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Abstract

This paper studies parametric reduced-order modeling via the interpolation of linear
multiple-input multiple-output reduced-order, or, more general, surrogate models in
the frequency domain. It shows that realization plays a central role and two methods
based on different realizations are proposed. Interpolation of reduced-order models in
the Loewner representation is equivalent to interpolating the corresponding frequency
response functions. Interpolation of reduced-order models in the (real) pole-residue
representation is equivalent to interpolating the positions and residues of the poles.
The latter pole-matching approach proves to be more natural in approximating system
dynamics. Numerical results demonstrate the high efficiency and wide applicability of
the pole-matching method. It is shown to be efficient in interpolating surrogate
models built by several different methods, including the balanced truncation method,
the Krylov method, the Loewner framework, and a system identification method. It is
even capable of interpolating a reduced-order model built by a projection-based
method and a reduced-order model built by a data-driven method. Its other merits
include low computational cost, small size of the parametric reduced-order model,
relative insensitivity to the dimension of the parameter space, and capability of dealing
with complicated parameter dependence.

Keywords: Parametric model order reduction, Interpolation methods,
Data-driven methods, Pole analysis

Introduction
Model order reduction (MOR), as a flourishing computational technique to accelerate
simulation-based system analysis in the last decades, has been applied successfully to
high-dimensional models arising from various fields such as circuit simulations [1–3],
(vibro) acoustics [4], design of microelectromechanical systems [5], and chromatography
in chemical engineering [6]. The objective of MOR is to compute a reduced-order model
(ROM) of small size k that captures some important characteristics of the original high-
dimensional model of size n (normally k � n), such as dominant moments and leading
Hankel singular values. When parametric studies are performed, it is desired to build a
parametric ROM (pROM), which not only incorporates the modeling parameters as free
parameters, but also approximates the input–output behavior of the full-order model
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(FOM) well for any parameter value within the domain of interest. Therefore, many
parametric MOR (PMOR) methods have been proposed; see, e.g., the recent survey [7].
In general, PMOR methods can be categorized into two general types according to

PMOR review paper [7]:

1. Building a single pROM by using a global basis over the parameter space. These
methods [8] have received intensive research attention and proved to be efficient in
many applications in the past few years, most notably the reduced basis method [9].
Despite its success inmany application fields, thesemethods normallymeet difficulty
in dealing with many parameters since both the computational cost and the size of
the basis matrices may grow exponentially with the dimension of the parameter
space because of the curse of dimensionality.

2. Building an interpolatorypROMby interpolating localmatrices or bases at parameter
samples, e.g., each of which is obtained by applying nonparametric MOR at the
corresponding parameters. These methods are less studied and their performance
is not so satisfactory. According to [7], this approach can be again categorized into
three types:

a. Interpolation among local basis matrices [10]. Since the basis matrices Vi ∈
R
n×k are elements on the Stiefelmanifold, thismethod interpolatesVi along the

geodesic on the Stiefel manifold with the help of the tangent space. However,
assuming that the basis matrix evolves on the geodesic is only heuristic: it is
only one of the infinite possible evolution paths on the manifold. According to
our experience in numerical tests, the resulting ROM often diverges. Another
disadvantage is that, this method requires the storage of all the basis matrices,
which may not only be expensive, but also infeasible in many cases. First, when
the ROMs are built by a non-projection-based MOR method, e.g., data-driven
MOR methods or MOR methods based on physical reasoning, no bases are
computed. In addition, in many practical applications, the parametric FOM is
not available and what we can obtain are nonparametric FOMs built for some
parameter samples, whichmay cause difficulty for these methods. For example,
these FOMsmaybeobtained fromdiscretizationof partial differential equations
with differentmeshes,may also be of different dimensions, and their realizations
may be not consistent.

b. Interpolation among local reduced-order state-space matrices [11,12]. As is
shown in [11], directly interpolating the local reduced-order state-space matri-
ces does not work in general. A major difficulty is that, a dynamical system has
infinitelymany realizations and interpolating between different realizations can
result in completely wrong results. For example, a system with the same input–
output behavior can be obtained by rearranging the rows of the matrices, but
interpolating two such system matrices normally makes no physical sense, e.g.,

interpolating between
[
K (p1) C
0 I

]
and

[
0 I

K (p2) C

]
, where K (p), C are square

matrices with the same size and I and 0 are corresponding identity and zero
matrices, respectively. Therefore, a natural idea is to apply a congruence trans-
formation to obtain consistent bases, i.e., by solving an optimization problem to
get the transformation matrices, and then interpolate these consistent ROMs
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on somemanifold [12]. Another choice is to conduct a singular value decompo-
sition (SVD) on the union of all basis matrices to calculate the dominant “global
subspace”, onto which we re-project all ROMs and conduct interpolation [11].
However, like the methods discussed in 2(a), the ROMs must be of the same
dimension and all bases have to be stored.

c. Interpolation among the local frequency response functions (FRFs) [13,14].We
will show later in the paper that interpolating LoewnerROMs [15] built from the
local FRFs is equivalent to interpolating the local FRFs. Therefore, interpolation
among the local FRFs can be seen as a special case of interpolation among the
local reduced-order state-space matrices. Furthermore, we propose a further
technique to compress the Loewner ROMs to save the storage space. Although
this method is intuitive and easy to implement, it suffers from the problem of
fixed poles: the positions of the poles do not change with the parameter, but are
rather determined by the parameter values used for interpolation.

The goal of the present paper is twofold:

• This paper will propose a pole-matching reduced-order modeling method that
interpolates linear multiple-input multiple-output (MIMO) ROMs in the frequency
domain. Inspiredbymodal analysis inmechanical engineering [16], thepole-matching
method relies completely on analyzing the positions and residues of the poles, rather
than trying to recover the state vector of the FOM. We propose to first convert all
ROMs to a unified realization, namely the pole-residue realization that stores the
positions and residues of poles explicitly. Then, we match the poles according to
their positions and residues in order to capture the evolution of the poles in the
parametric system. Finally, we interpolate the positions and residues of all matched
poles to obtain the parametric ROMs. This method does not require the storage of
basis matrices, is capable of interpolating ROMs of different sizes, and works even
when a parametric FOM does not exist, e.g., when ROMs are built by a data-driven
MOR method or when FOMs at different parameter values result from different
discretization methods or different grids. It can also interpolate ROMs of different
nature, e.g., interpolating a ROM built by a mathematical MORmethod and another
ROM obtained from physical reasoning. It is relatively insensitive to the number of
parameters and does not assume specific properties of the FOM, e.g., the affinity
property required by the reduced basis method [9]. Numerical results show that the
pole-matching method is more accurate than the previously proposed methods for
our test cases.

• The other goal of this paper is to show the importance of the realization of a dynam-
ical system w.r.t. interpolation. For comparison purposes, we will develop another
MIMO PMOR method in the frequency domain, namely the interpolation method
for Loewner ROMs. We will show that interpolating the ROMs built by the Loewner
framework in the original form is equivalent to interpolating the FRFs. Furthermore,
we will also discuss the interpolation of Loewner ROMs in the compressed form,
which is more efficient w.r.t. computation and storage. Unlike the pole-matching
method, which captures the change of positions and residues of the poles, the
interpolation of Loewner ROMs builds parametric ROMs with fixed pole positions.
Therefore, using different realizations, the parametric ROMs follow different evolu-
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tion paths. Although both methods have clear physical meanings, the interpolation
method for Loewner ROMs follows the path that the real-world system is unlikely
to take, while the pole-matching method follows a more natural path and provides
accurate parametric ROMs for all our test cases.

Let us emphasize here that the proposed method is more a reduced-order parametric
modeling approach than a new PMOR method. Our pole-matching approach assumes
the availability of locally valid surrogate models of the FOM. These are assumed to be
obtained at feasible sampling points in parameter space, but they can result from various
surrogate modeling methods, like

• projection-based (or any other computational) MOR methods that compute a non-
parametric ROM at the fixed parameter value,

• data-driven approaches like theLoewner frameworkordynamicmodedecomposition
[17],

• system identification methods,
• etc.

