflected at the closed end of the tube. The
constitutive behavior of the structure is modelled by a St.-Venant-Kirchhoffmaterial with
Young’s modulus ES = 3.0 · 106 g/(cm · s2), Poisson’s ratio νS = 0.3, and density ρS =
1.2 g/cm3. The fluid is assumed to be an incompressible Newtonian fluid with dynamic
viscosity μF

dyn = 0.03 g/(cm · s) and density ρF = 1.0 g/cm3.
Here, the solid is discretized with Hex8 F-bar elements [49], while the fluid utilizes

P1P1 elements with residual-based stabilization as briefly outlined in “The monolithic
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Fig. 3 Geometry of pressure wave through an elastic tube—a solid tube (outer radius ro = 0.6 cm, inner
radius ri = 0.5 cm, length � = 5.0 cm) is clamped at both ends and is filled with an incompressible Newtonian
fluid that is initially at rest

Table 1 Meshes for the pressure wave example

Mesh ID nS,dof nF,dof nG,dof ndoftotal M ndof/process

pw1 22, 896 56, 180 42, 135 121, 211 16 7576.7

pw2 45, 312 113, 516 85, 137 243, 965 32 7623.9

pw3 90, 000 228, 300 171, 225 489, 525 64 7648.8

pw4 185, 328 453, 420 340, 065 978, 813 128 7647.0

pw5 274, 680 680, 596 510, 447 1, 465, 723 192 7634.0

pw6 362, 304 906, 204 679, 653 1, 948, 161 256 7610.0

Numbers of degrees of freedom per field and in total are reported.
By running each mesh on a specific number of parallel processesM, the load per process can be kept approximately
constant

solution method for FSI” section. Different meshes are studied as detailed in Table 1.
Mesh independency has been studied in our previous work [1]. Based on these results, all
meshes used in this study are considered as fine enough to render mesh independency of
the solution. Simulations have been performed on an Opteron based cluster.4 The load
per parallel process is kept approximately constant at ≈ 7620 ndof/process.
Figure 4a shows a snapshot of the solution at time t = 0.005 sec. Diagrams of the solid’s

radial displacement as well as the fluid pressure at half length of the pipe (z = 2.5 cm) can
be found in Fig. 4b.
The subsequent analysis of the proposed preconditioners is divided into two parts. First,

“Proof of concept and demonstration of improved error reduction” section considers a
small problem size and studies the linear solution process in detail as a demonstrator
of the new hybrid interface preconditioner. A comparison to the physics-based block
preconditioners including a quantification of the preconditioning effect is carried out.
Second, a performance analysis of the new hybrid preconditioner applied to all meshes
pw1–pw6 is presented in “Performance analysis” section.

4AMD Opteron 6128 Magny Cours, nominal frequency of 2.0GHz, 2 octocore CPUs per node, 32GB of memory per
node, Infiniband network Mellanox ConnectX with 40GBit/s.
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a  Cut view of displacement and pressure field in pressure wave at
time t = 0.005 s. (Displacements are magnified by a factor of 10 for
the purpose of visualization.)
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b  Radial solid displacement dSx on outer surface and fluid pressure pF at pipe’s center.
Measurements are taken at z = 2.5 cm.

Fig. 4 Solid displacement and fluid pressure in the pressure wave example

Proof of concept and demonstration of improved error reduction

To demonstrate the basic principle behind the proposed hybrid preconditioner numer-
ically, a reduced-size version of the pressure wave example is studied. A coarse mesh is
used. The solid portion consists of 5904 unknowns, while fluid and ALE use 15908 and
11, 931 degrees of freedom, respectively. The total number of unknowns is 33, 743. The
problem is solved on 4 processes using an overlapping domain decomposition based on a
monolithic graph of the coupled problem.
For simplicity, only the linear system of equations in the first nonlinear iteration of the

first time step is considered. This system can be seen as exemplary for all time steps of the
simulation, since linear and nonlinear iteration counts are rather constant throughout the
entire simulation as will be seen in “Performance analysis” section. The effectiveness of
the hybrid preconditioner is assessed by comparing error reduction through different pre-
conditioners. On the one hand, the purely physics-based block-iterative preconditioner
summarized in “A block-iterative approach with internal algebraic multigrid precondi-
tioners” section is used. Applying exact block inverses with LU decompositions for each
block within the BGS method, errors after application of the preconditioner are only
due to the outer BGS method. This preconditioner is referred to as BGS(LU). On the
other hand, the proposed hybrid preconditioner is configured as follows: The interface
partM−1

γ of the preconditioner uses direct LU-based solves for each subdomain, while the
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Table2 Proof of concept of hybrid preconditioner applied to the pressure wave example

