
Bennett et al. Adv. Model. and Simul.
in Eng. Sci.            (2020) 7:3 
https://doi.org/10.1186/s40323-019-0139-6

RESEARCH ART ICLE Open Access

A thermo-elastoplastic self-consistent
homogenization method for inter-granular
plasticity with application to thermal
ratcheting of TATB
Kane C. Bennett∗ , Miroslav Zecevic, Darby J. Luscher and Ricardo A. Lebensohn

*Correspondence:
kaneb@lanl.gov
The Fluid Dynamics and Solid
Mechanics group (T-3) ,
Theoretical Division, Los Alamos
National Laboratory, Los Alamos,
NM, USA

Abstract

A novel thermo-elastoplastic self-consistent homogenization model for granular
materials that exhibit inter-granular plasticity is presented. The model, TEPSCA, is made
possible by identifying a new inter-granular plastic Eshelby-like tensor. A
micromechanical model of interfacial yielding between grains of a Mohr–Coulomb
type is provided, which is relatable to the description of imperfect interfaces within the
paradigm of self-consistent homogenization. The local grain constitutive laws are
consistent with the description of an interphase layer comprised of local pore volume
between grains, such that inelastic inter-particle displacements are directly relatable to
changes in bulk porosity, i.e., dilation. The model was developed for the purpose of
modeling thermally induced plasticity—the phenomenon known as thermal
ratcheting or “ratchet growth”—of composites made from the high explosive
triaminotrinitrobenzene (TATB). Model simulations are compared to ratchet growth
measurements during cyclic thermal loading of a TATB pellet under stress-free
conditions.
Keywords: Inter-granular, Self-consistent homogenization, PBX 9502, TATB, Ratchet
growth, Dilation

Introduction
Many materials can be described as granular, being comprised of distinct solid parti-
cles (grains) and often possessing some degree of inter-granular porosity. Examples of
granular materials include such ubiquitous materials as geologic materials (geomateri-
als), concretes, and manufactured materials formed from powders or larger grains (cf.
[20]). The overall (effective) thermo-mechanical behavior of granular materials is gen-
erally attributable to mechanisms occurring at the grain scale (microscale), i.e., granular
and inter-granularmicromechanicalmechanisms (cf. [30]). Determination of the effective
thermo-mechanical response of an assembly of grains from micromechanical quantities
is thus often of practical interest, especially when effective behaviors are sensitive to the
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microstructure, i.e., sensitive to the arrangement, morphology, and contact (interface)
properties of grains (e.g., [5,10,62,68,70]).
The process of upscaling from the heterogeneous microscale to a homogeneous

mesoscale of the material is generally called in the context of mechanics homogenization,
and various specific methodologies have been proposed (cf. [17,41]), falling broadly into
two basic categories: direct numerical simulation of microstructure (e.g., [18,35–37,63]),
and homogenization by analytical means, typically called micromechanical modeling or
sometimes statistical mechanics (cf. [13,32,44,48,52,60]). Some approaches consist of a
mix of both numerical and analytical means (e.g., [56,66]). Homogenized expressions of
overall strength, i.e., yield criteria, derived from microscopic quantities are often also of
interest (e.g., [8,15,25,47]).
This work is concerned with analytical homogenization (micromechanical modeling) of

bonded granular materials within the context of Self-Consistent Homogenization (SCH),
whichhas its origin in statistical concepts ofmulti-scalemechanics originally elucidated by
Hershey [26] and Kröner [33], generally credited to have been formalized by Hill [28,29].
SCH lends itself well to assemblies of grains, especially when the grains are bonded [6,39].
This is because the underlying idea behind SCH is that the local mechanical fields asso-
ciated with each grain are solved (typically making use of Eshelby’s solution [21] for local
fluctuations in the strain field) considering that the grain is embedded in amatrix that con-
sists of all the other grains, including itself, thus theorigin of the term“self-consistent” [11].
An incremental elastoplastic SCHmethodwas originally proposed byHill [28]; however,

due to lack of accounting, roughly speaking, for relaxation of stresses caused by plastic
stains, it was found to be in general too stiff, motivating the development of various modi-
fications [7,40,53,64].Molinari et al. [42] (see also [43]) proposed a fundamental approach
of treating elastic and (visco)plastic interactions between grains and their surroundings
separately but contributing concurrently to the local fluctuations in the strain fields, which
has since foundmuch utility by others (e.g., [61]). An alternative approach to that ofMoli-
nari et al. [42] for elastic-plastic coupling makes use of certain projection operators and
translation techniques [46,54]. Some self-consistent homogenization methods inclusive
of inter-granular plasticity can be found, though lacking generality in the sense of being
restricted to certain materials/applications (e.g., [2,23,55]).
A new Thermo-ElastoPlastic Self-Consistent bonded-particle Assembly (TEPSCA)

homogenization method and model is presented in this work. A general SCH solution
for inter-granular yielding and plastic flow of granular assemblies is made possible by
the identification of a novel inter-granular plasticity Eshelby-like tensor. Local yielding
laws are viscoplastic; however, the provided framework is meant to be general in the
sense of possible future alternative rate-independent yielding, e.g., in a limiting sense or
with alternative plastic strain evolution laws. For this reason, we use the term plastic
strains to mean in a general sense inelastic strains, although we note that the term vis-
coplastic (and elasto-viscoplastic) is commonly used in the literature for similar plastic
strain evolution laws [34]. The model draws on basic concepts of relating inter-granular
damage and porosity from a recently developed thermoelastic modified SCH scheme
(TE-SCH) for bonded-particle assemblies [6], where herein extension to inter-particle
(visco)plasticity and associated changes in porosity are developed. Inter-granular stress-
strain relations from granular micromechanical theory are integrated with continuum
matrix-inclusion approaches by defining elastic and inelastic parts of displacement (and
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velocity) discontinuities across grain boundaries. The TEPSCAmodel has been developed
with the objective of modeling irreversible changes in porosity (bulk plasticity) under
thermal loading attributable to heterogeneous and anisotropic thermal strains of the
microstructure—what is sometimes called “ratchet growth”—of composites made from
the high explosive triaminotrinitrobenzene (TATB), such as the Plastic Bonded eXplosive
(PBX) 9502. The driving mechanism of ratchet growth is modeled from basic granular
mechanics principles of inter-granular force-displacement relationships congruent with
the classical notion of shear induced dilation [22] and non-associative flow [59]. Thus, a
micromechanical description of inter-granular (visco)plasticity within the context of SCH
is provided, where appropriately derived so-called interaction and concentration tensors
are identified. The model is shown to be capable of predicting effective plastic strains
induced under thermal loading even at a globally stress-free state, what we refer to herein
also as “thermoplastic” strains synonymous with ratchet growth. Model predictions are
compared to measurements by Woznick et al. [65] of the ratchet growth of a pressed
TATB pellet subjected to thermal cycling, demonstrating the model’s effectiveness.

Notation andmaterial scales
Tensors are indicated throughout in direct notation (boldface), e.g., A, although indicial
notation (and summation convention), e.g.,Aij , is sometimes used for clarity. Contraction
of indices is impliedwith dots between tensors, e.g., a = b·c is the scalar product of vectors
b and c and a = 1:A is the trace of second order tensorAwith 1 the second order identity.
Symmetric dyadic products are specified by the

s⊗ symbol, e.g., A = a s⊗ b implies that a
and b are first order tensors (vectors) and A is a symmetric second order tensor. Fourth
order tensors are indicated with double-bold font, e.g., I is the fourth order symmetric
identity, such that I:A = A.
Average quantities are denoted with over-bars. For example, the ensemble average of A

over volume V is A := 1/V
∫
V A dV ≈ 〈A〉 := ∑α=N

α=1 φαAα , where the discretized form
is exact if A is uniform over each of the αth (for α = 1 to N ) φα partial volume fractions.
The exception to this rule is global (homogenized) fields. The global stress and strain
fields are average fields, but for the sake of clarity are demarked in uppercase. The global
stress is defined � := 〈σ〉, i.e., the ensemble average of the mean fields over each fraction.
Similarly, the global strain is defined E := 〈ε〉. The global tangents are distinguished from
the local ones by an overbar even though they are not strictly averages of the local ones,
e.g., � = L

e:Ee is the global stress constitutive equation, where the e superscript denotes
elastic strain and elastic stiffness. Rates are denoted with dots above them, e.g., Ė is the
global strain rate, and fluctuations are denoted by tildes, e.g., ε̃ is the local fluctuation in
the strain field and ˙̃ε is the local fluctuation in the average strain rate of a grain.
Figure 1 shows schematically the division of material scales defined herein, where the

mesoscale refers to the homogenized scale of thematerial at amaterial point, e.g., the scale
of a representative volume element (RVE) having a distinct microstructure [9,45]. The
microscale is the heterogeneous sub-scale of the RVE. Distinction is made herein between
the “local” description of the microscale and the “global” description of the mesoscale.
The local and global strain rates are decomposed into elastic, plastic, and thermal parts,

respectively,

ε̇ = ε̇e + ε̇p + ε̇th , Ė = Ėe + Ėp + Ėth. (1)
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Fig. 1 Granular assembly: a slice through a representative volume element (RVE) showing local porosity and
imperfect interface associated with a grain; b treatment of a grain within SCH scheme having imperfect
interface represented as an interphase layer with thickness of grain’s local porosity, such that changes to it
translate to changes in porosity. Adapted from Bennett et al. [6]

The local and global stress constitutive laws are described in terms of generally anisotropic
linear elastic stiffness tensors in rate form by

σ̇ = L
e:ε̇e , �̇ = L

e:Ėe, (2)

respectively. The plastic strain rate, alternatively, is related to the stress by

ε̇p = M
p:σ , Ėp = M

p:�, (3)

where we use the general notation M
• = L

•−1 . For example,

ε̇e = M
e:σ̇ , Ėe = M

e:�̇. (4)

The local and global plastic compliances, M
p and M

p, respectively, in general change in
time for non-trivial cases (are unique over an increment of strain).