We do not even assume that the local surrogates that we interpolate are obtained from
the same approach—we can employ a mixture of surrogate models obtained by any of
the methods listed above. A particular suitable area of application for our method would
be the situation when only an oracle is available, e.g. a running code producing either a
state-space model given a fixed parameter or an input–output sequence of time series or
frequency-response data. Our approach is fully non-intrusive as it does not require any
further knowledge on the system!

Notation

Throughout the paper, ı is the imaginary unit,MT represents the transpose of the matrix
M, andMα,T

β denotes (Mα
β )T.

Background
In this section, we will briefly review two different types of (P)MORmethods: projection-
based methods and the Loewner framework, which is a data-driven (P)MOR method.
Though we do not explicitly use any of these methods in our approach, we will frequently
refer to them and will also use them for comparison purposes in the numerical examples
section. Therefore, we include this brief review for better readability.

Projection-based (P)MOR

This paper focuses on PMOR of state-space systems in the frequency-domain:

(
sE(p) − A(p)

)
X(s, p) = B(p)u(s),
Y (s, p) = C(p)X(s, p), (1)

where E(p),A(p) ∈ R
n×n, B(p) ∈ R

n×mI , C(p) ∈ R
mO×n, u(s) ∈ R and p ∈ D. A

projection-based PMOR method [7,18] first builds two bases Q,U ∈ R
n×k (normally,

k � n), and then approximates X(s, p) ≈ Ux(s, p) (x(s, p) ∈ R
k ) in the range of U , and

finally forces the residual to be orthogonal to the range of Q to obtain the pROM:
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(
sE(p) − A(p)

)
x(s, p) = B(p)u(s),

y(s, p) = C(s, p)x(s, p), (2)

where [E(p), A(p)] = QT [E(p),A(p)]U , B(p) = QTB(p) and C(p) = C(p)U .
Now we discuss some subcategories under the general framework presented above:

• (P)MOR based on projection using local bases These methods build the bases Q and
U only using the data computed at a given parameter value, say p0. The resulting
ROM is valid for p0, but if derivative information with respect to p is also included in
Q and U , we can obtain a local pROM [8,19,20]. This type of (p)ROMs can be used
as the building blocks in our proposed pole-matching PMORmethod. When deriva-
tive information is included in the bases, we can achieve Hermitian interpolation in
our proposed method, which has the potential of reducing the number of needed
parameter samples in order to cover a specific region in the parameter space.

• PMOR based on projection using global bases. Many PMOR methods build pROMs
by projecting the nonparametric ROM onto a global subspace that contains the data
obtained at different parameter values of p, namely p1, p2, …, pj [7,8,11]. Denoting
the bases built by a nonparametric MOR method at pi by Ui, the global bases U can
be obtained by computing the SVD of [U1, U2, . . . , Uj].

• PMOR based on interpolating local bases These methods interpolate the bases pre-
computed at different p values, say Ui for pi, to compute the bases for the requested
parameter value p∗ [10,12]. A straightforward interpolation normally does not work
due to two reasons:

1. The bases U1, U2, …, Uj may be inconsistent. Suppose that the parametric
dynamics is well captured by the family of subspaces U (p) := colspan{U (p)}.
Further, let U1, U2, …, Uj well represent U (p) at p1, p2, …, pj . Then, intu-
itively, the interpolation of these subspaces is meaningful. Nevertheless, the
basis matrices Ui for these subspaces computed by a MOR method using
sampling at pi will generally yield reduced-order models with states living
in different coordinate systems as for any orthogonal K ∈ R

k×k , we have
colspan{UiK } = colspan{Ui} = Ui. Hence, if we just interpolate the computed
bases Ui−1 and Ui, we consequently interpolate states in different coordinate
systems which leads to inconsistencies and poor numerical approximation in
state-space. Therefore, in the general case, one should try to compute consis-
tent bases before we conduct interpolation. In [12], it was proposed to compute
the bases UiK for pi “as consistent as possible” with the basis Ui−1 for pi−1, by
aligning the subspaces via solving the optimization (Procrustes) problem

min
K∈Rk×k :KTK=I

‖UiK − Ui−1‖. (3)

2. Directly interpolating orthonormal matricesU1, …,Uj normally does not result
in an orthonormal matrix. For example, if U2 = −U1, a direct linear interpo-
lation at p1+p2

2 gives 0, which is apparently not a basis. Therefore, the success
of these methods require interpolating on the correct manifold, e.g., on the
Grassmann manifold or the Stiefel manifold.
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• PMOR based only on (nonparametric) ROMs These methods build the pROM totally
based on ROMs, which may be not generated by projection-based (P)MORmethods.
Even if they are generated by projection-based (P)MOR methods, it is assumed that
the bases U and Q are unknown. For the ROMs built by data-driven methods, e.g.,
the Loewner framework, we are in this situation.

MOR using the Loewner framework

The objective of MOR using the Loewner framework [15] is to construct a ROM in the
frequency domain in the form of

{
(sE − A)x = Bu,

y = Cx,
(4)

using measured samples of the FRF:

H (s) = C(sE − A)−1B. (5)

The Loewner framework assumes that the FRF is only known as a black box: thematrices
E, A, B and C are assumed to be unknown but the FRF can be measured at frequency
samples. For MIMO systems, each parameter sample is paired with either a left or right
tangential direction for the measurement:

1. A right triplet sample: (λi, ri, wi). Given a frequency sampleλi and the right tangential
direction ri ∈ C

mI×1, we measure wi = H (λi)ri.
2. A left triplet sample: (μj , �j , vj). Given a frequency sample μj and the left tangential

direction �j ∈ C
1×mO , we measure vj = �jH (μj).

GivennR right samples andnL left samples, theLoewner framework computes theLoewner
Matrix L ∈ R

nL×nR with

[L]i j = virj − �iwj

μi − λj
, (6)

and the Shifted Loewner Matrix Lσ ∈ R
nL×nR with

[Lσ ]i j = μivirj − �iwjλj

μi − λj
. (7)

Using the Loewner matrix and the shifted Loewner matrix, a ROM can be constructed
as follows [15].

• The Loewner ROM in the original form can be constructed as:

E = −L, B = V = [v1, v2, . . . , vnL ],

A = −Lσ , C = W = [w1, w2, . . . , wnR ]. (8)

It is highly likely that the matrix pencil (Lσ ,L) is (numerically) singular, but even in
that case, the original Loewner ROMdefined in (8) serves as a singular representation
of an approximated FRF.
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• The Loewner ROM in the compressed form is a concise and regular ROM computed
from the Loewner ROM in the original form. First, we compute a rank-revealing SVD
in a compressed form:

sL − Lσ = Y�X∗ ≈ Yk�kX∗
k , (9)

where s is a frequency sample freely chosen from the set {λi} ∪ {μj}, and k is the
number of dominant singular values chosen for the truncated SVD. Then, a Loewner
ROM in the compressed form is constructed as [15]:

E = −Y ∗
k LXk, A = −Y ∗

k LσXk, B = Y ∗
k V, C = WXk. (10)

The Loewner framework has been extended to accommodate parametric systems as
a data-driven PMOR method [21]. However, in “Interpolatory PMOR in the Loewner
realization” section, wewill study another possibility, namely the interpolation of Loewner
ROMs.

The pole-matching PMORmethod based on the pole-residue realization
In this section, we will first introduce the pole-residue realization for ROMs and develop
a pole-matching PMORmethod for single-input single-out (SISO) systems, part of which
was covered in our conference paper [22]. Then, we will generalize the pole-matching
PMOR method to interpolate MIMO ROMs in “The pole-matching method for MIMO
systems” section.
The pole-matching method relies exclusively on ROMs at samples

(
sI (i) − A(i))x(s) = B(i)u(s),

y(s) = C (i)x(s), (11)

where A(i) ∈ R
k×k , B(i) ∈ R

k×rI , C (i) ∈ R
rO×k , I (i) ∈ R

k×k is the identity matrix, and the
ROM

(
A(i), B(i), C (i)) is built for the parameter value pi (i = 1, 2, . . . , np). It is not required

that the same MOR method is used to build ROMs for all pi values.
However, when we do apply a projection-based MORmethod to the FOM (1) to obtain

ROMs in the form of (2) at each parameter sample pi, it is easy to obtain the ROMs
that we need here in the form of (11) as long as E(pi) is nonsingular by assigning A(i) ←
E(pi)−1A(pi), B(i) ← E(pi)−1B(pi), and C (i) ← C(pi).