# of GMRES iterations Preconditioner
∥
∥rilin

∥
∥
2 /

∥
∥r0lin

∥
∥
2 Figure

i = 3 BGS(LU):M−1
B 5.2 · 10−2 Figure 5a

i = 1 H-BGS(LU):M−1
γ ◦ M−1

B ◦ M−1
γ 6.9 · 10−3 Figure 5b

With comparable computational effort, the hybrid preconditioner achieves a better residual reduction than the pure
physics-bases preconditioner

physics-based block preconditioning partM−1
B is the aforementioned BGS(LU) approach

to augment comparability. It is referred to as H-BGS(LU).
Two tests are performed: First, effectiveness of the hybrid preconditioner is assessed

in terms of the number of GMRES iterations required to reach machine precision, i.e.∥∥rilin
∥∥
2 /

∥∥r0lin
∥∥
2 < 10−15. The pure BGS(LU) preconditionedmethod requires 41 GMRES

iterations and therefore 41 applications of BGS(LU). The hybrid H-BGS(LU) requires 11
GMRES iterations, where each iteration consists of one BGS(LU) and two applications
ofM−1

γ , cf. (15). This totals 33 single-stage preconditioner applications compared to the
41 applications for the pure BGS(LU).
Second, the number of GMRES iterations is limited as follows. The effect of precondi-

tioning is evaluated by the achieved relative residual reduction as well as the remaining
error, i.e. the deviation of the approximate GMRES solution from the pre-computed
exact solution. For H-BGS(LU), a single GMRES iteration is performed. One sweep of H-
BGS(LU) consists of three applications of LU-type preconditioners, namely the pre- and
post-application ofM−1

γ plus one sweep of BGS(LU) in between. To achieve comparabil-
ity, three GMRES iterations are performed with pure BGS(LU) to also apply a LU-type
method three times in total. The results are summarized in Table 2. One iteration with
H-BGS(LU) achieves a relative residual reduction

∥∥r1lin
∥∥
2 /

∥∥r0lin
∥∥
2 = 6.9·10−3, while three

iterations with BGS(LU) yield a reduction of only
∥∥r3lin

∥∥
2 /

∥∥r0lin
∥∥
2 = 5.2 · 10−2.

A visualization of the distribution of the error over a cross section of the domain is shown
in Fig. 5 to demonstrate error accumulation at the fluid-structure interface. For the pure
BGS(LU) preconditioner, the error after three GMRES iterations is plotted in Fig. 5a. In
the solid, the error is at the order of 10−4 (left) with slightly larger values at the fluid-
structure interface. The accumulation of error at the interface is even more pronounced
for the fluid velocity (middle) and fluid pressure (right), which are of order 100 and 104,
respectively. The same analysis for the hybrid preconditioner H-BGS(LU) is shown in
Fig. 5b, showing that significantly better error reductions could be achieved. In particular,
the effect of the interface preconditioner becomes evident in the fluid field where the
larger errors in fluid velocities and fluid pressure are now located in the center of the
domain as opposed to the pure BGS(LU) preconditioning where higher errors occurred
at the FSI interface. The maximum error in solid displacements is at the order of 10−8,
which resembles a reduction by four orders of magnitude. Similar reductions are achieved
for errors in fluid velocities and fluid pressure, where maximum values are now at the
order of 10−4 and 10−1, respectively. A graphical comparison is given in Fig. 5c. Therein,
the circular geometry is cut in half. The upper half reports the errors for pure BGS(LU),
the lower half those for H-BGS(LU). Color scales are calibrated such that they span the
combined range of errors of BGS(LU) and H-BGS(LU). The reductions of the error by
the hybrid preconditioner compared to the purely physics-based one can be seen clearly.
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Fig. 5 Comparison of the error distribution in case of BGS(LU) and H-BGS(LU)—errors in solid displacements,
fluid velocities, and fluid pressures denoted by e_d, e_u, and e_p, respectively, are visualized on a cross
section of the pressure wave example

Summarizing, the idea behind the hybrid interface preconditioner could be confirmed
numerically.
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Fig. 6 The cut view illustrates the parallel distribution of the entire problem among 32 processes. Black lines
indicate the interface position. Left:When solid and fluid domain have been distributed independently,
subdomains do not span across the interface. Right: After redistribution based on a monolithic graph, some
subdomains contain solid or fluid portions only, while a certain number of subdomains contains solid and
fluid portions and span across the interface

Performance analysis

To study the hybrid preconditioner on a larger scale, the hybrid strategy is applied to the
existing physics-based block preconditioners from “Physics-based block preconditioning
tailored to fluid–structure interaction” section. The pressure wave problem is solved on
the series of meshes detailed in Table 1 to study the influence of mesh refinement and
an increased number of parallel processes. Thereby, the load per parallel process is kept
approximately constant, rendering a weak scaling type of study.5 The numbers of parallel
processes are chosen such that the average load per process is roughly 7620 ndof/process
for each mesh, such that local subdomains are of a size that is reasonably treated with
incomplete LU or LU factorizations.
Aprerequisite for the applicationof thehybrid preconditioner is the overlappingdomain