Micromechanical model with inter-granular plasticity
Motivated by the desire to treat classical inter-granular force-displacement relations of
granularmechanics in a continuumsense, the imperfect interface between grains is treated
as a smeared interface region according to the method described by Bennett and Luscher
[5,6] (see Fig. 1). At every point on the surface of each particle, the displacement discon-
tinuity rate (velocity jump), surface traction, and surface traction rate can be computed.
The velocity jump between the particle surface and its surroundings is defined,

�u̇� := u̇+ − u̇−, (5)

forx onS (seeFig. 2).The surface traction rate ṫ is assumedcontinuous across the interface,
and resolved in the standard way such that ṫ = ṫn+ ṫr , where ṫn is the normal component
and ṫr is the tangential (see Fig. 3). The velocity jump vector is similarly resolved to its
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a b

Fig. 2 Imperfect interface between grains comprising interphase region with displacement discontinuity
(and traction continuity) across it: a SCH treatment of grain interfacing with matrix, and b idealized
grain/grain interface reconciled with SCH description as mobilized volume of interface associated with
discretized particle surface (see also Fig. 3)

n n̄

2

a Discretization of unit circle

n̄

t tn

tr

δA =: am − am
0

δAσ

b Tangent plane of surface patch

Fig. 3 Discretization of surface with tangent planes: a shown schematically as 2D unit circle with a standard
normal orientation for discretization into 16 equal parts of angle 2ϕ (dotted lines); b surface patch of ellipsoid
with associated tangent plane and surface traction vector, t , with normal and tangent parts also shown

normal �u̇n� and tangential �u̇r� components. Moreover, the velocity jump is additively
decomposed into elastic, �u̇e�, and inelastic (plastic), �u̇p�, parts, i.e.,

�u̇� = �u̇e� + �u̇p�, (6)

which can each also be decomposed into normal and tangential parts in the standard
way. The magnitudes of the traction and velocity jump are given by f = ‖t‖ (force per
unit area) and δ̇ = ‖�u̇�‖ (speed), where the various components are distinguished with
subscripts, e.g., f = √

f 2n + f 2r and δ̇p =
√
(δ̇pn)2 + (δ̇pr )2, etc.

The constitutive law relating the elastic part of the displacement discontinuity to the
traction can be expressed in either total or incremental (rate) form. The rate form is given
by

�u̇e� := η·σ̇·n = η·ṫ , (7)

where σ̇·n = ṫ is the traction increment and the non-evolving in time second order
tensor η represents the elastic interface compliance [50,51] such that η → 0 recovers an
elastically perfect interface, and η → ∞ represents complete debonding. The traction-
separation law of Eq. (7) is analogous to the traction-separation laws used within cohesive
finite elements [1], and (it will be subsequently shown in Sect. 3.2) Eq. (6) is relatable in an
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integrated sense to additive decomposition of the strain rate into elastic and plastic parts.
The elastic interface compliance tensor is given by

η = α1 + (β − α)n ⊗ n, (8)

where strictly non-negative α and β represent tangential and normal compliance, respec-
tively. Bennett et al. [6] described the interphase effective shear modulus Gint and bulk
modulus K int conjugate to the interphase thickness, h, such that

α = h
Gint , β = h

K int , (9)

whereGint andK int are effective properties of an interphase region surrounding the parti-
cle that phenomenologically describe the heterogeneous bonding and void space distribu-
tion at the inter-particle interfaces. Note that the traction is then an effective traction, and
we emphasize that it represents what may be in actuality a variable traction distribution
among the grains represented by a single statistically representative grain (SRG) because
of the heterogeneous nature of the interface (e.g., including regions of stress concentra-
tion). The interphase thickness, h, can be determined from bulk porosity measurements
according to the method described by Bennett et al. [6] with the porosity assumed to
be completely evenly dispersed. Although it is a subtle distinction, the identification of
effective interphase properties notably represents the identification of another, smaller,
interfacial scale of the material, which is dealt with in a purely phenomenological sense
with respect to inter-granular constitutive laws in what follows.

Plastic yield

Inelastic inter-particle displacement occurs when the traction locally exceeds the strength
criteria. A combined cohesive and frictional strength criterion between particles, i.e., a
Mohr–Coulomb criterion, is defined

F := fr − cr − fnξ (q), (10)

where cr is the cohesive frictional strength between particles and ξ (q) is a hardening
function of the stress-like internal state variable (ISV) q. A hyperbolic hardening law is
posed,

ξ := q tan[φ]
fn tan[φ] + q

, (11)

where φ is the friction angle between particles (also called the internal friction angle). It
can be seen from Eq. (11) that the initial slope of the hyperbolic curve is q/fn, and the
value of ξ asymptotically approaches that of the apparent inter-particle friction angle (i.e.,
tan[φ]).
The strain-like ISV energy conjugate to q is z, such that q = Hz, where H is the

hardening modulus. A common option for the evolution of z is to take z ≡ z0 + δ
p
r ,

where z0 describes an initial (reference) state (cf. [16]). An alternative option is taken
here, which is to provide a separate evolution equation for z. The motivation for this
choice is to provide a framework consistent with ISV thermodynamic theory (cf. [4]) that
is advantageous for ongoing development of this research and model.
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A local non-associative flow rule is posed,

�u̇p� = γ̇
∂F
∂tr

+ λγ̇n, (12)

which in implicit integrated (incremental) form is,

��up� = �γ
∂F
∂tr

∣
∣
∣
∣
(n+1)

+ λ�γn(n+1), (13)

where �γ is the strictly positive incremental plastic multiplier over an increment of
time, �t = t(n+1) − t(n), and λ is a dilation coefficient that relates the amount of dila-
tion/contraction (by normal displacement) to the amount of shear sliding. The partial
derivative with respect to tangential traction gives the direction of sliding, which is sim-
ply the tangential traction’s direction, i.e., ∂trF = tr/fr . It is emphasized that Eq. (13)
holds for any point on the surface; however, the yield function has a distinct value at each
point on the surface. It is convenient to rearrange Eq. (13) in order to identify the plastic
compliance of the surface interface,

��up� = �γ
tr
fr

∣
∣
∣
∣
(n+1)

+ λ�γn(n+1)

= �γ
tr
fr

∣
∣
∣
∣
(n+1)

+ λ�γ
tn
fn

∣
∣
∣
∣
(n+1)

= ζ(n+1)·t (n+1), (14)

where, explicitly noting the dependence on (surface) position and dropping the n + 1
subscript for brevity,

ζ(x) := �γ (x)
(
f −1
r (x)1 + (

f −1
n (x)λ − f −1

r (x))n(x) ⊗ n(x)
)
, (15)

for x ∈ S. The point on the surface where inter-particle slip is predicted to initiate, say
x∗, is the tangent plane inclined at the angle ψ∗ where the so-called obliquity is greatest,
i.e., at ψ∗ = max[tan−1[fr/fn]]. For example, the approximation is often made in two
dimensions that ψ∗ ≈ 45◦ + φ/2 measured from perpendicular to the axis of loading,
which is exact for isotropic materials (cf. [16]). For the numerical examples subsequently
provided, we find the maximum value of the yield function (Eq. 10) on the surface of each
grain in 3D in order to identify x∗. In our experience, we have found that x∗ remains
fixed (or nearly so) for each grain during monotonic loading (and cyclically monotonic
loading). In other words, at least for the case of small strain, the location of the tangent
planes (the so-called slip-planes) depend on the microstructure of the assembly and the
thermo-mechanical loading.
The average plastic modulus of the interphase is identified,