Remark 1 The assumption of nonsingular E(pi) is satisfied in many important cases. For
example, it always holds when we apply a projection-based MOR method to reduce a
system of parametric ordinary differential equations (ODEs) (1) at pi because E(pi) =
QTE(pi)U , Q and U are both of rank k , and E(pi) is nonsingular in a system of ODEs. In
many situations, e.g., when the model stems from a parametric finite-element model, E
will be constant and nonsingular ((projected) mass matrix), and this is the typical class
of models we are considering here. For such models, a parameter-dependent E(p) may
occur if the geometry of the domain on which the finite-element model is constructed is
parameterized. Still, thenE(p) will be amassmatrix andwill in general be nonsingular, also
after (Petrov-)Galerkin projection. Even for differential-algebraic equations with differen-
tiability index one, classical model reduction techniques like balanced truncation [18] or
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IRKA [23] usually yield reduced-order models with nonsingular E by allowing a nonzero
feedthrough-term Du in the output equation; see [24] for details.

The pole-residue realization for SISO systems

Before presenting the MIMO case in “The pole-matching method for MIMO systems”
section, we focus on the pole-matchingmethod for SISO systems, i.e., systems in the form
of (11) with rI = rO = 1, and for simplicity of notation, we denote Bj = Bj,1 andCj = C1,j .
In this section, we focus on a single ROM built at the parameter sample pi and omit the
index ·(i) in the system (11) for simpler notation:

(
sI − A

)
x = B,

y = Cx. (12)

For now, we assume that the matrix A is nonsingular and all its eigenvalues are simple:
the more complicated cases will be discussed in “Practical considerations” section. For a
real eigenvalue λj and its corresponding eigenvector vj , we have

Avj = λjvj ,

while for the conjugate complex eigenpairs (aj ± ıbj , rj ± ıqj), the definition A(rj ± ıqj) =
(aj ± ıbj)(rj ± ıqj) leads to:

A
[
rj qj

] = [
rj qj

] [
aj bj

−bj, aj

]
.

Define

� =

⎡
⎢⎢⎢⎢⎣

�1
�2

. . .
�m

⎤
⎥⎥⎥⎥⎦ , P = [P1, P2, . . . , Pm] , (13)

where for the single real eigenpair (λj , vj),

�j = [
λj

]
, Pj = [

vj
]

and mj = 1, (14)

while for the conjugate complex eigenpairs (aj ± ıbj, rj ± ıqj),

�j =
[

aj bj
−bj, aj

]
, Pj = [

rj qj
]

and mj = 2. (15)

To facilitate the later more generic discussion for semisimple and defective eigenvalues,
we assume �j ∈ R

mj×mj and Pj ∈ R
k×mj in general withmj a possibly larger integer.

Then, the complex eigenvalue decomposition is described by the following real matrix
Eq. [25]:

AP = P�, (16)
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and it follows the associated similarity transformation

A = P�P−1. (17)

Therefore

y = C(sI − A)−1B = C(sI − P�P−1)−1B = CP(sI − �)−1P−1B. (18)

Define

C I = CP = [C I
1, C

I
2, . . . , C

I
m], BI = P−1B = [BI,T

1 , BI,T
2 , . . . , BI,T

m ]T, (19)

where C I ∈ R
1×k , BI ∈ R

k×1, C I
j ∈ R

1×mj , and BI
j ∈ R

mj×1. Then, we derive

y =
m∑
i=1

C I
j (sI − �j)−1BI

j . (20)

For the real eigenpair (λj , vj), C I
j and BI

j are scalars, with which we define

C II
j = C I

j B
I
j and BII

j = 1 (21)

and derive

C I
j (sI − �j)−1BI

j = C I
j B

I
j

s − λj
= C II

j (sI − �j)−1BII
j , (22)

while for the conjugate complex eigenpairs (aj ± ıbj, rj ± ıqj), we first define C I
j =

[C I
j,1, C

I
j,2] ∈ R

1×2 and BI
j = [BI

j,1, B
I
j,2]

T ∈ R
2×1, and then derive

C I
j (sI − �j)−1BI

j

=
C I
j

[
s − aj bj
−bj s − aj

]
BI
j

(s − aj)2 + b2j

=

(
C I
j,1B

I
j,1 + C I

j,2B
I
j,2, C

I
j,2B

I
j,1 − C I

j,1B
I
j,2

) [
s − aj bj
−bj s − aj

][
1
0

]

(s − aj)2 + b2j
= C II

j (sI − �j)−1BII
j , (23)

where we define

C II
j = (C I

j,1B
I
j,1 + C I

j,2B
I
j,2, C

I
j,2B

I
j,1 − C I

j,1B
I
j,2) and BII

j = [1, 0]T. (24)
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Therefore,

y =
m∑
j=1

C I
j (sI − �j)−1BI

j

=
m∑
j=1

C II
j (sI − �j)−1BII

j

= C II(sI − �)−1BII, (25)

where C II = [C II
1 , C

II
2 , . . . , C II

m] and BII = [BII,T
1 , BII,T

2 , . . . , BII,T
m ]T.

Definition 1 For the linear system (A, B, C) in (11), its pole-residue realization is defined
as (�, BII, C II) in (25), namely

(sI − �)x = BII,

y = C IIx. (26)

The pole-matchingmethod

The pole-residue realization is a natural choice for the interpolation of ROMs because of
the following theorem.

Theorem 1 Assume that (�(i), BII,(i), CII,(i)) (i = 1, 2, . . . , np) are ROMs in the pole-residue
realization built for pi, respectively, all ofwhich are of the samedimension k.Assume further
that the block structures of �(i) are the same, i.e., for any 1 ≤ j ≤ m, the size of �(i) are the
same for all i’s. Then, interpolating the matrices (�(i), BII,(i), CII,(i)) (for the parameter p) is
equivalent to interpolating the positions and residues of each pole, respectively.

Proof This is an apparent result from construction since in the pole-residue realiza-
tion, the positions and residues of the poles are directly stored in the matrix � and C II,
respectively, for both real eigenvalues and conjugate complex eigenvalues, as is shown in
Eqs. (14), (15), (21), (22), (23) and (24). 
�

Remark 2 This theorem shows that when we interpolate the pole-residue realizations
(�(i), BII,(i), C II,(i)), we interpolate the positions and residues of the poles, which are val-
ues intrinsic to the FRFs themselves. By contrast, interpolating systems of the realization
(�(i), BI,(i), C I,(i)), where we only assume that �(i) takes the form of (13) and impose no
requirement on BI,(i) and C I,(i), may introduce additional degrees of freedom introduced
by realization. For example, assume that (�(i), BI,(i), C I,(i)) (i = 1, 2) are two ROMs of
dimension 3 describing the same system at the same parameter value with different real-
izations: �(1) = �(2) = diag{λ1, λ2, λ3}, (λ1, λ2 and λ3 are three different real numbers),
BI,(1) = [16, 2, 1]T, BI,(2) = [4, 4, 4]T, C I,(1) = [1, 8, 16], C I,(1) = [4, 4, 4]. These two ROMs
have the same FRF due to (22) and the residues for all poles are 16. A critical property of a
sound interpolation-based framework is that, whenwe interpolate two equivalent systems
at the same parameter value, the interpolated system should be equivalent to these two
systems no matter what interpolation method we use. However, if we interpolate them
linearly with the equal weight 0.5, we get �(3) = diag{λ1, λ2, λ3}, BI,(3) = [10, 3, 2.5]T,
C I,(3) = [2.5, 6, 10], and the residues of the three poles become 25, 18 and 25, respectively,
which are all wrong. Therefore, the motivation to define the pole-residue realization is
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to remove the additional degrees of freedom, which may give rise to spurious results, by
“modifying” C I and BI to C II and BII.

Remark 3 The computational cost of the eigendecomposition used in computing the
pole-amplitude realization is low since we apply it to a ROM, which is typically of order
O(10), in most cases less than 100. Therefore, considering the computing cost alone, any
eigendecomposition method can be used. For numerical issues, we refer to “On defec-
tive eigenvalues” section because we will discuss general cases there without making the
assumption that all eigenvalues of A are simple.