decomposition with subdomains that span across the fluid-structure interface, cf. “Par-
titioning and setup of the domain decomposition” section. A comparison of the domain
decompositions for physics-based and hybrid preconditioners for a total number of paral-
lel processes ofM = 32 is shown in Fig. 6. Starting from an initial, field-wise partitioning
as shown in Fig. 6a, a monolithic graph containing solid and fluid graphs is built. This
is passed to the hyper-graph partitioner package Zoltan [50] to obtain a parallel layout
as it is required for the hybrid preconditioner. The final monolithic partitioning exhibits
subdomains that span across the fluid-structure interface as desired, cf. Fig. 6b.
In this study, the following preconditioner configurations are examined: The one-level

additive Schwarz part of the hybrid preconditioner applies an ILU(0) locally on each sub-
domain. It is applied before and after the physics-based multi-level block preconditioner.
We study both variants, namely BGS(AMG) and AMG(BGS), for the physics-based block
preconditioner with the configurations summarized in Table 3. Each preconditioner is
created once at the beginning of each time step and is then re-used in every nonlinear
iteration of that time step. The convergence check is performed as detailed inAppendixA.
For thenonlinear solver, absolutenormsof residual vectors and solutionvector increments

5To the best of our knowledge, there’s no theoretical proof, that multigrid preconditioners for FSI problems can be
expected to exhibit O (n) scalability. In practice, this has also been observed in numerical experiments by others, e.g.
in [23].
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Table3 Settings for multigrid hierarchies embedded in the hybrid preconditioner

Field Fine level Medium levels Coarse level

S Chebyshev(6) Chebyshev(12) LU

F SGS(3 × 0.69) SGS(6 × 0.69) LU

G Chebyshev(6) Chebyshev(12) LU

Solid and ALE use Chebyshev smoothers on the fine and medium levels, while the fluid employs three and six sweeps of
damped symmetric Gauß–Seidel on the fine and medium levels, respectively.
All fields use a direct solver on the coarsest level

are required to be smaller than 10−6 for solid and fluid field, while a tolerance of 10−7

is demanded at the interface. The linear solver uses the relative tolerance εlin = 10−5 in
combination with β lin = 10−3.
Iteration counts, pure linear solver time, and total linear solver time including setup

are reported in Fig. 7 for the finest mesh pw6. Solid lines represent the hybrid precondi-
tioner denoted by the prefix ’H-’, while dashed lines indicate the classic, purely physics-
based block preconditioners for the sake of comparison. The additional additive Schwarz
preconditioner enhances the preconditioner such that the number of linear iterations is
reduced in every configuration, cf. Fig. 7a. A very similar picture can be seen w.r.t. the tim-
ings of the linear solver. In Fig. 7b, the reduced number of iterations in case of the hybrid
preconditioner results in a reduction of the pure solver time, i.e. when excluding the setup
time of the preconditioner. These savings can also be seen in the total timings of the linear
solver that also include the setup cost of the preconditioner, cf. Fig. 7c. Since the setup
cost of the hybrid preconditioner are larger than those of the pure physics-based block
preconditioners, the relative savings are lower than in the pure solver time, but still amor-
tize the additional setup costs. Respective diagrams for the coarser meshes pw1–pw5 are
omitted for brevity of presentation, but are summarized in Table 4. A comparison among
all meshes allows for studying the influence of the mesh size and of the number of parallel
processes. Considering the number of GMRES iterations, they remain almost constant
under mesh refinement for all preconditioning approaches despite an increased number
of subdomains and a decreased overlap as it is expected for multigrid approaches. Tim-
ings of the linear solver exhibit slight increases when refining the mesh. When increasing
the problem size by a factor of 16, the timings increase by a factor of 5. There are sev-
eral reasons for these increases: Due to the fully coupled AMG preconditioner, internal
coarse-level load rebalancing in theML [51] package cannot be appliedwhich is crucial for
scalability. This leads to a coarse level systems that are far too small to be solved efficiently
on a large number of parallel processes andwhose solution requiresmuch communication
among all processes. Hardware limitations and communication patterns surely contribute
to increased timings as well.
To assess its efficiency, iteration counts and solver timings with and without the hybrid

preconditioner have been accumulated over each time step and are compared in Table 4,
where also relative savings of iterations and solver time are reported. These savings amor-
tize the additional effort during setup. The extra setup cost is governed by the size of
the subdomains, since the ILU factorization on each parallel process can be performed in
parallel independently of each other. If the load per process is kept constant, the additional
setup cost is independent of the problem size or the number of processes, respectively.
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Fig. 7 Iteration counts and timings for hybrid preconditioners applied to mesh pw6 of pressure wave
example on 256 parallel processes—iterations, setup and iteration timings are almost constant over all time
steps. Application of the hybrid preconditioner leads to a reduction of iterations and solver time for every
type of underlying physics-based block preconditioner. The additional setup cost for the hybrid
preconditioner is amortized