ζ := mζ, (16)

where themobilization factorm is defined as the relative amount of the interphase volume
mobilized by the slip, i.e.,m := vm/vint, with vm the mobilized volume.
Themobilized volume is obtained by identifying themobilized area, am, of yielding such

that vm = amh, where h is the interphase thickness. A characteristic particle interaction
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Fig. 4 Inter-granular contact between agglomerate grains: a SEM image of TATB microstructure showing
interface between two agglomerate grains (from [6]), and b Idealized 2D agglomerate spherical grain
comprised of perfectly aligned and bonded TATB crystal platelets. Slip-plane at n∗ is described relative to the
local grain axes aligned with crystals’ basal plane normal by angle θ

angle ϕ describes am as a function of its mean normal n = n(x∗), i.e., the normal to the
tangent plane at x∗ (also called the standard normal), depicted in Fig. 4b. The interaction
angle ϕ is the angle between the mean normal n and normals along the perimeter of am

(see Fig. 3). The mobilized area is related to the discretized tangent plane area δA by

am = am0 + δA, (17)

where am0 describes phenomenologically excess area greater than the discretized tangent
plane being mobilized.1 For a sphere, δA is constant, corresponding to half the angle
uniformly discretizing the surface (see Fig. 3). However, for ellipsoidal shaped particles,
δA varies with x∗ with constant ϕ. The relation between the mobilized area on the surface
of the ellipsoid δA and the characteristic angle ϕ is provided by the Gauss map between
differential areas at n and that corresponding to a uniformly discretized sphere in the
standard way (cf. [49]), written in terms of Gaussian curvature, K ,

δA =
∮

Aσ

|K |dAσ , (18)

where Aσ is a surface patch (see Fig. 3b).
This allows a local elastoplastic compliance relating the overall displacement rate and

the traction to be formed from Eqs. (6), (7), and (14) as

�u�en + ��u� = (η + ζ)
︸ ︷︷ ︸

=:m
·t (n+1) = m·t (n+1), (19)

1For example, am0 may describe multi-grain interactions or other more-complex micro-structural mechanisms that
effectually mean that a greater area becomes mobilized than that associated with a certain interface discretization. An
alternative approach would be to let am = δA ; however, this would impose more of a restriction on the mobilized area,
since the concept of a surface patch would become nonsensical at large am .
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wherem := η + ζ is the (nonlinear) elastoplastic compliance, and which implies

��u� = m·t (n+1) − η · t (n) = ζ · t (n) + m · �t . (20)

The evolution of the hardening ISV is given by

ż = −γ̇
∂F
∂q

, =⇒ �z = −�γ
∂F
∂q

, (21)

where

∂F
∂q

= ξ

q

(

1 − ξ

tan[φ]

)

fn. (22)

Resolution of local elastic and plastic fields

At each time step, the thermoelastic SCH (TE-SCH) is first solved with an initial guess of
a perfectly elastic increment (assuming no particles slip). In this way, a trial stress state,

σα
(tr) = σα

(n) + �σα
(tr), (23)

is obtained for each particle through their respective trial concentration tensors,
{B(tr)

α , b(tr)α }, described in “Localization tensors” section. The subscripts in parentheses
denote the trial value, (tr), and the previous value, (n), for the current (n + 1) time step.
The yield criteria is then evaluated at each particle on the surface tangent plane of max-
imum obliquity, and all the local rates of elastic and plastic displacement discontinuity
are solved for along with all the local interaction and concentration tensors. The TEPSCA
homogenization scheme, subsequently described, is then solved with the updated values
to obtain new local and global stress values. The process is then repeated ad finitum,
i.e., until there is negligible difference between subsequent effective predictions of plastic
strain rate and the plastic tangent values.
For each local solution of the traction-jump relation over a time step, a viscoplastic

update to the plasticmultiplier is obtained. The rate of plastic shearing on a given particle’s
critical slip plane is assumed to depend on the current stress state through the power law

γ̇ = γ̇0

(F
τ

)n
, (24)

where γ̇0 is a normalization factorwith dimensions of 1 over time, τ is the so-called fluidity
with dimensions of stress, and n is the rate-sensitivity exponent. The (implicit) integrated
form of Eq. (24) is

�γ = �γ0

(F |(n+1)
τ

)n
. (25)

This closes themicroscale constitutive and evolution equations. The connection to local
stress/strain fields is made possible by recognizing from Eq. (14) thatm of Eq. (19) can be
written

m = α̃1 + (β̃ − α̃)n ⊗ n, (26)
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where the coefficients ofm are given by

α̃ := α + �γ f −1
r ,

β̃ := β + λ�γ f −1
n . (27)

The fourth order constitutive tensor relating the interphase strain to the particle stress is
then derived in a similar way to the purely elastic one first described by Qu [50,51],

ε
e,(n)
�u� + �ε�u� =

∮

S

(
�u�en + ��u�

) s⊗ n dS

=
∮

S
(m·σ·n) s⊗ n dS

= σ:
∮

S
n s⊗ m s⊗ n dS

︸ ︷︷ ︸
=:R

= R:σ, (28)

where it is clear from Eq. (14) that R(m) = R
e(η)+ R

p(ζ). A constitutive update equation
for the traction can then be derived from Eq. (14),

t = m−1· (�u�en + ��u�
)

t = m−1·R:σ·x∗. (29)

The rate form of Eq. (28) can further be split into elastic and plastic parts. The elastic
part is the rate form of that used in Bennett et al. [6],

ε̇e�u� =
∮

S

(
�u̇e�

) s⊗ n dS

=
∮

S
(η·σ̇·n) s⊗ n dS

≈ σ̇:
∮

S
n s⊗ η

s⊗ n dS
︸ ︷︷ ︸

=:Re

= R
e:σ̇. (30)

The plastic part is given by

ε̇
p
�u� =

∮

S

(
�u̇p�

) s⊗ n dS

=
∮

S
(ζ·σ·n) s⊗ n dS

≈ σ:
∮

S
n s⊗ ζ

s⊗ n dS
︸ ︷︷ ︸

=:Rp

= R
p:σ. (31)

Modified Eshelby tensors for elastoplastic imperfect interface

It is emphasized that the interior of the solid particles are modeled as thermoelastic, while
the plastic strain occurs only within the surrounding interphase layer, i.e., the plasticity
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is only inter-granular (not intra-granular). The modification of Eshelby’s tensor due to
elastic imperfection of the interface was described by Qu [50,51],

˙̃εte = S:ė + S:Re:Le:(I − S):ė = S
M :ė, (32)

where S
M := S + S:Re:Le:(I − S). The modification due to the plastic part of the imper-

fection is novel and is provided in detail within Appendix A; however, the novel plastic
interface part is summarized within this section to provide an overall understanding
of the relevant equations that make the homogenization of the subsequently described
micromechanical model possible.
The approach taken here is to add an additional irreversible contribution to the imper-

fection (plastic imperfection) quantifiedby the irreversible part of the velocity jump (Eq. 6).
The fluctuation in the strain rate field due to sliding and separation at the interface, ˙̃εδp, is
then given by an analogous surface integral as the one identified by Qu for elastic imper-
fection, but with here the additional plastic part of the velocity jump integrated over the
surface,

˙̃εδp = −
∫

S
G:Le:�u̇p�

s⊗ n dS, (33)

where G is the second gradient of Green’s function (see Appendix A). Notably, there
is an approximation made here that the matrix surrounding the grain is elastic (Le),
which allows the contribution from plastic displacements (and their rates) to be derived
as an added part of the imperfection (see also further details in Appendix A). It could
be argued that the matrix should be in fact elastoplastic, requiring the identification of a
single elastoplastic stiffness; however, this would add considerable complexity for which
a tractable solution (alternative to the asymptotic solution obtained herein) is not readily
evident to us. Moreover, we advocate the method described herein because it obviates the
need to identify a single effective elastoplastic tangent, it reduces to the elastic imperfection
case for vanishing plasticity (and the classical perfect interface case for totally vanishing
imperfection), and it seems to work well in comparison with measurements shown in the
“Comparison with measurements” section.
Making use of the continuous-traction/discontinuous-velocity constitutive law of

Eq. (14), �u̇p� = ζ·t = ζ·σ·n, allows the integral to be written in terms of traction,
i.e.,

˙̃εδp = −
∫

S
G:Le:(ζ·σ·n) s⊗ n dS. (34)

The traction term can be eliminated making use of Hooke’s law within the inclusion
σ = L

e:(ε̃e − e), to obtain

˙̃εδp = −
∫

S
G:Le:D:Le:ε̃e dS

+
∫

S
G:Le:D:Le:e dS, (35)

where D := sym[n ⊗ ζ ⊗ n].
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The asymptotic solution for small imperfection of Eq. (35) similar to that provided by
Qu [50,51] is obtained by assigning ε̃e(0) = S:e corresponding to the perfect interface
state, in which case

˙̃εδp = −
∫

S
G:Le:D:Le:ε̃e(0) dS

+
∫

S
G:Le:D:Le:S−1:ε̃e(0) dS

= −
∫

S
G:Le:D:Le:(S − I):e dS

= Y(x):(I − S):e, (36)

where the definition is made, again making explicit note of the dependence on position,