Remark 4 Although we have employed the eigendecomposition to compute the pole-
amplitude realization like in modal analysis, the eigenmodes of the system may not be
well approximated. Nevertheless, a ROM will not accurately capture the dynamics of the
FOM unless it captures the dominant eigenmodes well enough, so usually, the dominant
eigenmodes are captured quite well in a good ROM. Since our starting point is the ROM
rather than the FOM, our full focus is on the input–output behavior of the system. There-
fore, the computation of the modes of the system, which depends on all state variables of
the FOM, is beyond our consideration. If eigenmodes are to be preserved, then it would
be suggested to compute the ROMs at pi using modal truncation [26] so that at pi, the
local ROMs contain the exact dominant eigenmodes. By our interpolation approach, the
eigenmodes at non-sampling parameters are then approximated by the interpolated poles
so that we expect good approximation up to the unavoidable interpolation error.

On the storage and interpolation of ROMs

Besides the state-space representation, the pole-residue realization can be stored and
interpolated in a more efficient scheme.

• For a real eigenpair (λj , vj), we only need to store two real numbers: λj andC II
j = C I

j B
I
j

because BII
j ≡ 1 does not need to be stored.

• For a complex eigenpair (aj ± ıbj, rj ± ıqj), we only need to store four real numbers:
aj , bj , C II

j,1 = C I
j,1B

I
j,1 +C I

j,2B
I
j,2 and C II

j,2 = C I
j,2B

I
j,1 −C I

j,1B
I
j,2 because B

II
j ≡ [1, 0]T does

not need to be stored.

Therefore, for an order-k ROM in the pole-residue realization, the storage is only 2k :
the vector (λj , C II

j ) for a real eigenvalue and (aj, bj , C II
j,1, C

II
j,2) for two conjugate complex

eigenvalues.
Assuming that we have ns real eigenvalues and nd pairs of conjugate complex eigenval-

ues, we store the ROM with two matrices:

D ∈ C
nd×4 and S ∈ C

ns×2,

where each row of D stores a vector of the form (aj, bj , C II
j,1, C

II
j,2) and each row of S stores

a vector of the form (λj , C II
j ).

Besides the storage efficiency, this storage scheme also has the following advantages:

• The order of eigenvalues can be easily rearranged, which provides us great flexibility
in the pole-matching process.

• An unimportant pole can be easily removed, e.g., using the concept of pole domi-
nance [27]. This can be useful when we want to interpolate ROMs of different orders:
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for example, when a pole in one ROM cannot be matched to any pole of the other
ROM and it is of low dominance, it can be removed in the interpolation process.

• It can be easily written back into the state-space representation.

Under the assumption that thematrixA is nonsingular and all its eigenvalues are simple,
the pole-matching process to evaluate the ROMat p∗ /∈ {p1, p2, . . . , pnp}works as follows:
1. Given np ROMs built at p1, p2, . . . , pnp , we first convert all these ROMs into the

pole-residue representation {D(i), S(i)}.
2. To get the ROM for p∗, we first choose an interpolation algorithm and accordingly,

the pre-computed ROMs built at p’s near p∗. For simplicity of presentation, we
assume that p1 and p2 are chosen for the interpolation.

3. Match the positions and residues of the poles by matching the rows ofD(1) andD(2),
and the rows of S(1) and S(2), respectively. Denote the models after pole matching by
D(1)
M , D(2)

M , S(1)M and S(2)M .
4 Interpolate D(1)

M at p1 and D(2)
M at p2 to get D∗ at p∗. Similarly, interpolate S(1)M and

S(2)M to get S∗. The interpolated model at p∗ is {D∗, S∗}.
The procedure above is only a general description. For example, we can use different

criteria to match the poles. Here we give some examples.

1. The simplest method is to sort the rows of D and S according to their real parts or
imaginary parts.

2. Another choice is to match the closest poles when all poles only move slightly
between the two models.

3. We can also compute a local “merit function” for each pairing of two individual poles,
one of {D(1), S(1)} and the other of {D(2), S(2)}, i.e., a weighted sum of the distance
between poles and the difference in the residue, and match the poles according to it.
More specifically, to find the matched pole in the second ROM for a given pole in
the first ROM, for a real pole (λ(1)j , C II,(1)

j ), we solve the optimization problem

min
i∈{i|mi=1}

∣∣∣λ(1)j − λ
(2)
i

∣∣∣ + w
∣∣∣C II,(1)

j − C II,(2)
i

∣∣∣ , (27)

while for a conjugate complex eigenpairs (a(1)j , b(1)j , C II,(1)
j,1 , C II,(1)

j,2 ), we solve

min
i∈{i|mi=2}

∣∣∣|a(1)j | − |a(2)i |
∣∣∣ +

∣∣∣|b(1)j | − |b(2)i |
∣∣∣ + w

∥∥∥C II,(1)
j − C II,(2)

i

∥∥∥ (28)

where w is a positive real number for weighting.
4. A global “merit function” can also be used, in which case the sum of the local “merit

functions” is minimized. Suppose that the two ROMs have the same numbers of
real poles and complex poles, respectively. We fix the order of the first ROM and
represent the order of the poles in the second ROM after pole-matching by the
vector ν, which is a permutation of (1, 2, . . . , nd + ns). Then we solve the following
optimization problem to find ν:
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min
ν

∑
j∈{j|mj=1}
i∈{i|mνi=1}

∣∣∣λ(1)j − λ(2)νi

∣∣∣ + w
∣∣∣C II,(1)

j − C II,(2)
νi

∣∣∣

+
∑

j∈{j|mj=2}
i∈{i|mνi=2}

∣∣∣|a(1)j | − |a(2)νi |
∣∣∣ +

∣∣∣|b(1)j | − |b(2)νi |
∣∣∣ + w

∥∥∥C II,(1)
j − C II,(2)

νi

∥∥∥ . (29)

Note that all these methods have limitations. The first three methods may result in con-
flicts in pole-matching, a pole of one ROM ismatched tomultiple poles of the other ROM.
Since the poles move when the parameters change, it can happen that λ1(p1) ≈ λ2(p2),
λ1(p2) ≈ λ2(p1), and λ1(p1) is far from λ1(p2), which we call pole-crossing. If we simply
match λ1(p1) with λ2(p2), and λ1(p2) with λ2(p1), we lose the true parametric dynamics of
the problem. Pole crossing cannot be captured by the first and second methods, and the
third and fourth method can also fail. But a trial and error method in pole-matching can
always be tried if the engineer is able to tell whether the interpolated ROM is physically
sound.When we are capable to build ROM ourselves, e.g., we have access to the FOM, we
can build ROMs at more samples to better exploit the parameter space. An offline-online
method can be developed to overcome these difficulties, but that is future work.
However, the current paper focuses on the cases where the ROMs are given and the

following requirements are fulfilled:

1. The given ROMs are accurate enough. Otherwise, we may not be able to match the
poles even when the change of parameters is very small.

2. Sufficiently many ROMs are provided to represent the parametric dynamics of the
system. To compute the ROM at p∗, the poles of the ROMs chosen for interpolation
should not change too much. Otherwise, pole matching is difficult due to the lack of
data.

Practical considerations

For simplicity of presentation, the discussion above assumed that the matrix A in (11) is
real with simple eigenvalues. Now we extend the method to more general cases.

The case of complex A

Assume that A in (12) is a complex matrix with simple eigenvalues. Now in general, the
complex eigenvalues occur no longer in conjugate pairs. Therefore, we simply conduct
the complex eigenvalue decomposition to diagonalize A. The following computational
procedure and storage scheme are the same as in the case of real A with all eigenvalues
real. Note thatwhenA is complex, the “residues” stored inC II

j are also complex numbers in
general. Therefore, we need to interpolate both the positions and the “complex residues”
of the poles.

On semisimple eigenvalues

Assume that the dynamical system (11) has a semisimple eigenvalue λj with multiplicity
mj . Then �j in (13) is an mj × mj diagonal matrix with all diagonal elements λj , and C I

and BI are row vector and column vector of length mj , respectively. Its corresponding
contribution in the sum (20) is
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[
C I
j,1, C

I
j,2, . . . , C

I
j,mj

]
⎡
⎢⎢⎢⎢⎣

λj
λj

. . .
λj

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

BI
j,1

BI
j,2
...