Remark 5 For the process-local subdomain solves involved in theM−1
γ part of the hybrid

preconditioner, larger fill levels than ILU(0) have been investigated. In this case, the huge
increase in setup cost cannot be amortized by the improved quality of the preconditioner.
If the local subdomains are sufficiently small, an exact direct solve seems to be a viable
choice, however it is outperformed by the ILU(0) option. Summing up, ILU(0) seems to
be a good trade-off between setup cost and effectiveness of the preconditioner.
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Table 4 Averages of accumulated iteration counts and timemeasurements per time step
for comparison of classic, physics-based block preconditioners and the newly proposed
hybrid preconditioner in the pressure wave example

Mesh ID pw1 pw2 pw3 pw4 pw5 pw6

M 16 32 64 128 192 256

(a) Average accumulated number of linear iterations per time step

BGS(AMG) 68.6 65.5 56.6 57.0 59.7 64.1

H-BGS(AMG) 46.1 49.7 42.8 44.8 47.8 50.7

Savings (%) 32.8 24.1 24.4 21.4 19.9 20.9

AMG(BGS) 52.6 54.3 41.9 42.4 44.7 49.1

H-AMG(BGS) 37.0 42.0 33.4 35.0 37.4 41.4

Savings (%) 29.7 22.7 20.3 17.5 16.3 15.7

(b) Average accumulated linear solver time per time step

BGS(AMG) (s) 6.4 12.4 17.4 20.8 27.8 31.6

H-BGS(AMG) (s) 5.7 11.0 15.5 18.2 21.1 24.4

Savings(%) 10.9 11.3 10.9 12.5 24.1 22.8

AMG(BGS) (s) 5.6 11.4 16.5 19.1 28.8 28.0

H-AMG(BGS) (s) 5.0 9.6 13.8 15.8 19.4 22.2

Savings (%) 10.7 15.8 16.4 17.3 32.6 20.7

Iteration counts of the linear solver are not sensitive w.r.t. mesh refinement for all types of preconditioners.
Timings of the linear solver exhibit only slight increases with mesh refinement due to the implementation. Relative savings
due to the hybrid preconditioner are reported

Coriolis flowmeter

To also study the performance in case of convection-dominated flow fields, a Coriolis flow
meter is simulated where our model is inspired by the presentation in [52]. Such devices
measure the fluidmass flow rate directly. The setup is as follows: The fluid flow is directed
through a bent pipe while the pipe is forced into an oscillatory motion in its first bending
mode, i.e. the bending of the pipe around the y-axis, cf. Fig. 8a. Due to the Coriolis effect,
the pipe exhibits a twisting deformationwhere the amplitude of twisting angle depends on
the fluid mass flow rate. By measuring the amplitude of the twisting angle, highly accurate
measurements of the fluid mass flow rate can be provided. Since the enclosed fluid mass
has to follow the bending and twisting motion of the solid pipe, this example challenges
the FSI solution algorithm due to the ALE-based fluid description.
The domain including geometric dimensions and boundary conditions is depicted

in Fig. 8a. The solid pipe is modelled with a compressible Neo–Hookean material
[53] with Young’s modulus ES = 108 g/cm · s2, Poisson’s ratio νS = 0.4 and den-
sity ρS = 1.5 g/cm3, while the incompressible fluid is assumed to be Newtonian with
dynamic viscosity μF

dyn = 1.01 · 10−2 g/cm · s and density ρF = 0.998 g/cm3. The pipe
is clamped at the inflow and outflow cross sections. Starting from resting initial con-
ditions, the inflow velocity is prescribed as a spatially parabolic inflow profile with the
time-dependent peak value

ˆ̄uF (t) =
⎧⎨
⎩

1
2 ûF

(
1 − cos

(
π
t1 t

))
if 0 ≤ t < t1

ûF otherwise

with ûF = 15.0 cm/s and t1 = 1.8 s. The periodic external excitation force is oriented in
z-direction and is given as
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Fig. 8 Coriolis flow meter—Top: The U-shaped pipe with circular cross section is clamped at its inflow and
outflow cross sections and filled with fluid. The fluid velocity is prescribed at the inflow, while a traction-free
boundary condition is assumed at the outflow. Bottom left: Snapshot of solution with displacement of the
pipe and velocity profiles of the fluid flow. Bottom right: Vertical displacement over time

h̄Sex (t) =
⎧⎨
⎩
0 if 0 ≤ t < t2
ĥSex sin

(
ωS
ext

)
otherwise

with the amplitude ĥSex = 2.0 · 10−1 g/cm · s2, the angular frequencyωS
ex = 2π · 6.2684 s−1

and t2 = 2.0 s. It acts on the outer surface of the pipe in the gray-shaded area in Fig. 8a. The
twisting angle amplitude that is needed for the mass flow measurement can be derived
from the displacements in z-direction in locations A and B. A snapshot of the solution
is depicted in Fig. 8b and the evolution of the vertical displacement of the characteristic
point C defined in the problem sketch is shown in Fig. 8c.
For the numerical simulation, units for length, time, and mass are chosen as mm (mil-

limeter), s (second), and g (gram), respectively. The solid is discretizedwith Hex8 F-bar

elements [49], while the fluid utilizes Hex8 P1P1 elements with residual-based stabiliza-
tion. Different meshes with matching grids at the interface are studied as detailed in
Table 5. Time integration is performed by the generalized-α method for solid dynamics
[54] and fluid dynamics [55] with spectral radii ρS∞ = 0.8 and ρF∞ = 0.5, respectively.
The time step size is chosen as �t = 0.005 s for the results presented below. The solid
field is selected as master field, i.e. the interface motion is described in terms of solid
displacements.
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Table 5 Meshes for the Coriolis flowmeter example