Y(x) :=
∫

S
G(x, ξ):Le:D(ξ):Le dS(ξ). (37)

Equation (36) gives rise to the notion of an Eshelby-like tensor, defining

T(x) := Y(x): (I − S) . (38)

Integration provides the relation of the average fields related by T, i.e.,

˙̃εδp = T:e, (39)

where

T := S:Rp:Le: (I − S) . (40)

Taking the time derivative of the (average) plastic Eshelby tensor provides,

Ṫ := S:Ṙp:Le: (I − S) , (41)

where Ṙ
p can be evaluated in (implicit) integrated form, i.e., by solvingR

p
(n+ 1) and storing

R
p
n.
Making use of the plastic interface Eshelby-like tensor of Eq. (39) and the thermoelastic

modified Eshelby tensor of Eq. (32), the total average fluctuation strain rate is

˙̃ε = S
M :˙̄e + T:ē. (42)

The additive form of Eqs. (42) and (43) into elastic and plastic parts relating to eigenstrain
rate and total eigenstrain, respectively, are consistent with thinking of the plasticity at the
interface as an added imperfection, i.e., plastic imperfection. This motivates the additive
decomposition of the relations between strain rate fluctuations with stress and stress rate
fluctuations described in the following section, i.e., additive decomposition of the so-called
interaction equations.
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Self-consistent thermo-elastoplastic approach
Interaction and localization tensors

Key to elastoplastic SCH is the interaction equation that relates the local fluctuations in the
strain rate to the stress rate (and stress) fluctuation fields. Since the relation between the
fluctuation in strain rate is related to the eigenstrain and eigenstrain rate throughmodified
Eshelby tensor S

M and Eshelby-like tensor T, we assume existence of two corresponding
interaction tensors in the interaction equation. The average local fields over each grain
are thus assumed to be related in an additive form similar to that suggested by Molinari
et al. [42], but different in the sense that here what is added to the thermoelastic part is
the contribution from the interface plasticity (not plasticity of the solid grain itself), as
described previously in “Modified Eshelby tensors for elastoplastic imperfect interface”
section. The additive decomposition of the interaction equation is thus assumed to be of
the form,

˙̃ε = −M̃
e: ˙̃σ − M̃

δp:σ̃, (43)

where the M̃
• are the interaction tensors (also called the overall constraint tensors by Hill

[27]),

˙̃εte = −M̃
te: ˙̃σ , ˙̃εδp = −M̃

δp:σ̃. (44)

The te superscript is used to denote thermoelastic, e.g., ˙̃εte = ˙̃εe + ˙̃εth. The fluctuation
fields are defined as

˙̃ε := ε̇ − Ė , ˙̃σ := σ̇ − �̇ , σ̃ := σ − �. (45)

The interaction tensors are solved making use of the Eshelby tensor [21] relations
between fluctuation in strain and eigenstrain, e, e.g., by ε̃te = S:e. For example, the
thermoelastic interaction tensor for perfect inter-particle interface (cf. [27]) is given by

M̃
te|perfectinterface = (I − S)−1:S:Me, (46)

and themore general thermoelastic interaction tensor allowing also for imperfect interface
(cf. [6]) is given by

M̃
te = (I − S

M)−1:SM :Me, (47)

where S
M is the average value over the particle of the so-called modified Eshelby tensor

inclusive of imperfect interface first derived by Qu [50,51], such that ε̃
te = S

M :e.
The interaction equation for the local fluctuation in the strain rate from plastic imper-

fection of the interface is solved for making use of the classical notion of an equivalent
inclusion [21] considering here solely the additional part arising from the plastic imper-
fection of the interface, M̃te already being solved for in Eq. (47) (and provided in detail in
Bennett et al. [6]). For such case, the sequence of derivation steps are as follows:

σ = L
p:ε̇′ Equivalent inclusion (48a)

σ̃ + � = L
p:
(
ε̇
p − ė

)
where ε̇

p = ε̇
′ + ė (48b)
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σ̃ + � = L
p:
(˙̃εδp + Ėp − ė

)
where ˙̃εδp = ε̇

p − Ėp (48c)

σ̃ = L
p:
(˙̃εδp − ė

)
where � = L

p:Ėp (48d)

M
p:σ̃ = ˙̃εδp − ė where M

p:Lp = I (48e)

M
p:σ̃ = ˙̃εδp − e(n+1) − e(n)

�t
where ė = e(n+1) − e(n)

�t
(48f)

M
p:σ̃ = ˙̃εδp − 1

�t
T

−1
(n+1):

˙̃εδp + 1
�t

T
−1
(n) :

˙̃εδp
(n) where ˙̃εδp = T:e (48g)

M
p:σ̃ = ˙̃εδp − Ṫ

−1
:˙̃εδp

⎧
⎨

⎩

where (T−1
(n+1):

˙̃εδp − T
−1
(n) :

˙̃εδp
(n))/�t

≈ Ṫ
−1

:˙̃εδp
, (48h)

which is rearranged to provide

˙̃εδp = −
(
I − Ṫ

)−1
:Ṫ:Mp

︸ ︷︷ ︸
=:M̃δp

:σ̃, (49)

defining,

M̃
δp :=

(
I − Ṫ

)−1
:Ṫ:Mp, (50)

such that

˙̃εδp = −M̃
δp:σ̃. (51)

Some discussion on Eq. (48) is warranted. Backward Euler integration was utilized to
time-discretize the eigenstrain rate over a time-step from t(n) to t(n+1). The approximation
made within the RHS of Eq. (48h) may not be appropriate for large strain increments,
which suggests greater accuracywhen limiting to relatively small plastic strain increments.

Localization tensors

From the interaction equation (43) and the constitutive laws (Eqs. 2–4) are derived the
localization tensors (also called concentration tensors) that relate the local to global stress
fields. The method proposed by Zecevic and Lebensohn [69] for perfect interfaces is
followed (cf. details provided therein), where the total stress and stress rate localization
tensors are generally different,

σ = B:� + b , σ̇ = B̂:�̇ + b̂. (52)

The definition of both total stress and stress rate localization tensors is necessary for
derivation of effective properties [69]. The localization equation in terms of the total stress
provides the forms of B and b for the case of imperfect interfaces:

B :=
[

1
�t

(Me + M̃
e) + (Rp + M̃

δp)
]−1

:
[

1
�t

(Me + M̃
e) + (Mp + M̃

δp)
]

, (53)

and
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b :=
[

1
�t

(Me + M̃
e) + (Rp + M̃

δp)
]−1

:
[

1
�t

(Me + M̃
e):σ(n) − 1

�t
(Me + M̃

e):�(n) − (ε̇th − Ėth)
]

. (54)

It is found that B̂ ≡ B, but b̂ �= b (cf. [69]). Rather,

b̂ := 1
�t

[
1

�t
(Me + M̃

e) + (Rp + M̃
δp)
]−1

:
[
(Mp + M̃

p):�(n) − (Rp + M̃
δp):σ(n) − (ε̇th − Ėth)

]
. (55)

For the self-consistent solution allowing for different grain shapes and orientations, we
obtain

σ = B:� + b , σ̇ = B̂:�̇ + b̂, (56)

where

B := B〈B〉−1 , B̂ := B̂〈B̂〉−1, (57)

and

b := b − B:〈b〉 , b̂ := b̂ − B̂:〈b̂〉. (58)

SCH equations
Plastic part

Multiplying the stress concentration Eq. (56) byR
p, we obtain the expression for the global

plastic strain rate,

R
p:σ = R

p:B:� + R
p:b

ε̇
p = R

p:B:� + R
p:b

〈ε̇p〉
︸︷︷︸
=Ėp

= 〈Rp:B〉
︸ ︷︷ ︸

=Mp

:� + 〈Rp:b〉
︸ ︷︷ ︸

=:Ėp
0

Ėp = M
p:� + Ėp

0

(59)

where the ensemble average was used, and the global plastic compliance is identified

M
p := 〈Rp:B〉. (60)

Since plastic strain is only inter-granular under the stated assumptions, Eq. (59) is the total
global plastic strain rate. Eq. (59) states that plasticity is possible under thermal loading
even in the absence of a global stress field, quantified by what we refer to here as the
“ratchet growth” or “thermoplastic” strain rate, Ėp

0.