BI
j,mj

⎤
⎥⎥⎥⎥⎥⎦

=
[ mj∑

i
C I
j,iB

I
j,i

] [
λj

][
1
]


= C II
j �II

j B
II
j . (30)

As this derivation shows, a simple solution is to define C II
j =

∑mj

i
C I
j,iB

I
j,i, �II

j = [
λj

]
,

BII
j = 1 and treat it as if it were a simple pole, i.e., we need only to store (λj , C II

j ) since
BII
j ≡ 1.
However, in reality, the simple strategy does not always work. Consider a parametric

system with two poles, one pole with multiplicity 2 for any parameter value and the other
pole normally simple. If the two parametric poles coincide at the parameter value p∗, the
simple procedure above just gives one pole withmultiplicity 3, which introduces difficulty
in interpolation with ROMs built at other p values, which have two poles. Therefore, we
must “separate” the two poles even they happen to be at the same position. This problem
will be discussed in more detail in our future work.

On defective eigenvalues

WhenA has defective eigenvalue(s), the dynamical system (11) cannot be written into the
proposed pole-residue realization because the eigenvalue decomposition (16) no longer
exists. In this case, A is similar to a Jordan matrix J = P−1AP, the numerical computation
of which is highly unstable [25]. Although in practical computations, defective eigenvalues
rarely occur, especially for a ROM, due to numerical noise, a nearly defective eigenvalue
can also lead to P having a very large condition number, which may cause numerical
instability, e.g., in the computation of BI = P−1B in (19). Therefore, in practical compu-
tations, we always check the condition number of P, which can be computed by, e.g., the
MATLAB function “condeig”. When it is very large, the algorithm breaks and fails. The
solution of this problem is future work.

The pole-matchingmethod for MIMO systems

Now we generalize the pole-matching PMOR method to MIMO systems. When rI > 1
and/or rO > 1 and all eigenvalues of A ∈ R

k×k are simple, our derivation in “The pole-
residue realization for SISO systems” section holds until (19) withC I ∈ R

rO×k ,BI ∈ R
k×rI ,

C I
j ∈ R

rO×mj , and BI
j ∈ R

mj×rI .

Eigenpair (λj , vj)withmj = 1

To study an individual term C I
j (sI − �j)−1BI

j in (20), let f denote the index of the first
non-zero entry of BI

j (which must exist, since otherwise the pole can be removed), and
define
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C II
j,i = C I

j,iB
I
j,f , C II

j = [C II
j,1, C

II
j,2, . . . , C

II
j,rO ]

T,

C II = [C II
1 , C

II
2 , . . . , C

II
k ], BII

j,f = 1, BII
j,i = BI

j,i

BI
j,f

(∀j �= f ),

BII
j = [BII

j,1, B
II
j,2, . . . , B

II
j,rI ], BII = [BII

1 , B
II
2 , . . . , B

II
k ]

T. (31)

The contribution of (λj , vj) in the weighted sum (20) is

C I
j (sI − �j)−1BI

j = C I
j B

I
j

s − λj

= [C I
j,1, C

I
j,2, . . . , C

I
j,rO ]

T · [BI
j,1, B

I
j,2, . . . , B

I
j,rI ]

s − λj

= [C II
j,1, C

II
j,2, . . . , C

II
j,rO ]

T · [BII
j,1, B

II
j,2, . . . , B

II
j,rI ]

s − λj

= C II
j (sI − �j)−1BII

j . (32)

Remark 5 As we have discussed in Remark 2, C I
j and BI

j are not uniquely defined for a
given FRF because of the realization freedom. However, the positions and residues of the
poles depend only on the FRF. In the case above, the position of the pole is λi and the
residues of the MIMO system are the entries of the matrix

⎡
⎢⎢⎣

C I
j,1B

I
j,1 . . . C I

j,1B
I
j,rI

...
. . .

...
C I
j,rOB

I
j,1 . . . C I

j,rOB
I
j,rI

⎤
⎥⎥⎦ . (33)

Therefore, all entries ofC II
j are determined by the residues of the poles. Actually, all entries

of BII
j are also determined by the residues of the poles because

BII
j,i = BI

j,i

BI
j,f

= C I
j,gB

I
j,i

C I
j,gB

I
j,f
, (34)

where C I
j,g is any nonzero entry for C I

j . However, BII
j,i cannot be used for interpolation

purposes. For example, if we interpolate a ROM built for p1 and another ROM built for
p2 with their weights ω(p) and (1 − ω(p)), respectively, we should compute BII

j,i by

BII
j,i(p) = w(p)C I

j,g (p1)B
I
j,i(p1) + (1 − w(p))C I

j,g (p2)B
I
j,i(p2)

w(p)C I
j,g (p1)B

I
j,f (p1) + (1 − w(p))C I

j,g (p2)B
I
j,f (p2)

,

which first estimates the residues of the poles by interpolation and then compute BII
j,i with

these residues, rather than by

BII
j,i(p) = w(p)

BI
j,i(p1)

BI
j,f (p1)

+ (1 − w(p))
BI
j,i(p2)

BI
j,f (p2)

,
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which loses the connection with the residues of poles at p. Therefore, it is insufficient to
only store BII

j for interpolation purposes. We need to store

BII,U
j =

[
C I
j,gB

I
j,1, C

I
j,gB

I
j,2, . . . , C

I
j,gB

I
j,rI

]
, bII,Lj = C I

j,gB
I
j,f (35)

and compute BII
j as

BII
j = 1

bII,Lj
BII,U
j . (36)

The pole-residue realization for MIMO ROMs

For the complex eigenpairs (aj ± ıbj, rj ± ıqj) withmj = 2, it is difficult to derive

C I
j (sI − �j)−1BI

j = C II
j (sI − �j)−1BII

j , (37)

whereC II
j ∈ R

rO×2 andBII
j ∈ R

2×rI with all their entries either constants or the residues of
the poles. This requires solving a system of nonlinear equations under constraints, which
is difficult. Actually, we do not even know whether the solution exists in general. The
research of this topic is future work.
Therefore, we propose two methods to obtain the pole-residue realization for MIMO

ROMs.

The pole-residue realization forMIMOROMs in the complex formWhen it is not required
to preserve real realization for real systems, a pole-residue realization can be easily com-
puted if all eigenvalues are simple. We substitute the similarity transformation (17) with
a true eigendecomposition with � diagonal rather than block diagonal. Therefore, we
can apply the method developed in “Eigenpair (λj , vj) with mj = 1” section to all the
eigenvalues to compute the pole-residue realization.
An advantage of this method is that the MIMO structure is strictly preserved: the sizes

of �, BII and C II equal those of A, B and C , respectively. However, for a real system
with conjugate complex eigenpairs, complex numbers are introduced in the pole-residue
realization.

The pole-residue realization for MIMO ROMs in the real form To derive the pole-residue
realization for MIMO ROMs in the real form, we first consider the SIMO (single-input
multiple-output) case.

The SIMO case For a SIMO system (12)
with C ∈ R

rO×k , B ∈ R
k×1, we denote

C = [C[1]T, C[2]T, . . . , C[rO]T]T, (38)

where C[i] represents the i-th row of C . Then, for each row of C , say C[i], we com-
pute the pole-residue realization for the SISO system (A, B, C(i, :)), which we denote by
(�[i], BII[i], C II[i]).
Note that
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�[1] = �[2] = . . . = �[rO] = �

and BII[1] = BII[2] = . . . = BII[rO] = BII (39)

hold because

• Despite the different output vector C(i, :), the similarity transformation (17) is the
same because for all these SISO systems, the positions of all poles are the same,
respectively. Therefore, �[i] = �.

• According to (21) and (24), BII[i] depends completely on the structure of �[i]. Since
�[i] = �, BII[i] = BII also holds.