Mesh ID nS,dof nF,dof nG,dof ndoftotal M ndof/process

cor1 19, 992 123, 284 123, 284 203, 252 14 14518.0

cor2 50, 976 238, 596 152, 928 442, 500 28 15803.6

cor3 109, 920 477, 236 329, 760 916, 916 56 16373.5

Numbers of degrees of freedom per field and in total are reported.
By distributing each mesh on a specific number of parallel processesM, the load per process can be kept roughly constant

Table6 Settings for multigrid hierarchies embedded in the hybrid preconditioner

Field Fine level Medium levels Coarse level

S Chebyshev(6) Chebyshev(12) LU

F SGS(5 × 0.69) SGS(3 × 0.69) LU

G Chebyshev(6) Chebyshev(12) LU

For solid and ALE Chebyshev smoothers are used on the fine and medium levels, while for the fluid five and three sweeps of
damped symmetric Gauß–Seidel are employed on the fine and medium levels, respectively.
In all fields, a direct solver is used on the coarsest level

Table7 Tolerances for nonlinear convergence check for Coriolis flowmeter example

DOFs ‖r‖2 ‖r‖∞ ‖�x‖2 ‖�x‖∞
dS 10−6 10−4 10−6 10−4

uF 10−8 10−8 10−8 10−8

pF 10−8 10−7 10−6 10−4

dS
� 10−6 10−4 10−6 10−4

For each subset of degrees of freedom (DOFs), tolerances for residual and solution increment vectors are provided.
Since the solid field is chosen as master field, the solid’s interface DOFs are tested separately

Simulations have been performed on the Haswell Xeon partition6 of the SuperMUC
Petascale System at the Leibniz Supercomputing Centre in Garching, Germany. The load
per parallel process is kept approximately constant at an average of≈ 15565 ndof/process.
The configuration of the multigrid preconditioners is summarized in Table 6. Each

preconditioner is created once at the beginning of each time step and is then re-used in
every nonlinear iteration of that time step. To account for different transient effects in
the solid and the fluid field as well as for the chosen set of physical units, the convergence
check is performed as outlined in Appendix A. Tolerances for the convergence check of
the nonlinear solver are listed inTable 7. The linear solver uses the relative tolerance εlin =
10−5 in combination with β lin = 10−2.
A comparison of iteration counts, solver timings andpreconditioner setup timings for all

preconditioners andmeshes is shown in Table 8. Again, savings in linear iterations as well
as pure solver time have been achieved by augmenting either of the physics-based block
preconditionerwith the hybrid approach (see columns labelledwith “# of linear iterations”
and “Solver time” in Table 8). The savings are particularly noticeable in the case of H-
AMG(BGS) where the AMG(BGS) part can very much benefit from the smooth interface
solution yielded by the pre-application of the interface preconditionerM−1

γ . In the pres-
ence of a convective flow, the gain in efficiency seems to be more pronounced for larger
problem sizes, where reductions of the linear solver time of up to≈ 43% can be achieved by
the hybrid preconditioner. However, we observe that even though AMG(BGS) performs
better as compared to BGS(AMG) with respect to the number of GMRES iterations,

6Haswell Xeon Processor E5-2697 v3 cores, nominal frequency 2.6GHz, memory per core 2.3GB, Infiniband FDR14
network; https://www.lrz.de/services/compute/supermuc/systemdescription/, visited on Feb 6, 2017.

https://www.lrz.de/services/compute/supermuc/systemdescription/


Mayr et al. Adv. Model. and Simul. in Eng. Sci.           (2020) 7:15 Page 25 of 33

Table 8 Iteration counts and timemeasurements per time step for comparison of
physics-based block preconditioners and the newly proposed hybrid preconditioner in the
Coriolis flowmeter example

Mesh ID # of linear iterations Solver time Setup time

cor1 cor2 cor3 cor1 cor2 cor3 cor1 cor2 cor3

M 14 28 56 14 28 56 14 28 56

BGS(AMG) 226 458 597 14.7 s 44.9 s 66.6 s 9.8 s 11.1 s 11.3 s

H-BGS(AMG) 176 223 415 14.6 s 28.3 s 59.1 s 11.8 s 11.7 s 14.6 s

Savings (%) 22.1 51.3 30.5 0.5 37.0 11.3 − − −
AMG(BGS) 92 307 428 23.2 s 136.8 s 158.3 s 10.1 s 11.5 s 11.4 s