Thermoelastic part

The proposed total stress concentration tensors in Zecevic and Lebensohn [69] were
used for derivation of viscoplastic effective properties, while the stress rate concentration
tensors were used for derivation of elastic effective properties in the context of elasto-
viscoplastic self-consistent method with perfect interfaces. For the case of imperfect
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interfaces with thermal strains we adopt a similar approach. The global thermoelastic
(and elastic) strain rates can be decomposed into the contribution from the solid grains
(exclusive of the interphases), Ėte\�te�, and the contribution from the interphase compli-
ance, Ė�te�, i.e.,

Ėte = Ėte\�te� + Ė�te� , Ėe = Ėe\�e� + Ė�e�, (61)

respectively. Obviously, Ėte\�te� = Ėe\�e� + Ėth\�th� and Ė�te� = Ė�e� + Ė�th�.
The expression can be obtained for the contribution to the global elastic strain from the

interface compliance by multiplying the stress rate concentration Eq. (56) by R
e,

R
e:σ̇ = R

e:B̂:�̇ + R
e:b̂

ε̇
�te� = R

e:B̂:�̇ + R
e:b̂

〈ε̇�te�〉
︸ ︷︷ ︸
=Ė�te�

=〈Re:B̂〉
︸ ︷︷ ︸
=M�e�

:�̇ + 〈Re:b̂〉
︸ ︷︷ ︸
=:Ė�th�

Ė�te� = M
�e�:�̇ + Ė�th�

Ė�te� = Ė�e� + Ė�th�

(62)

The thermoelastic strain rate exclusive of the contribution from the interphase compli-
ance is given by

σ̇ = B̂:�̇ + b̂
M

e:σ̇ = M
e:B̂:�̇ + M

e:b̂
ε̇
te − ε̇

th = M
e:B̂:�̇ + M

e:b̂
〈ε̇te〉 = 〈Me:B̂〉

︸ ︷︷ ︸
=:Me\�e�

:�̇ + 〈Me:b̂ + ε̇
th〉

︸ ︷︷ ︸
Ėth\�th�

Ėte\�te� = M
e\�e��̇ + Ėth\�th�

Ėte\�te� = Ėe\�e� + Ėth\�th�

(63)

We note that the expressions for M
e\�e� and Ėth\�th� have essentially the same form as the

ones proposed by Zecevic and Lebensohn [69] in the context of elasto-viscoplastic self-
consistentmethodwith perfect interfaces, but with thermal strains replacing the so-called
back-extrapolated term described in that work.
The global elastic tangent is thus identified through the elastic strain expression,

Ėe = Ėe\�e� + Ė�e�

=
(
M

e\�e� + M
�e�
)

︸ ︷︷ ︸
:=Me

:�̇

= M
e:�̇,

(64)

where from Eqs. (62) and (63) it is clear that the elastic modulus is solved by

M
e = 〈(Me + R

e):B̂〉. (65)

The thermal strain rate is identified from Eqs. (62) and (63),
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Table 1 Summary of homogenization equations

Effective property Equation Equation number

Elastic compliance M
e = 〈(Me + R

e):B̂〉 (65)

Plastic compliance M
p = 〈Rp :B〉 (60)

Elastic strain rate Ėe = M
e :�̇ (64)

Thermal strain rate Ėth = 〈Me :b̂ + ε̇
th〉 + 〈Re :b̂〉 (66)

Plastic strain rate Ėp = M
p :� + Ėp

0 (59)

Thermoplastic strain rate Ėp
0 = 〈Rp :b〉 (59)

Ėth = Ėth\�th� + Ė�th� = 〈Me:b̂ + ε̇
th〉 + 〈Re:b̂〉 (66)

completely specifying the self consistent equations.

Discussion of SCH equations

Table 1 summarizes the SCH equations. Significantly, the thermoplastic strain rate, Ėp
0,

(also called the “ratchet growth rate”) has been identified, which, as can be seen by its
dependence on R

p and b, is non-zero only in the presence of heterogeneous thermal
strains sufficient to cause irreversible inter-particle displacements, irrespective of the
global stress-state. In the absence of plasticity, the provided framework reduces exactly
to the Modified Self-Consistent (M-SCH) thermoelastic framework provided by Bennett
et al. [6]. This is evident by seeing that if R

p → 0, then Ėp → 0 and M
p → 0. Similarly,

if the interfaces are completely perfect also in the elastic sense, the classical thermoelas-
tic SCH (TE-SCH) solution is recovered. This can be seen by the fact that thermoelastic
modified Eshelby tensor of Eq. (32) reduces to the classical Eshelby tensor in the absence
of interface imperfection and as R

e → 0 (and R
p → 0). For perfect interfaces, the local-

ization tensors thus become the classical thermoelastic ones, and the effective compliance
and thermal strains are in the limit of perfect interface the classical TE-SCH solutions.
The numerical implementation of TEPSCA is described in Algorithm Boxs 1 and 2.

The stress and temperature driven thermo-mechanical problem is considered. At time
t = t(n+1) an increment in stress�� and temperature�θ are given. At t = t(n), the initial
global state θ(n),Ep

(n),Ee
(n),Eth

(n),�(n), and the set of local states {σ̄, ε̄p, ˜̄εth, z}(n) (for all grains)
are known.Theglobal thermo-elastoplastic constitutive responseEe

(n+1),Eth
(n+1),E

p
(n+1) are

required. In solving the constitutive response, we also determine for numerical analysis
the global tangents L

e and L
p and the updated local states {σ̄, ε̄p, ˜̄εth, z}(n+1). On first call,

a purely thermoelastic increment is assumed with {�γ = 0} to determine trial values.

Comparison withmeasurements
TEPSCAwas used to simulate the thermal cycling of a pressed TATB pellet and compared
with the measurements of Woznick et al. [65] in order to demonstrate the applicability of
the model. Ratchet growth measurements of a neat pressed TATB specimen were chosen
over those of specimens inclusive of polymer binder (e.g., PBX 9502) because PBX are
known to exhibit complex nonlinear thermal expansion behavior due to the presence of
the dispersed polymer binder (cf. [6]), which was desired to be avoided in exemplifying
the novel developments of TEPSCA. Future work may incorporate inter-particle binder
effects similar to those discussed byBennett et al. [6], whichwe suspect especially influence
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Algorithm 1 TEPSCA stress integration algorithm.

1 Compute trial global tangents L
e
(tr),L

p
(tr) and set of all concentration tensors {B, b̄, B̂, ˆ̄b}(tr)

from Algorithm 2.

2 Compute trial states {�σ(tr), ε̃th(tr)} for all grains
3 Check yield condition for all grains

for α = 1, Ngrains do
Find x∗

α

if F(tr)(x∗
α , σα

(tr)) ≤ 0 then
Set �γα = 0
Set (•)α(n+1) = (•)α(tr)

else
Evaluate �γα = �γ0

(
Fα

τ

)n

Evaluate �zα = −�γα
∂Fα

∂qα

Evaluate R
p
α = ∮

Sα
n s⊗ ζ̄α

s⊗ n dSα

Evaluate ˙̄εpα = R
p
α :σ̄α

end if
end for

4 Re-evaluate global tangents and concentration tensors, and update local stresses.
Compute L

e,Lp and {B, b̄, B̂, ˆ̄b} from Algorithm 2.
Evaluate {σ̄, ˜̄εth}
Evaluate error = ‖L

p−L
p
(tr)

‖Lp‖ ‖
if error ≤ TOLERANCE then

(•)(n+1) = (•)
return

else
L
p
(tr) = L

p

L
e
(tr) = L

e

{Rp
(tr)} = {Rp}

goto top
end if

observed creep behavior of PBX 9502 and are known to reduce somewhat the overall
susceptibility to ratchet growth (cf. [58]).
TATB has a triclinic crystal structure, and its single particle morphology can be

described as platelet-like (or graphite-like) corresponding to the (001) planes [12,14].
TATB crystal thermal expansion is approximately 20 times higher along the c-axis (basal
pole) than for the a- and b-lattice directions [31,67] and the crystals possess strong elas-
tic anisotropy as well [3,67]. During uniaxial pressing, the platelet-like TATB crystals
tend to become preferentially aligned perpendicular to the axis of pressing, resulting in
effectively transverse isotropy of the pellet (cf. [6,12,38]). Previous texture measurements
from identically pressed TATB pellets reported by Yeager et al. [67] were utilized accord-
ing to the procedure described in Bennett et al. [6] for determining effective thermoelastic
anisotropy. Figure 5a shows the texture measurements of Yeager et al. [67] expressed
as the probability distribution of basal plane normals aligned with the material axis of
transverse isotropy.
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Algorithm 2 Iterative self-consistent solution of global tangents and local concentration
tensors. The (n + 1) subscript to denote current quantities is dropped here for brevity,
with the previous (initial) values denoted by the (n) subscript.