Due to the property (39), the pole-residue realization for the SIMO system is (�, BII, C II)
with

C II = [
C II,T[1], C II,T[2], . . . , C II,T[rO]

]T. (40)

The MIMO case For a MIMO system (12) with C ∈ R
rO×k , B ∈ R

k×rI , we denote

B = [
B[1], B[2], . . . , B[rI ]

]
, (41)

where B[i] denotes the i-th column of B.
We first compute the pole-residue realization for each SIMO system (A, B[i], C), which

we denote by (�, BII, C II{i}). Due to a similar argument as that for (39), we deduce that �

andBII does not change with i. However,C II{i} does change with i because under different
input vectors and output vectors, the residues of each pole are different in general.
Using the method proposed in [28], which reformulates the MIMO systems as parallel

connection of split systems, the pole-residue realization of the MIMO system (12) in the
real form is

� = diag
[
�,�, . . . ,�

]
,

BII = diag
[
BII, BII, . . . , BII],

CII = [
C II{1}, C II{2}, . . . , C II{rI }

]
. (42)

Although this realization preserves the MIMO structure with real algorithms, the
dimension of the ROM is multiplied by the number of inputs. In practical computa-
tions of FRFs, however, we do not need to formulate (42) explicitly. We compute the
FRF column-wise, i.e., to compute the i-th column of the FRF, we only need to formulate
(�, BII, C II{i}) for (A, B[i], C).
On the storage and interpolation of MIMO ROMs In the MIMO case, the FRF H (s) is a
matrix function with rO × rI entries. We denote the function for the (j, k)-th entry by
Hj,k (s). All these functions have the same poles, which need to be stored only once. Nor-
mally, they have different residues for the poles, which needs to be stored individually.
To conduct ROM interpolation, we conduct pole matching and pole interpolation using
similar methods as discussed for the SISO case. A major difference is that now we have
more residue information, which we can use to construct the merit function. With the
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positions and residues of all poles for all FRF entries, an interpolated ROM can be con-
structed. The previous two sections actually give two procedures that construct a ROM
from the positions and residues of all poles, one for a complex realization and the other
for a real realization.
For the complex realization discussed in “The pole-residue realization forMIMOROMs

in the complex form” section, we only need to store the diagonal elements of � and the
matrices C II in (31), along with BII,U

j and bII,Lj (j = 1, 2, . . . , k) in (35), a total of a total of
k × (rO + rI +2) complex numbers. When we conduct interpolation using this realization
after pole-matching, we also need to check that the indices g and f in (35) are the same
for each j, respectively.
For the real realization formdiscussed in “Thepole-residue realization forMIMOROMs

in the real form” section, we need to store the positions of all poles andCII defined in (42),
a total of k × (rO × rI + 1) real numbers.

Interpolatory PMOR in the Loewner realization
In this section, we propose a method that interpolates ROMs built by the Loewner frame-
work to approximate the dynamical system described by the FRFH (s, p).Wewill deal with
the interpolation of Loewner ROMs in the original form in “Interpolating Loewner ROMs
in the original form” section, and the interpolation of Loewner ROMs in the compressed
form in “Interpolating Loewner ROMs in the compressed form” section. Both methods
rely on Assumption 1.

Assumption 1 We assume that for all sampled values for the parameter pl (l =
1, 2, . . . , np), the same frequency samples and right/left tangential directions are used.
Therefore, given the frequency shiftsμi and the corresponding left tangential direction �i
(i = 1, 2, . . .Nω) a left sample of H (s, pl) is defined by

(μi, �i, vi(pl)), where vi(pl) = �iH (μi, pl). (43)

Similarly, given the frequency shifts λj and the corresponding right tangential direction rj
(j = 1, 2, . . .Nω), a right sample of H (s, pl) is defined by

(λj , rj , wj(pl)), where wj(pl) = H (λj , pl)rj . (44)

Under Assumption 1, the Loewner matrix and the shifted Loewner matrix at pl , which
we denote by L(pl) and Lσ (pl), respectively, are defined by

[
L(pl)

]
i j = vi(pl)rj − �iwj(pl)

μi − λj
,

[
Lσ (pl)

]
i j = μivi(pl)rj − �iwj(pl)λj

μi − λj
. (45)

Interpolating Loewner ROMs in the original form

The following theorem shows the physical meaning of interpolating Loewner ROMs in
the original form.

Theorem 2 Assume that (El, Al , Bl , Cl) (l = 1, 2, . . . np) are ROMs built at pl by the
Loewner framework in the original form with the left/right triplet samples (μi, �i, vi(pl))
and (λj , rj , wj(pl)), which satisfy Assumption 1. Then, the following two pROMs built for the
parameter value p are equal:
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a. The pROM (Ea(p), Aa(p), Ba(p), Ca(p)) obtained by applying an arbitrary interpola-
tion operator of the form

M(p) =
np∑
l=1

Mlφl(p), (φi(pj) = δij) (46)

to each of E, A, B and C.
b. The pROM (Eb(p), Ab(p), Bb(p), Cb(p)) built by the Loewner framework in the original

form using the “interpolated left/right data” at p, which is obtained by using the
interpolation operator (46) on the left/right samples of the FRF:

(
μi, �i,

np∑
i=1

vi(pl)φl(p)
)

and
(

λj , rj ,
np∑
l=1

wj(pl)φl(p)
)
. (47)

A proof for Theorem 2 is given in Appendix A.
Theorem 2 shows that interpolating Loewner ROMs in the original form results in a

pROM that is “optimal” from the perspective of the left/right triplet samples. However,
thismethod is practically unsatisfactory as it needsmorememory storage than the original
left/right triplet samples. Therefore, our ultimate goal is to interpolate Loewner ROMs in
the compressed form.

Interpolating Loewner ROMs in the compressed form

To study the interpolation of Loewner ROMs in the compressed form, we first parame-
terize Eq. (9) by denoting the (truncated-)SVD at the parameter value pl by

slLl − Lσ l = Yl�lX∗
l ≈ Yl,k�l,kX∗

l,k , sl ∈ {λl,i} ∪ {μl,j},
Vl = [vl,1, vl,2, . . . , vl,nL ], Wl = [wl,1, wl,2, . . . , wl,nR ]. (48)

Proposition 1 The matrices Xl and Yl defined in (48) are generalized controllability and
observability matrices of the system (4) at pl , respectively.

For a proof of Proposition 1,we refer toTheorem5.2 in [15]. Therefore, we can compress
the ROM in the original representation by ignoring the hardly controllable and observable
vectors from Xl and Yl , i.e., taking the first k dominant columns of Xl and Yl , respectively,
and then projecting the state vector to the range of Xl,k and the dual state vector to the
range of Yl,k . This procedure leads to a Loewner ROM in the compressed form as in (10).
Nowwe propose Algorithm 1 for generating Loewner ROMs in the compressed form that
can directly be used for interpolation.

Theorem 3 For any index l, the controllability matrix satisfies

rowspan {Xl} ⊆ rowspan {X}

and the observability matrix satisfies

colspan {Yl} ⊆ colspan {Y } ,

where X, Y are defined in (50) and (49), respectively.
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Algorithm 1 Generation of interpolation-oriented Loewner ROMs in the compressed
form for the data set under Assumption 1.
1: Build the global basis Y by computing the economy-size SVD of

[
s1L1 − Lσ1

∣∣∣ s2L2 − Lσ2

∣∣∣ . . .

∣∣∣ snpLnp − Lσnp

]
(49)

= Y�HXH

≈ YK�H,KXH,K ,

where Y,�H ∈ R
n×n, XH ∈ R

n×npn, and YK , �H,K and XH,K are obtained by truncated SVD
using the first K singular values.

2: Build the global basis X by computing the economy-size SVD of

⎡
⎢⎢⎣
s1L1 − Lσ1
s2L2 − Lσ2
. . .

snpLnp − Lσnp

⎤
⎥⎥⎦ = YV�VX ≈ YV,K�V,KXK , (50)

where X,�V ∈ R
n×n, Y ∈ R

npn×n and YV,K , �V,K and XK are obtained by truncated SVD
using the first K singular values.

3: Build the “Compressed” Representations using the global bases:

El = −Y ∗
KLlXK , Al = −Y ∗

KLσ ,lXK , Bl = Y ∗
KVl, Cl = WlXK . (51)

4: Given an interpolation operator of the form (46), the interpolatory pROM is given by

M(p) =
np∑
l=1

Mlφl(p), M ∈ {E, A, B, C}. (52)

A proof for Theorem 3 is given in Appendix A. According to Theorem 3, if we truncate
X an Y to eliminate the hardly controllable and observable subspaces, respectively, all
ROMs for l = 1, 2, . . . , np are accurately approximated by (51).