H-AMG(BGS) 85 161 223 23.0 s 77.8 s 90.3 s 10.7 s 12.1 s 13.5 s

Savings (%) 7.6 47.6 47.9 0.8 43.1 43.0 − − −
The accumulated number of linear iterations per time step, the pure solver time as well as the time for preconditioner setup
are given for all meshes.
Relative savings due to the application of the hybrid preconditioner are reported at solution time t = 3.405 s

its pure solver time is not comparable due to the missing coarse level load rebalancing
within the AMG(BGS) multi-level hierarchy. Still, the savings due to the hybrid precon-
ditioner H-AMG(BGS) can be seen clearly when comparing to the purely physics-based
AMG(BGS) approach. As expected, setup times for the hybrid preconditioner are slightly
higher than for the pure physics-based preconditioners due to the additional setup costs
for M−1

γ , but overall are independent of the mesh size (see column labelled with “Setup
time” in Table 8). Savings are not given for setup times, since setup time is expected to
increase. Only for mesh cor1, the overall time-to-solution, i.e. combined setup and solver
time, is not greatly affected by the hybrid preconditioner, whereas it is reduced for the
finer meshes cor2 and cor3. Overall, the additional setup time for M−1

γ is amortized by
the achieved performance gain.

Oscillating flexible flag behind a rigid obstacle

To showcase the behavior of the proposed preconditioner in the presence of large mesh
deformation, we study the oscillating bending motion of a flexible solid flag attached to a
rigid obstacle and subject to fluid flow as first proposed byWall [56]. The flexible flag �S

is modelled with a Neo-Hooke material (Young’s modulus ES = 1.5 · 106, νS = 0.35,
ρS = 0.1) and is attached to a rigid obstacle as depicted in Fig. 9. Both are immersed in
the fluid domain �F (μF

dyn = 1.82 · 10−4, ρF = 1.18 · 10−3). Starting from resting initial
conditions, the inflow velocity is prescribed as a spatially constant inflow profile with the
time-dependent peak value

ˆ̄uF (t) =
⎧⎨
⎩
ûF · 0.5 (

1 − cos
(

π t
0.3

))
for 0 ≤ t ≤ 0.3

ûF for t > 0.3

with peak value ûF = 51.3. The outflow at x = 14 serves as a traction-free Neumann
boundary. Top and bottom walls have a slip boundary condition. The ALEmesh can slide
along inflow, outflow, top and bottom edges and is fixed in the channel’s corners as well
as along the obstacle’s edges. Due to large deformations, the ALE mesh is treated as a
nonlinear quasi-static solid body with Neo-Hooke material. In particular, the ALE mesh
is divided into a stiff, medium, and soft zone with Young’s moduli EG

st = 2.5 · 106, EG
m =

5.0 ·102, and EG
so = 1.0 and Poisson’s ratios ν

G
st = 0.35, νGm = 0.2, and νGso = 0, respectively.
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Fig. 9 Problem sketch of a flexible flag attached to a rigid obstacle and subject to fluid flow—the solid flag is
clamped at x = 0. The fluid inflow velocity ˆ̄uF (t) is prescribed in x-direction. The fluid flow along the top and
bottom channel wall is unconstraint

An exemplary coarse version of theALEmesh indicating the stiff,medium, and soft region
is depicted in Fig. 10 alongwith a diagramof the vertical tip displacementdSy and a contour
plot of the fluid velocity field on the deformed mesh at maximum deflection of the flag.
The solid is discretized with four-noded linear Wall elements using enhanced assumed

strains (EAS), while the fluid field utilizes equal-order interpolated stabilized finite ele-
ments. The solid and fluid field use generalized-α time integration with a constant time
step size �t = 0.01 and spectral radii ρS∞ = 0.8 and ρF∞ = 0.5, respectively.
The problem size is rather small (nS,dof = 582, nF,dof = 23472, nG,dof = 15648, ndoftotal =

39702), which ismainly due to the two-dimensional problem setup. As a consequence, the
solid discretization is too small for amultigridmethod, leaving BGS(AMG)withmultigrid
for fluid and ALE, but a direct solver for the solid block inverse as a viable approach. The
configuration of the multigrid preconditioners for fluid and ALE are the same as in the
previous example, cf. Table 6. The solid block is sufficiently small to be immediately
addressed with a direct solver. The preconditioner is re-computed in every nonlinear
iteration. The problem is run on four MPI ranks, yielding ndof/process ≈ 9925 as an
approximate load per process. To account for different transient effects in the solid and
the fluid field as well as for the chosen set of units, the convergence check is performed as
outlined in Appendix A. Tolerances for the convergence check of the nonlinear solver are
listed in Table 9. The linear solver uses the relative tolerance εlin = 10−5 in combination
with β lin = 10−3.
Figure 11 compares the number of iterations per time step for the BGS(AMG) and