1 Given a timestep �t with an initial guess for global tangents L
e, L

p, known/computed
local tangents {Le,Re,Rp(�γ )}, initial global�(n),Eth

(n), and local {z, σ, εth,T}(n) states, and
the shape, volume fraction and orientations of all grains,
for k = 1,MAX_ITERATION do

for α = 1, Ngrains do
Compute S

M
α ,Tα , M̃e

α , M̃
δp
α ,Bα , b̄α , B̂α , ˆ̄bα

end for
Compute L

e
(k),L

p
(k)

error = ‖L
e
(k)−L

e
(guess)

‖Le
(guess)‖

+ L
p
(k)−L

p
(guess)

‖Lp
(guess)‖

‖
if error ≤ TOLERANCE then

return
end if

end for

a TATB pellet texture b Mobilized grains

Fig. 5 Pole figures showing crystal orientation by basal plane normal distribution with sample axis of
transverse isotropy aligned with the center of pole figure: a TATB neat-pressed pellet texture after
measurements of Yeager et al. [67], and bmobilized grain orientations at onset of plasticity where
approximately 1/4 of the grains (252 of them) are slipping. Units are “times random” probability

Figure 4a showsTATBmicostructure, where the single platelet-like TATB crystals stack
together to form agglomerate particles, not unlike graphite [57] and clay [24] particles are
known to do. Figure 4b shows schematically how the agglomerate particles are treated
within TEPSCA. The agglomerates are assumed to be composed of sequentially stacked
TATBcrystalswith perfect bonding (perfect interface) between crystals, forming spherical
shaped agglomerate grains. In principle, more complex crystal structure of the agglomer-
ates could be included by performing TE-SCH for agglomerate scale properties; however,
for simplicity, the agglomerates are assigned single crystal thermoelastic properties cor-
responding to the mentioned perfectly interfacing stacked TATB crystals. Inter-granular
plastic slip is thus considered to occur between the agglomerate particles only, i.e., the
solid particle agglomerates themselves are modeled as thermoelastic. The motivation for
this is twofold, stemming from the highly anisotropic thermal expansion properties of
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Table 2 Specimenmaterial properties

Property Symbol Value Units

Initial porosity φ0 0.04 –

Initial density ρ0 1.870 g/cm3

Crystal major radius ac 50 µm

Crystal aspect ratio Rc 0.005 –

Agglomerate major radius aa 50 µm

Agglomerate aspect ratio Ra 1.0 –

TATB: (i) stacked TATB crystals will not develop strong interface forces (since they ther-
mally expand essentially together), and (ii) shear traction forces sufficient for yield are
predicted to develop on the thin edges of the TATB crystals where the displacement from
thermal expansion is greatest (i.e., towards the left and right edges of the agglomerate
in Fig. 4b), such that agglomerate interfaces like that shown in Fig. 4a are predicted to
develop large shear forces over a relatively large area of the agglomerate grain surface,
which we hypothesize is the root cause of ratchet growth.
The ratchet growth measurements consisted of cyclic thermal loading at a rate of

1 ◦C/min of an unconfined and stress-free specimen from room temperature (23 ◦C) up to
a maximum temperature of 153 ◦C. Hold times at maximum andminimum temperatures
for each thermal load cycle were 10 min each, with a total of 18 load cycles performed
over approximately three and a half days. Thermally induced strain, consisting of recov-
erable (thermal) strain and irrecoverable (thermoplastic) strain were measured along the
pressing axis of the pellet (coaxial with the axis of transverse isotropy). Table 2 lists the
specimen material properties that are directly input into TEPSCA (without calibration).
Complete details of the experimental methods and procedure are available inWoznick et
al. [65].
The single crystal TATB elastic constants were taken from Bedrov et al. [3] to be

[Le] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

65.7 18.5 4.0 −0.2 −1.0 1.0
62.0 5.0 0.6 −0.5 1.0

18.3 0.2 −0.4 −0.4
sym. 1.4 0.1 0.3

0.7 0.4
21.6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

GPa.

Single crystal anisotropic coefficients of thermal expansion for TATBwere taken from the
fit by Luscher et al. [38] to the measurements of Kolb and Rizzo [31] reported in Table 3.
The anisotropic elastic and thermal expansion constants (Le and εth(θ )) are direct inputs
into the model without any need for calibration. Elastic interface-damage parameters
α and β were calibrated to best fit the unload curves in Fig. 6b. The plastic interface
parameters were then calibrated to fit the nonlinear accumulation of plastic strain. All
calibrated TEPSCA model parameters are provided in Table 4.
Figure 6 shows the thermal loading time history and compares TEPSCA simulation

results with the measurements of Woznick et al. [65]. Figure 7a compares simulation
thermoelastic (reversible) and plastic (accumulated) strains during the cyclic thermal
loading, and Fig. 7b shows the evolution of the ISV z for all grains. The variability of
evolution of z between grains is due to the heterogeneity, where some grains are predicted
to slip before and more than others, evident in Fig. 7b, where the overall (effective) strain
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Fig. 6 Comparison of TEPSCA simulations of the ratchet growth of a TATB pellet to the measurements of
Woznick et al. [65]: a temperature load was cycled from 23 to 153 ◦C at a rate of 1 ◦C/min a total of 18 times
with 10 min hold times at maximum and minimum temperatures, and b TEPSCA simulation results are
compared with measured strain response

is the cumulative effect of the many slipping grains. Only approximately 1/4 of the grains
become mobilized at the onset of plasticity. From Fig. 5b, it appears that a more or less
uniform sampling of grains become mobilized, i.e., no certain grain orientation exhibit
strong preferential slip (although some subtle preferential slip of particles aligned with the
material axis arguably may be evident). Figure 8 shows the location of slip planes relative
to each grain’s local coordinates (see also Fig. 4b). The grains clearly exhibit preferential
slip in the direction perpendicular to the basal plane, supportive of our hypothesis that
the anisotropic thermal expansion of the TATB crystals leads to the build up of strong
shear forces along these interfaces, driving ratchet growth.
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Fig. 7 TEPSCA simulation results: a break up of global strain into thermal and thermoplastic (“ratchet
growth”) parts, and b evolution of strain-like ISV z for all 1000 grains of RVE showing some grains slip (thus
harden) more than others

Fig. 8 Location of mobilized planes relative to TATB basal plane within agglomerate (θ ) (compare with
Fig. 4b). Notably, most particles are predicted to yield in-plane with the basal plane, where shear stresses and
strains are greatest due to thermal expansion anisotropy of TATB crystals (near θ = 0)
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Table 3 Polynomial fitting coefficients of the form c0+ c1T + c2T2, where T is temperature,
for single crystal TATB lattice parameter variation fit to themeasurements of [31]

c0 c1 c2
a 9.01040 7.45511×10−5 –

b 9.03483 1.89420×10−4 –

c 6.78163 1.46609×10−3 4.78151×10−6

α 1.08630×102 −2.81821×10−3 –

β 9.19931×101 −3.77697×10−4 –

γ 1.19951×102 −6.09645×10−4 –

Units are Å, (◦), and K as appropriate

Table 4 Calibratedmicromechanical parameters

Parameter type Parameter name Symbol Value Units

Interphase elastic Shear modulus Gint 14.0 GPa

Bulk modulus K int 20.0 GPa

Interphase plastic Cohesion c 1.8 MPa

Coefficient of internal friction μ 0.68 –

Rate sensitivity exponent n 4.0 –

Fluidity τ 0.3 MPa−1

Normalization factor γ̇0 500 min.−1

Dilation ratio λ 1.0 –

Mobilization factor m 0.60 –

Hardening modulus H 1.5 MPa

Discussion of comparison with measurements

As can be seen in Fig. 6, the simulation resultsmatch the last unload curve very closely, but
donotmatch thefirst quite aswell.Notably, Eq. (9) states that the accumulation of porosity
(plastic volume strain) increases the interface compliance (where herein ḣ �= 0); however,
although this effect is included in the model, the changes are negligible and the change in
slope of the unload curves between the first and last cycles evident in the measurements
is not captured well by the model (also see uniform elastic strain cycles of Fig. 7), which
would require either additional softening or reversal of plastic flow under reduction of
thermal load (cooling). We believe what is missing from the model in order to match
more precisely the unloading measurements are two things: (i) evolving damage due to
breaking of cohesive bonds, and (ii) plastic slip between grains due to reversal of traction
forces during cooling. Since these phenomena are not presently modeled explicitly, we
suspect that the elastic interface compliance parameters (Gint andK int) were calibrated to
be overly stiff in order tomatch the thermal strain on the unload. Future workmay extend
TEPSCA to model evolving damage and plasticity under cooling; however, it appears that
the present model provides a reasonably goodmatch to the ratchet growthmeasurements
as is, which exemplifies its effectiveness formodeling inter-granular plasticity arising from
heterogeneous and anisotropic thermal expansion of the microstructure.
The viscoplastic behavior evident in the measurements appears to be captured well by