Remark 6 The Loewner pROM in the compressed form (51) is a good approximation of
the Loewner pROM in the original form (46), as long as K is large enough so that XK and
YK capture all dominant components of X and Y . This is because

• The pROM (51) is actually obtained by applying the projection method with global
bases to the pROM (46).

• At each interpolation point pl , the controllability and the observability is captured
well by (51) according to Theorem 3, i.e., the Loewner pROM (51) in the compressed
form interpolates the Loewner ROMs in the original form well.

Results
In this section, we apply the developed methods to three applications: a microthruster
model [19], a “FOM” model [21], and a footbridge model [29]. We compare three meth-
ods: the pole-matching method, interpolatory PMOR in the Loewner realization, and the
interpolation of ROMs on the nonsingular matrix manifold [12].
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Fig. 1 A schematic 2D illustration of the microthruster

Fig. 2 The FRFs of Loewner ROMs and the FRF of the FOM at p = 268.3

PMOR on the microthruster model

In this section, we study the performance of the proposed methods on data-driven ROMs
in the frequency domain. The FRFs used to compute the data-driven ROMs are generated
by the microthruster model [19]. A schematic diagram of the microthruster is shown in
Fig. 1. The microthruster model is of the form (4) with order n = 4257 and has a single
parameter: the film coefficient.
First in Fig. 2, we show the convergence of nonparametric Loewner ROM in the com-

pressed realization, which is generated with 100 samples for λ and 100 samples for μ.
With the increase of the dimension, the FRF of the Loewner ROM becomes closer to that
of the FOM. Therefore, the Loewner ROMs are suitable for our study of the interpolation
of ROMs.
Then, we apply the three PMOR methods to the microthruster model.

• The manifold method This method interpolates ROMs on the nonsingular matrix
manifold [12]. In the numerical tests, we first build ROMs at the parameter samples
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Fig. 3 The behavior of ROMs built by interpolation on the nonsingular matrix manifold. a The ROM with
k = 10 and p∗ = 65.51. b The ROM with k = 11 and p∗ = 65.51

p1 = 10, p2 = 268.3, p3 = 7197, based on which we use the manifold method to
build the pROM. The FRF of the interpolated pROM at p∗ = 65.51 is shown in Fig. 3.
The approximation quality improves as the order of the ROM k increases up to 10.
However, when k > 10, the approximation quality becomes unacceptable. Because
of its unsatisfactory performance, we will not test this method any further in the next
two numerical examples.

• Interpolation of ROMs in the Loewner realization (Algorithm 1) First, we interpolate
the Loewner ROMs in the original form. Figure 4 shows that this method is much
more accurate than the manifold method.

Furthermore, the pROM is much more stable: we have never observed divergence
as we increase the order of the pROM. Then, we interpolate the Loewner ROMs in
the compressed form built by Algorithm 1. In Fig. 5, we show the numerical results
when different shifts s ∈ {λi,l} ∪ {μj,l} (defined in (48)) are used. Within each sub-
figure, the nonparametric ROMs used for interpolation are built for all pl ’s using the
same shift s specified in the subtitle. It is shown that no matter what shift we use, the
resulting ROM is accurate. As a reference, we show in Fig. 6 the numerical results
for interpolating the Loewner ROMs in the compressed form using local bases (10)
rather than using the global bases in Algorithm 1. The numerical results show that
using individual bases rather than global bases in compressing the ROMs, we cannot
obtain a pROM with high fidelity by interpolation. In Fig. 7a, we plot the response
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Fig. 4 Interpolation of Loewner ROMs in the original form. The pROM with order k = 21 is obtained by
interpolating nonparametric Loewner ROMs in the original form at p1 = 10 and p2 = 268.3. The FRFs at
p∗ = 65.51 are shown for comparison

a b c

d e f

Fig. 5 Interpolation of Loewner ROMs built with global basis using Algorithm 1. The nonparametric
Loewner ROMs are built in the compressed form with different frequency shift s. The FRFs at p∗ = 65.51 are
shown in the figure

surface of the FOMalongwith the absolute error of the interpolated ROMs generated
by Algorithm 1. The figure plots FRFs for 29 samples for the parameter p: p1, p2, …,
p29. The samples p1, p8, p15, p22 and p29 are used to build the global bases, and the
FRFs at all other p’s are obtained by an interpolated ROM generated by Algorithm 1.
In Fig. 7b, we show that using a more advanced spline interpolation, higher accuracy
can be achieved.

• Interpolation of ROMs in the pole-residue realization To apply the interpolation
method based on the pole-residue realization, we first study the pole-matching crite-
rion.We use the criterion that the overall differences in pole positions and differences
in pole residues are minimal, which agrees with the intuition on the optimal pole-
matching solution. Figure 8 shows the poles of the ROMs for p22 and p29, respectively.
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a b c

d e f

Fig. 6 Interpolation of Loewner ROMs built with individual bases. The nonparametric Loewner ROMs are
built in the compressed form with different frequency shift s and they are interpolated matrix-wise directly
using (46). The FRFs at p∗ = 65.51 are shown in the figure

In this example, the ROMs are of the form (4) with complex E, A, B and C . Since E is
nonsingular, we left multiply the system by E−1, which is of the reduced dimension,
to obtain the system of the form (11), for which the pole-residue realization is defined.
In this example, the matrix A is complex. To conduct PMOR, we first convert the
ROMs (in the form of (11)) at p1, p8, p15, p22 and p29 to the pole-residue realiza-
tion. Then, we conduct linear interpolation among the resulting ROMs. The result is
shown in Fig. 7(c). Its accuracy is slightly better than the linear ROM interpolation of
the Loewner representation.

Results on the parametric “FOM”model

Now we apply our method to the parametric “FOM” model presented in [21], which is
adapted from the nonparametric “FOM” model in [30]:

(sI − A(p))X(s, p) = Bu(s),

Y (s, p) = CX(s, p),

where C = [10, 10, 10, 10, 10, 10, 1, . . . , 1], B = CT, and A(p) = diag(A1(p),A2,A3,A4)
withA4 = −diag(1, 2, . . . , 1000),

A1(p) =
[

−1 p
−p −1

]
, A2 =

[
−1 200
−200 −1

]
, A3 =

[
−1 400
−400 −1

]
.

We first use interpolate ROMs in the Loewner realization (Algorithm 1) to obtain a
pROM. This example, however, shows the limitation of Algorithm 1 in dealing with
peak(s) that moves significantly with the change of parameter(s). As was discussed in [7],
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Fig. 7 Response surface and the absolute error. a Linear interpolation of the Loewner representation. The
overall relative error is 2.4649 × 10−2. b Spline interpolation of the Loewner representation. The overall
relative error is 6.0671 × 10−3. c Linear interpolation of the pole-residue representation. The overall relative
error is 2.3485 × 10−2

when we interpolate FRFs, the positions of poles do not change. This is because the
interpolated FRF

k∑
i=1

wi(p)Ci(sEi − Ai)−1Bi (53)
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Fig. 8 The poles of the ROMs for p22 and p29, respectively

Fig. 9 Interpolating two ROMs built by the Loewner framework. The pROM is built by interpolating the
ROMs built at p1 and p7

has a pole at any s, at which any of the individual FRFs

Ci(sEi − Ai)−1Bi (54)

has a pole. Therefore, the poles of the interpolated FRF are the union of the poles of the
interpolating FRFs. This phenomenon is clearly shown in Fig. 9: with the change of the
parameter, the pROM generated by Algorithm 1 does not capture the “moving peak”,
which is the true dynamics, but rather evolves by waxing and waning of two fixed peaks,
which also interpolates the two FRFs but seldom occurs in real applications.

Remark 7 We note the research efforts in avoiding the problem of “fixed peaks” when we
interpolate the FRFs. For example, a pair of scaling parameters were introduced in [31].
Themethod works well when all peaks move in the same direction at a similar rate, which
was proved by their numerical tests. In general, however, the method is insufficient to
describe the movements of all poles because it actually only introduces one additional
degree of freedom.