H-BGS(AMG) preconditioner. Again, the hybrid preconditioner leads to a reduction of
GMRES iterations per time step (by 36% on average) and is therefore equally well appli-
cable to problems with large mesh deformation or distortion.
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Fig. 10 Top left: Mesh with stiff, medium, and soft ALE regions colored in blue, red, and black, respectively.
Top right: Tip displacement of the flexible flag over time: the amplitude is larger than half the flag length,
indicating large deformations. Bottom: Fluid velocity field and deformed mesh at state of maximum
deflection at time t = 4.39

Table9 Tolerances for nonlinear convergence check for oscillating flag example

DOFs ‖r‖2 ‖r‖∞ ‖�x‖2 ‖�x‖∞
dS 10−7 10−7 10−7 10−7

uF 10−7 10−7 10−6 10−5

pF 10−7 10−7 10−6 10−6

dS
� 10−8 10−8 10−8 10−8

For each subset of degrees of freedom (DOFs), tolerances for residual and solution increment vectors are provided.
Since the solid field is chosen as master field, the solid’s interface DOFs are tested separately

Concluding remarks and outlook
Starting from existing physics-based AMG block preconditioners for FSI problems, their
error accumulation at the fluid-structure interface has been analyzed. To address this
drawback, we have developed a hybrid interface preconditioner. It combines themultigrid
performance of existing physics-based block preconditioners with an additional additive
Schwarz preconditioner that is specifically designed to tackle error accumulation at the
fluid-structure interface. This was achieved by generating an overlapping domain decom-
position with subdomains that intentionally span across the interface. Incomplete LU
factorizations have been found to be a viable choice as subdomain solvers. They seem to
represent a good trade-off between setup cost and quality of the result.
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Fig. 11 Comparison of preconditioners in the presence of large mesh deformation—also for large
deformations and distortions of the fluid/ALE mesh, the H-BGS(AMG) preconditioner reduces the number of
GMRES iterations per time step compared to the BGS(AMG) preconditioner

A thorough study of the presented preconditioning techniques has been performed.
Therein, we examined the well-known pressure wave example, the flow through a Coriolis
flow meter, as well as an oscillating flexible flag subject to fluid flow. The influence of
the problem size has been investigated. Performance was assessed in terms of numbers
of GMRES iterations as well as in terms of solver timings also including setup of the
preconditioner.Optimal performanceof thephysics-basedblockpreconditioners couldbe
reproduced. Furthermore, the application of the hybrid interface preconditioner resulted
in reductions of the number of linear iterations as well as the total time spent in the
linear solver. These savings have been shown to be independent of the mesh size and the
number of processors used for the computation as well as the convection in the flow field.
Overall, the performance of existing FSI preconditioners could be enhanced by the hybrid
augmentation yielding a preconditioner where the additional effort in the preconditioner
setup is fully paid off by the gain of efficiency.
Webelieve that theunderlying ideaof thepresentedpreconditioning approach is appeal-

ing also for a variety of other applications. Besides FSI problems, it could be applied to
any other surface-coupled multi-physics problem like the transport of a scalar species
through a FSI interface [57] or a membrane [58,59], the heat transfer through surfaces
of objects, or the interaction of an acoustic field with either a solid or a fluid domain.
Moreover, the presence of anisotropic meshes as in fluid boundary layer meshes often
spoils the optimality of existing multigrid preconditioners. Applying the hybrid approach
in FSI scenarios with such meshes is beneficial. The hybrid preconditioner reduces error
accumulation at the interface as intended. In addition, it helps convergence in a bound-
ary layer, where meshes often are anisotropic and the solution exhibits steep gradients.
Furthermore, we suppose that the proposed method can be straightforwardly transferred
to volume-coupled problems. Strong physics-based block preconditioners are available
for such problems, though we suspect that they also exhibit error accumulation in the
treatment of the off-diagonal coupling terms between the individual physical fields. This
could be cured through the augmentation with an additional additive Schwarz precondi-
tioner as given in (15). Future work will analyze the performance of the proposed method
when applied to volume-coupled problems possibly ranging from thermo-elasticity or
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(ferro-)magnetic elasticity over magneto-hydrodynamics to piezo-mechanics and other
multi-physics problems.
In summary, the proposed preconditioning method is attractive for several reasons: It

elegantly combines existing preconditioning techniqueswith an additional preconditioner
that specifically addresses the drawbacks of the existing preconditioner. It is applicable
to the entire range of surface-coupled multi-physics problems. Last, numerical examples
demonstrated its ability to even further enhance the performance of problem-specific
preconditioners that already have been shown to be strong.
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Appendix A: Convergence checks for iterative monolithic linear and Nonlinear
solvers for coupled problems
Appropriate stopping criteria have to be provided for both the iterative linear and nonlin-
ear solver.Thereby, commonnormsareEuclidianvectorsnorms, namely the length-scaled
2-norm ‖(•)‖2 and the inf-norm ‖(•)‖∞, which are given as

‖(•)‖2 =
√∑K

k=1 (•)2k
K and ‖(•)‖∞ = max

{∣∣(•)k
∣∣}

with k = 1, . . . , K and K being the number of entries in the vector (•).