the viscoplastic constitutive equations described within Sect. 3. Accumulation of plastic
strain exhibits roughly hyperbolic hardening with cycles—see Eq. (11) and compare with
measurements in Fig. 6b and also model predictions of plastic strain in Fig. 7a. The
measurement data in Fig. 6b does not exactly exhibit hyperbolic hardening, where the
trend appears slightly linear out to 18 cycles. Notably, this is somewhat unusual behavior
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(cf. [58]), and we expect that the hyperbolic hardening law of Eq. (11) should overall
perform well in future applications modeling ratchet growth. In our view, a hyperbolic
law is appropriate because the accumulation of volumetric plastic strain must asymptote
to somemaximum value and is also consistent with classical notions of granular plasticity
[19], despite this expected behavior not being clearly evident in these measurements.
Fitting the overall strain measurements of Fig. 6 required a large number of trial simula-

tions varying the model parameters reported in Table 4 in order to find a best fit. It could
be argued that some other combination of parameter values could as equally well fit the
thermal strain measurements, since all parameters needed to be fit simultaneously to this
one test. Moreover, no measurement data is presently available to attempt to calibrate
the viscoplastic parameters for thermal loading rate-dependence. The plastic response is
obviously expected to be sensitive to changes in the rate dependency parameters τ and
n, where large n values approaches rate-independent plasticity. Future applications are
planned to look at rate-effects (different thermo-mechanical loading rates), distinguishing
between the effect of different choices of τ and n. Nevertheless, we emphasize that the
calibrated parameters satisfy the purpose of suitably matching the measurements while
demonstrating the effectiveness of the developed model and homogenization technique
for modeling thermally induced plasticity (thermoplastic strain).
Lastly, with regard to the fitting of plastic parameters, we note that since average stress

fields (and their tangent plane resolved tractions) drive the inter-granular plasticity in the
model, the parameters are likely to be calibrated to effectually weaker interfaces than if
the fluctuation of stress fields across SRG’s (i.e., the secondmoments of stress) were taken
into account. Present work is aimed at including the second moments of stress in the
model, where it is reasonable to expect that the highest fluctuations in stress will drive
plasticity and calibrated interface yield parameters would thus be effectually stronger.

Conclusions
A novel thermo-elastoplastic self-consistent homogenization model for granular mate-
rials exhibiting inter-granular plasticity has been provided. The new model, TEPSCA,
is made possible by the identification of a novel inter-granular plastic Eshelby-like ten-
sor, not unsimilar to the elastic so-called modified Eshelby tensor of Qu [51] describing
imperfect interface between grains (or equivalently an interphase layer responsible for
the overall damaged state of the assembly as described in Bennettet al. [6]). A method
for integrating the resolved irreversible inter-granular displacements to obtain plastic
strains within the paradigm of self-consistent homogenization has been provided, mak-
ing use of discretization, optimization, and averaging operations over the grain surface.
Connection between the Eshelby-like plasticity tensor and Mohr–Coulomb type inter-
granular contact yield and hardening laws are further provided through a novel second
order viscoplastic interface constitutive tensor. The thermo-elastoplastic self-consistent
homogenization equations inclusive of inter-granular plasticity are attained, where the
contribution to the effective plastic strain from thermally induced inter-granular plastic-
ity under globally stress-free conditions is identified, called here “thermoplastic strain”
and “ratchet growth strain” interchangeably.
The micromechanical description of inter-granular plasticity as the deformation of

interphase layers comprised of the local porosity surrounding each grain has been shown
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to capturewell thephenomenonof thermal ratcheting, also called ratchet growth, ofTATB
pressed pellets by comparison of model simulations to the measurements of Woznick et
al. [65]. Notably, TEPSCA is able to predict thermoplastic strains even in the absence of
any global stress fields by modeling explicitly the locally heterogeneous and anisotropic
stress/strain fields and resultant yielding between individual grains.
By explicitly modeling inter-granular slip (and dilation), the TEPSCA model accesses

valuable local information about grain deformation fields (e.g., Figs. 5b, 7, 8). Present
efforts to include second moments of the stress field, as mentioned in Sect. 6.1, may
provide for interpreting more information from microscale measurements such as neu-
tron diffraction (cf. [6]). Extension to coupled thermomechanical loading is also presently
underway, where observed dependence of strength properties on temperature is expected
to be able to be modeled with the provided framework with additional accounting for
effects of the polymer binder.
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Appendix A: Detailed derivation of modified thermoelastic and inter-granular
plastic modified Eshelby tensors
The following simultaneous derivation of the thermoelastic modified Eshelby tensor, SM ,
and the inter-granular plasticmodified Eshelby tensor,T, has similarities to the derivation
of the elasticmodifiedEshelby tensor provided inQu andCherkaoui [52], butwith a signif-
icant difference in the treatment of the discontinuous surface displacements that allows for
the identification of an inelastic part. The extension to thermo-elastoplasticity is obtained
by introducing a more general perturbation in the displacement field, ũ. Although many
of the details have been provided in Qu and Cherkaoui [52], they are repeated here to
render a clear description of what is different when irreversible displacements are also
included.
Consider a thermoelastic inclusion � as a subdomain within an infinite homogenous

elastic matrix D. The equilibrium condition (satisfying balance of linear momentum)
for a homogeneous body with an eigenstrain (cf. [44]) can be written in terms of the
displacement field,

Lijkluk,lj − Lijklekl,j = 0, (67)
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which we will call EC1.
Green’s function, φij , describes the displacement field in response to an arbitrary body

force Fj distribution, which can be calculated by the integral over the body �,

ui(x) =
∫

V
φij(x − ξ)Fj(ξ) dV , V ≡ �. (68)

An additional equilibrium requirement can be derived from the integral of the traction
over the body’s surface S, making use of the alternative definition for the stress field in
terms of Green’s function, σkp(x) = Lkpimφij,m(x − ξ)Fj , and the definition of the Dirac
delta function, δ(x − ξ). Equilibrium requires that if ξ ∈ V , then Fj must be balanced by
tractions over the volume’s surface S, i.e., since V and Fj are arbitrary, this implies the
strong form (cf. [44]),

Lkpimφij,mp(x − ξ) + δkjδ(x − ξ) = 0, (69)

which we will call EC2.
We now introduce a perturbed field (fluctuation) ũ �= u. More precisely, we will even-

tually define the fluctuation to contain both reversible and irreversible displacements, but
will keep it more general for now. Multiplying Eq. (69) through by ũ(x), recalling that by
the chain rule ũk,jlφij = (ũk,jφij),l − ũk,jφji,l , and that the strong form of a field equation
implies the weak (integral) form, we find

∫

V
ũi(x)Lijklφkm,lj(x, ξ) dV (x) +

∫

V
ũi(x)δimδ(x − ξ) dV (x) = 0

∫

V
Lijkl

[(
ũi(x)φkm,l(x, ξ)

)
,j − ũi,j(x)φkm,l(x, ξ)

]
dV (x)

= −
∫

V
ũi(x)δimδ(x − ξ) dV (x)

︸ ︷︷ ︸
=−ũm(ξ) if ξ∈V

∫

S
Lijkl ũi(x)φkm,l(x, ξ)nj(x) dS(x) −

∫

V
Lijkl ũi,j(x)φkm,l(x, ξ) dV (x)

=
⎧
⎨

⎩

−ũm(ξ), if ξ ∈ V

0, if ξ /∈ V.
(70)

Returning to EC1 (67), multiplying through by φij provides

Lijkluk,lj(x)φim(x, ξ) − Lijklekl,j(x)φim(x, ξ) = 0

Lijkl
[
(uk,l(x)φim(x, ξ)),j − uk,l(x)φim,j(x, ξ)

]− Lijklekl,jφim(x, ξ) = 0
∫

V
Lijkl

[
(uk,l(x)φim(x, ξ)),j − uk,l(x)φim,j(x, ξ)

]
dV (x)

−
∫

V
Lijklekl,j(x)φim(x, ξ) dV (x) = 0

∫

S
Lijkluk,l(x)φim(x, ξ)nj(x) dS(x) −

∫

V
Lijkluk,l(x)φim,j(x, ξ) dV (x)

−
∫

V
Lijklekl,j(x)φim(x, ξ) dV (x) = 0 (71)

Subtracting the augmented forms of EC1 and EC2, that is the final forms of Eqs. (70) and
(71), we obtain

∫

S
Lijkl[uk,l(x)φim(x, ξ)nj(x) − ũi(x)φkm,l(x, ξ)nj(x)] dS(x)
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−
∫

V
Lijklekl,j(x)φim(x, ξ) dV (x) =

⎧
⎨

⎩

ũm(ξ), if ξ ∈ V

0, if ξ /∈ V,
(72)

and finally, by virtue of recognizing that x in Eq. (72) is a bound (dummy) variable (and
that Eq. (72) holds for all ξ ∈ V and therefore for all x ∈ V ), we equivalently obtain2:

∫

S
Lijkl

[

uk,l(ξ)φim(ξ, x)nj(ξ) − ũi(ξ)
∂φkm(ξ, x)

∂ξl
nj(ξ)

]

dS(ξ)