The ROM interpolation based on the pole-residue realization, on the contrary, is capa-
ble of capturing the moving peak because it interpolates the positions of the poles. In this
example, we use two MOR methods to build the nonparametric ROMs at the parameter
samples: a system identificationmethod as aMORmethod (the ssest function inMAT-
LAB) [32], and a balanced truncation (BT) method (the balred function in MATLAB).
In both cases, the two ROMs for interpolation are built at p = 10 and p = 32.5 with the
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Fig. 10 The poles of the ROM in the pole-residue realization generated by different MOR methods: the
balanced trancation (BT) method and the data-driven method “ssest” in MATLAB

dimension k = 10. The positions of the poles of the ROMs at these two parameters are
shown in Fig. 10.
In Fig. 11a, b, we interpolate ROMs built by balred and ssest, respectively. The

figures show that in this case, balanced truncation achieves better overall accuracy than
“ssest”. However, a more important observation is that, the errors at the interpolated
parameter values are comparable to the errors at the interpolating parameter values.
Therefore, the bigger error of the interpolated “ssest” pROM in the pole-residue real-
ization results from the bigger error of the nonparametric “ssest” ROMs used for inter-
polation, rather than from interpolation itself. So in both cases, ROM interpolation based
on the pole-residue realization gives satisfactory results.
Nowwe try to interpolate ROMs of different types. In Fig. 12a, we interpolate a BTROM

built atp = 10 and anssestROMbuilt atp = 32.5. FromFig. 10,we can see that thenon-
dominant poles of the FOM are presented by significantly different poles of the ROM in
the two different types ofmethods. However, their interpolation also gives accurate results
as Fig. 12a shows.1 Note that when we interpolate different types of ROMs, we should be
particularly careful about pole-matching. If we skip the pole-matching procedure, we will
get the result shown in Fig. 12b, which clearly presents the wrong evolution of peaks due
to the interpolation of wrong poles.

Results for the footbridge model

In this section, we consider a large-scale footbridge model. The footbridge is located over
the Dijle river in Mechelen (Belgium). It is about 31.354m in length and a tuned mass
damper is located in the center. The discretized footbridge model is

{(
K0 + iωC0 + (k1 + iωc1)Ki − ω2M0

)
X(ω, k1, c1) = F ,

Y (ω, k1, c1) = LX(ω, k1, c1),
(55)

1Numerical experiment shows that if we simply remove these “non-dominant poles” of the nonparametric ROMs
before interpolation, the accuracy of the pROM becomes much worse.



Yue et al. Adv. Model. and Simul. in Eng. Sci.           (2019) 6:10 Page 28 of 33

Fig. 11 Interpolation of ROMs of the same type: response surface and the absolute error. a Interpolation of
BT ROMs. b Interpolation of ssest ROMs

where K0 and M0 are obtained from a finite element model with 25,962 degrees of
freedom, C0 represents Rayleigh damping, K1 is a matrix with four non-zero entries that
represents the interaction between the tuned mass damper and the footbridge, the input
vector F represents a unit excitation at the center span, and the output vector L picks
out the vibration at the center span. The model has two parameters, the stiffness of the
damper k1 and the damping coefficient of the damper c1. To reduce the model, we apply
the Krylov subspace method [33,34] on the first-order equivalent system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

([
K0 + k1K1 0

0 I

]
+ iω

[
C0 + c1K1 M0

−I 0

]) [
X
iωX

]
=

[
F
0

]
,

y = [L, 0]
[

X
iωX

]
,

(56)

to obtain ROMs of the form (4) and then, we left multiply the system by E−1 to obtain the
system of the form (11). The order of ROMs is set to 10.
In this example, we use four points (k1, c1) in the parameter space for interpolation:

(10,000 N/m, 20 Ns/m), (20,000 N/m, 20 Ns/m), (10,000 N/m, 50 Ns/m)and (20,000 N/m, 50 Ns/m).
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Fig. 12 Interpolation between ROMs of different types. a Interpolation between a BT ROM and an ssest
ROM (with matched poles): response surfaces and the absolute errors. b Interpolation between a BT ROM and
an ssest ROM (with mismatched poles): response surface

The FRFs corresponding to these four points are shown in Fig. 13. Using these
four points, we conduct a 2-dimensional linear interpolation (function “interp2” in
MATLAB) based on the pole-residue representation to get the ROM for (k1, c1) =
(15,000 N/m, 35 Ns/m). Figure 14 shows that the interpolated ROM is accurate.

Discussion
Here are some further discussions:

• The advantages of the ROM interpolation method based on the pole-residue realiza-
tion.

• Wedonot need to know the explicit parametric expressionof the systemmatrices
because the parameters only vary in the interpolation of ROMs.

• It does not assume the existence of the FOM and works well also with ROMs
built by data-driven MOR methods.

• It can even interpolate ROMs built by different MOR methods.
• Its computational cost is relatively insensitive to the number of parameters.
• It can deal with complex parameter dependency, e.g., nonlinear or nonaffine

dependence. Since we employ an external interpolation method to handle the
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Fig. 13 The FRFs corresponding to the four interpolating points

Fig. 14 The FRFs corresponding to the interpolated point

parameter dependency, the proposedmethod is effective as long as the parameter
dependency can be locally captured well by the interpolation method.

• About stability. If we use linear interpolation for the pole-matching PMOR method,
the stability is preserved since interpolating the poles in the left-half plane results
in poles in the left-half plane. Using other interpolation methods, the stability can in
general not be guaranteed.However, we can easily keep track of the interpolated poles
in the pole-matchingmethod. A straightforward solution is to use linear interpolation
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insteadwhen an interpolated pole lies outside the left-half plane. The Loewner PMOR
interpolationmethod always preserves the stability because the FRF at any parameter
is a weighted sum of FRFs corresponding to stable systems.

Conclusions
Apole-matching PMORmethod that interpolatesMIMO linear ROMs in the pole-residue
realization was proposed. The method was tested for Loewner-type data-driven ROMs,
balanced truncation ROMs, ROMs built by the system identification method ssest,
and Krylov-type ROMs. For all these numerical tests, the method gives accurate results.
Together with the PMOR method that interpolates MIMO ROMs in the Loewner repre-
sentation, the importance of realization in ROM interpolation was demonstrated.
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Appendices
Appendix A: A Proof of Theorem 2

Proof

[Ea(p)]i,j =
np∑
l=1

[El]i,j φl(p) = −
np∑
l=1

[Ll]i,j φl(p) = −
np∑
l=1

vi(pl)rj − �iwj(pl)
μi − λj

φl(p)

=
(∑np

l=1
vi(pl)φl(p)

)
rj − �i

(∑np
l=1

wj(pl)φl(p)
)

μi − λj

= − [
L̃(p)

] = [Eb(p)]i,j ,

where L̃(p) denotes the Loewner matrix computed with the interpolated data at p,
namely (47). This proves Ea(p) = Eb(p). Similarly, we prove Aa(p) = Ab(p).

Ba(p) =
np∑
l=1

Blφl(p) =
np∑
l=1

Vlφl(p) =
[ np∑
l=1

v1(pl)φl(p), . . . ,
np∑
l=1

vnL (pl)φl(p)
]

= Bb(p).

https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Main_Page
https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Main_Page
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Similarly, we can prove Ca(p) = Cb(p).
Therefore, the pROM

(Ea(p), Aa(p), Ba(p), Ca(p))

and the pROM

(Eb(p), Ab(p), Bb(p), Cb(p))

are equal. 
�

Appendix B: A Proof of Theorem 3

Proof Define Il = [0n×n(l−1), In×n, 0n×n(np−1)]T . Then,

slL − Lσ l = Y�HXHIl = ITl YV�VX.

Since Y is orthonormal,

�HXHIl = YT ITl YV�VX.

Therefore,

slL − Lσ l = YYT ITl YV�VX.

Compute the SVD of YT ITl YV�V as

YT ITl YV�V = Y ′
l �

′
lX

′
l ,

and the SVD of slL − Lσ l is

svd(slLl − Lσ l) = (YY ′
l )�

′
l(X

′
lX)

because bothYY ′
l andX

′
lX are orthonormal and�′ is diagonal with non-negative diagonal

entries. Therefore,

rowspan{Xl} = rowspan{X ′
lX} ⊆ rowspan{X},

colspan{Yl} = colspan{YY ′
l } ⊆ colspan{Y }.
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