A. 1 Convergence check for the nonlinear solver

In the context of solving a system of nonlinear equations, the stopping criterion is usually
based on the comparison of a norm of the nonlinear residual vector r to a user-given
tolerance εnlnr . The stopping criterion is satisfied if

‖r‖ ≤ εnlnr .

The norm of the solution increment can be included in the convergence check via addi-
tionally asking for

‖�x‖ ≤ εnln�x .

For both convergence checks, 2-norm and inf-norm are applicable. In this work, we
base the nonlinear convergence check on absolute norms. In practical applications, often
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weighted norms [60] or a combination of absolute and relative tolerance [61] seem to be
useful.
In multi-physics applications like the FSI problem at hand, both the global solution and

residual vector are assembled based on solution and residual vectors of each field involved
in the problem, cf. e.g. (1) for the global FSI residual. However, there is no guarantee that
the portions from each field are somehow balanced, neither w.r.t. size of the vectors nor
w.r.t. their magnitude. It may happen—and this is usually the case—that solid and fluid
field differ significantly in size andmagnitude of their residual vectors.While differences in
size are due to geometric dimensions and spatial discretization, discrepancy inmagnitude
can have several reasons. On the one hand, different systems of units may be used in
both fields, but even with the same system of units differences in physical properties may
lead to differences in the magnitude of the residual vector. On the other hand, the initial
residual vector depends on the initial guess of the solution vector. This initial guess can
be of varying quality in both fields, which might lead to a small residual contribution of
one field, if its initial guess is very good, whereas the other field exhibits a large residual
due to a less accurate initial guess.
Having in mind the possibly huge variations of the contributions to the global residual

vector, it seems to be inadvisable to judge about convergence based on norms of the
global residual vector, only. Especially when using a 2-norm, the residual norm might be
dominated by one of the fields such that no control over the other fields can be guaranteed.
This dominating effect can be either based on the length scaling included in the 2-norm
or based on the different magnitudes of the field residuals. Even the application of the
inf-norm might be problematic since choosing a single tolerance does not reflect for
possible variations in magnitude of the field residuals. Similar arguments hold for testing
the solution increment vector.
To circumvent these issues, a more sophisticated convergence check is performed that

reflects the contributions of the different physical fields as well as the coupling between
them. The nonlinear monolithic residual as well as the monolithic solution increment
vector are decomposed into physics-based portions, namely

• all entries related to the solid’s displacement degrees of freedom: rS,�dS
• all entries related to the fluid’s velocity degrees of freedom: rFu ,�uF
• all entries related to the fluid’s pressure degrees of freedom: rFp ,�pF
• all entries related to the fluid-structure interface: rma

�FSI
,�xma

�FSI
with ma ∈ {S,F}

depending on the choice of master and slave side in the mortar coupling

For each of these physics-based portions, both 2-norm and inf-norm are required to
satisfy user-given tolerances that may be different for each vector portion. To achieve
convergence, all individual tests must be passed at the same time, which is equivalent to
tie all individual tests together with a logical AND relation.
Choosing all these tolerances is up to the user. The computational engineer can select

meaningful tolerances, where the influence of the system of units, the problem size, and
the desired accuracy need to be taken into account. Usually, physical insight into the
problem is helpful. General rules cannot be provided. A possible strategy is outlined in
[60].
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A. 2 Convergence check for the linear solver

The linear system of equations is solved with the preconditioned GMRES method [12].
Convergence is tested by means of a relative residual norm, reading

∥∥rilin
∥∥
2∥∥r0lin

∥∥
2

≤ εlin

with
∥∥rilin

∥∥
2 denoting the 2-norm of the linear residual in GMRES iteration i which is

normalized with the initial residual norm
∥∥r0lin

∥∥
2. The base tolerance εlin is given by the

user with typical values being in the range of 10−4 −10−5. Its interplay with the nonlinear
convergence tolerances needs to be considered to obtain a reasonable value.
With progress of the nonlinear solver, the nonlinear residual rk is likely to consist of

small entries, which might approach the limit of machine precision. In such scenarios,
it might be very expensive or even unfeasible to converge the linear solver to its base
tolerance εlin. This is remedied by adapting the convergence test to

∥∥rilin
∥∥
2∥∥r0lin

∥∥
2

≤ max
{
1, β lin

∥∥rk∥∥2

}
· εlin.

The scalar factor β lin is usually chosen in the range of 10−2 −10−3. It loosens the effective
tolerance for the linear convergence check in case that the nonlinear residual norm

∥∥rk∥∥2
is smaller than β lin, such that the linear solver is required to converge to a tolerance
that is less tight with ongoing convergence of the nonlinear solver. This strategy saves
computational time and avoids aiming at accuracies in the linear solver that are infeasible
to achieve.
Received: 13 August 2019 Accepted: 5 March 2020
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