−
∫

V
Lijklekl,j(ξ)φim(ξ, x) dV (ξ) =

⎧
⎨

⎩

ũm(x), if x ∈ V

0, if x /∈ V,
(73)

where to be clear, we have written out the long hand notation for the partial derivative
of φ (because it depends on both x and ξ), and note that comma subscript notation for
functions of a single variable imply the partial derivative with respect to that variable, i.e.,
ai,j(ξ) = ∂ξj ai(ξ). Note also that

φmk (x − ξ) = φkm(ξ − x), (74)

and

φmk,l(x − ξ) = ∂xlφmk (x − ξ) = ∂ξlφkm(ξ − x) = −∂ξlφmk (x − ξ). (75)

Making use of the chain rule and divergence theorem, Eq. (73) becomes
∫

S
Lijkl

{
φim(ξ, x)[uk,l(ξ) − ekl(ξ)] − ũi(ξ)

∂φkm(ξ, x)
∂ξl

}
nj(ξ) dS(ξ)

+
∫

V
Lijklekl(ξ)φim,j(ξ, x) dV (ξ) =

⎧
⎨

⎩

ũm(x), if x ∈ V

0, if x /∈ V.
(76)

The fields within and without the inclusion can be examined. The traction is assumed
continuous across the interface, which in general may be imperfect in the sense of hav-
ing non-vanishing thickness. The inclusion surface thus is distinguished as S− when
approached from the interior and S+ when approached from the exterior (cf. Fig. 1).
Firstly, consider x ∈ �, and the volume explicitly taken as that of the inclusion (V ≡ �).

Eq. (76) then becomes

ũm(x)|x∈� =
∫

S−
Lijkl

{
φim(ξ, x)[uk,l(ξ) − ekl(ξ] − ũi(ξ)

∂φkm(ξ, x)
∂ξl

}
nj(ξ) dS(ξ)

+
∫

V
Lijklekl(ξ)φim,j(ξ, x) dV (ξ). (77)

For x ∈ � ⊃ S− Hooke’s law given by

σij(x) = Lijkl[uk,l(x) − ekl(x)], (78)

can be used to introduce the stress into the integrand,

ũm(x)|x∈� =
∫

S−

{
φim(ξ, x)σij(ξ) − Lijkl ũi(ξ)

∂φkm(ξ, x)
∂ξl

}
nj(ξ) dS(ξ)

+
∫

V
Lijklekl(ξ)φim,j(ξ, x) dV (ξ). (79)

2This equation is equivalent to Eq. (4a,b) of Qu [51] for ũ → u.
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Next, consider the volume to to be the exterior of the inclusion, i.e., V = D/�. By
definition, there is no eigenstrain outside of the inclusion, so

∫

S+

[
φim(ξ, x)σij(ξ) − Lijkl ũi(ξ)

∂φkm(ξ, x)
∂ξl

]
nj dS(ξ) = 0, ∀x if V � �, (80)

where the continuity of traction across the inclusion was used to keep the stress term
(actually traction since it is contracted with the surface normal).
The exterior Eq. (80) can be subtracted from the interior (79) to yield that within the

inclusion

ũm(x)|x∈� =
∫

V

∂φim
∂ξj

Lijklekl(ξ) dV (ξ)

−
∫

S
�ũi(ξ)�Lijkl

∂φkm
∂ξl

nj dS(ξ), (81)

for V = �.
Assuming the eigenstrain is constant within the inclusion, the non-symmetric total

strain field within the inclusion is found

ũm,n(x)|x∈� =
∫

V

∂2φim
∂ξj∂xn

Lijklekl(ξ) dV (ξ)

−
∫

S
�ũi(ξ)�Lijkl

∂2φe
km

∂ξl∂xn
nj dS(ξ), (82)

wherefore the tensor having major and minor symmetries is defined3

Gijnm(x, ξ) := 1
4

[
∂2φmi(x, ξ)

∂xj∂ξn
+ ∂2φmj(x, ξ)

∂xi∂ξn
+ ∂2φni(x, ξ)

∂xj∂ξm
+ ∂2φnj(x, ξ)

∂xi∂ξm

]

. (83)

We can then write the symmetric strain tensor within the inclusion as

ε̃ij(x)|x∈� = Lmnklekl
∫

�

Gmnji(ξ, x)dV (ξ) −
∫

S
Lmnkl�ũm(ξ)�Gklji(ξ, x)nn dS(ξ), (84)

or equivalently making use of the major symmetries of Gijkl and L,

ε̃ij(x)|x∈� = Lklmnekl
∫

�

Gijmn(ξ, x)dV (ξ) −
∫

S
Lklmn�ũk (ξ)�Gijmn(ξ, x)nl dS(ξ), (85)

which we see from the relation (cf. [44]) Sijkl = Lmnkl
∫
�
GijmndV is

ε̃ij(x)|x∈� = Sijklekl −
∫

S
Lklmn�ũk (ξ)�Gijmn(ξ, x)nl dS(ξ). (86)

Since Sijkl andGijmn do not change with time (vary with position but are constant ∀x), the
rate form of Eq. (86) is simply (taking the time derivative),

˙̃εij(x)|x∈� = Seijkl ėkl −
∫

S
Lklmn� ˙̃uk (ξ)�Ge

ijmn(ξ, x)nl dS(ξ). (87)

Clearly, the surface integral in Eq. (86) involving the displacement jump quantifies
the difference in the strain field due to imperfection of the interface. Making use of the

3Gijkl can be shown to have major symmetry due to the property that ∂ξl ∂xk φij(x − ξ) = ∂ξk ∂xl φji(ξ − x).
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assumption of (constant linear) proportionality between the displacement jump and the
traction vector at the interface (� ˙̃ui� = ηijσ̇jknk + ζ̄ijσjknk ), the integral can be written in
terms of the traction,

˙̃εij(x) = Sijkl ėkl −
∫

S
Lklmn(ηkpσ̇pq + ζ̄kpσpq)Gijmn(ξ, x)nqnl dS(ξ). (88)

Alternatively, again making use of Hooke’s law within the inclusion (with no super-
imposed fields) σ = L(ε −e) (and σ̇ = L(ε̇ − ė)), the traction term can be eliminated
to obtain

˙̃εij(x) = Sijkl ėkl −
∫

S
LklmnLpqst (ηkpε̇st + ζ̄kpεst )Gijmn(ξ, x)nqnl dS(ξ)

+
∫

S
LklmnLpqst (ηkpėst + ζ̄kpest )Gijmn(ξ, x)nqnl dS(ξ). (89)

The asymptotic solution for small imperfection is considered, in which case ˙̃ε(0) = Sė,
and consider a perturbation representing slight imperfection.

˙̃εij = ˙̃ε(0)ij −
∫

S
LklmnLpqst (ηkp ˙̃ε

(0)
st + ζ̄kpε̃

(0)
st )Gijmn(ξ, x)nqnl dS(ξ)

+
∫

S
LklmnLpqst (ηkp ˙̃ε

(0)
xz + ζ̄kpε̃

(0)
xz )S−1

stxzGijmn(ξ, x)nqnl dS(ξ)

= ˙̃ε(0)ij −
∫

S
LklmnLpqstηkp

(
˙̃ε(0)st − ˙̃ε(0)xz S−1

stxz

)
Gijmn(ξ, x)nqnl dS(ξ)

−
∫

S
LklmnLpqst ζ̄kp

(
ε̃
(0)
st − ε̃

(0)
xz S−1

stxz

)
Gijmn(ξ, x)nqnl dS(ξ)

= Sijkl ėkl −
∫

S
LklmnLpqstηkp (Sxzst ėst − ėst )Gijmn(ξ, x)nqnl dS(ξ)

−
∫

S
LklmnLpqst ζ̄kp (Sxzstest − est )Gijmn(ξ, x)nqnl dS(ξ)

= Sijkl ėkl + Zijst (x)(Istkl − Sstkl)ėkl + Yijst (x)(Istkl − Sstkl)ekl , (90)

where we have defined

Zijst := LklmnLstpq
∫

S
ηkpGijmn(ξ, x)nqnl dS(ξ), (91)

and

Yijst := LklmnLstpq
∫

S
ζ̄kpGijmn(ξ, x)nqnl dS(ξ), (92)

The additive decomposition ˙̃ε = ˙̃εte + ˙̃εδp suggests

˙̃εteij (x) = Sijkl ėkl + Zijst (x)(Istkl − Sstkl)ėkl , (93)

and

˙̃εδp
ij (x) = Yijst (x)(Istkl − Sstkl)ekl , (94)

such that the modified elastic Eshelby tensor is

S
M(x) := S + Z(x) (I − S) , (95)
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and the inter-granular plastic Eshelby tensor is

T(x) := Y(x) (I − S) . (96)

The elastic and plastic strain rates can then be written in terms of the eigenstrain,

˙̃εe(x) = S
M(x)ė , ˙̃εδp(x) = T(x)e. (97)

or in total strain rate form,

˙̃ε(x) = S
M(x)ė + T(x)e. (98)
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