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Abstract

In this contribution the multi-physics problem of fluid–structure–control interaction
(FSCI) is solved by an iterative, partitioned approach utilizing Gauss–Seidel
formulations. The aim is to conduct a fully coupled co-simulation of the FSCI problem,
where the controller actively influences the dynamics of the structure. The purpose of
this manuscript is twofold: In the first part, in order to get a profound idea of the
behavior and parametric sensitivity of such systems involving multiple couplings, the
simplified model problem introduced for fluid–structure interaction (FSI) by Joosten,
Dettmer and Perić is extended by a generic control unit. Since a monolithic solution for
this simplified model problem can be found, it is used for first investigations
concerning solvability and stability. On this basis, three different variants for coupling
the subsystems fluid, structure and controller by a Gauss–Seidel scheme, are derived
and systematically investigated. More precisely the FSCI problem is solved without
nesting of the subsystems in the first variant and with nesting of two of the respective
subsystems in the second and third variant. In the second part, the resulting algorithms
are applied to a complex, non-linear, multi-degree of freedom problem, which is a
well-known benchmark problem in the FSI community and is therefore extended to
FSCI. Applying those algorithms to the multi-degree of freedom problem shows good
results and substantiates the applicability to such problems. It follows, actively
influencing the dynamics of the structure in the FSCI problem by a controller reduces
the structural vibrations induced by the fluid flow significantly.

Keywords: Fluid–structure interaction, Multi-physics, State-feedback control,
Partitioned solution procedure, Fluid–structure–control interaction (FSCI),
Co-simulation

Introduction
The development in the community of coupled problems tends more and more to deal-
ing with multi-physics problems containing more than two physical fields. One of the
first contributions for the partitioned treatment of such problems has been made in
[1], which gives a general overview about the treatment of coupled problems by a par-
titioned approach. More recent developments are for example fluid–structure interac-
tion with electro magnetics [2], fluid–structure–contact interaction [3] or general n-field
coupling [4,5].

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

0123456789().,–: volV

http://crossmark.crossref.org/dialog/?doi=10.1186/s40323-018-0123-6&domain=pdf
http://orcid.org/0000-0002-5889-0232
http://creativecommons.org/licenses/by/4.0/


Winterstein et al. Adv. Model. and Simul. in Eng. Sci.           (2018) 5:29 Page 2 of 29

In this contribution the coupled problem of fluid–structure–control interaction (FSCI)
is treated in a partitioned way. This means a closed-loop control unit, which manipulates
the dynamics of the structure, is added to the well-known two field problem of fluid–
structure interaction (FSI). This kind of problem statement was first mentioned in [1, p.
3262 and 3263], but has not been followed in more detail. Also in [4], FSCI to reduce
flow induced structural displacements has been mentioned as a side note in the context
of testing the algorithm developed therein. In contrast to the present contribution, a rigid
structurewith one degree of freedomwith small displacements with a very simple control-
law is shown. Furthermore [4], utilizes a Jacobi pattern instead of a Gauss–Seidel pattern,
which is the basis of the developments in this manuscript.
The objective of applying a control unit to the fluid–structure interaction problem is

getting a minimum or at best zero displacement.
In the partitioned approach the subsystems are modeled and solved numerically inde-

pendently of each other [1,6,7]. The interaction between the subsystems in the overall
system is achieved by coupling equations on the interface level.
In the case of the FSCI problem the partitioned approach makes it simpler to add the

controller to the problem, which cannot be seen as a physical field, but only as a signal. In
contrast to physical fields, which have an affiliation to a certain spatial domain, signals do
not have this characteristic.
When using the partitioned approach an important issue is the stability of the overall

simulation [2]. When analyzing the stability behavior of multi-physics problems, one may
run into troubles due to the superposition of many different effects.
Therefore, in order to get a good insight into the behavior of such complicated problems

in the field of computational FSI, it became well established practice to fall back to highly
simplified model problems for detailed investigations of different solution schemes. Such
simplified models only represent the relevant properties of the actual FSI problem, thus
they give more insight and open the opportunity to formulate closed-form formulations.
Within this paper such a simplified model problem, used for instance in [8,9, p. 4–6,
p. 1365], will be expanded. In [8, Remark I p. 5–6], and conclusion p. 20, 21 as well as
in [10] it is shown that this simplified model problem is sufficient for the analysis of a
broad spectrum of solution schemes for FSI problems regarding properties like stability,
convergence behavior, accuracy and high frequency damping. Thus, the overall behavior
of multi-degree of freedom FSI problems is explained quite well [9,11]. The basic findings
and algorithms obtained by the simplifiedmodel problem can be applied tomore complex
multi-degree of freedom examples.
This paper is organized as follows: In the section “The simplified model problem” the

simplified model problem for FSCI is presented. For this simplified model problem the
monolithic equations are derived and a stability analysis is conducted. In the “Alternatives
of the Gauss–Seidel pattern for three different physical fields” section, supported by the
simplifiedmodel problem, three different variants of an iterative Gauss–Seidel scheme for
coupling the three subsystems are developed. Those schemes are applied to a numerical
multi-degree of freedom example in the “Numerical results for a multi-degree of freedom
FSCI problem” section. Finally in the “Conclusion and outlook” section a conclusion and
ideas for future work are given.
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The simplifiedmodel problem
The simplified model problem introduced by [8,9] is extended by a generic control unit.
According to [8,9], the system approximating the FSI scenario in the simplest way is the
combination of pointmass, linear damper and a linear elastic spring. This simplifiedmodel
problem is illustrated in Fig. 1 in a monolithic version (a) and a partitioned version (b).
The decomposition into three subsystems and the explicit realization of interfaces (each
creating an interface constraint equation), is visualized in Fig. 1b by the orange separators.
Figure 1 is described in more detail during the course of this subsection. The features
of the newly proposed simplified FSCI model problem can be summarized as follows:
the coupling of a first order ordinary differential equation (ODE) representing the fluid
flow and a second order ODE representing the structure reproduces the FSI problem.
This is extended to the FSCI problem by adding the algebraic ODE of the controller.
In the simplified model problem the combination of viscosity/inertia in one subsystem
(fluid flow) and stiffness/inertia in the other (structure) also corresponds to the main
characteristics of FSI problems. The physics are still dominated by the FSI subproblem,
since inertia is limited to the fluid flow and the structure. The controller is only adjusting
the dynamics of the structure. An iterative/strong/implicit coupling is applied,meaning all
interface constraints are fulfilled strictly using an interface iteration loop. More precisely,
we use a Dirichlet/Neumann [10, p. 4517 et seq.] coupling, with a block Gauss–Seidel
procedure [11–13]. The monolithic version in sub-figure (a) results in the well-known
single degree of freedom (SDoF) system

mÿ(t) + cẏ(t) + ky(t) = u(t), (1)

with its initial conditions
y(0) = y0,
ẏ(0) = ẏ0.

(2)

Herein the constantsm, c, and k represent themass, the viscous damping and the stiffness.
The variables ÿ(t), ẏ(t) and y(t) represent the acceleration, velocity and displacement. The
variable u(t) on the right hand side represents the control input. Thus, y0 is the initial
displacement and ẏ0 is the initial velocity. Equation (1) is equivalent to [8, p. 5], enhanced
by a generic, but representative state-feedback controller. The state-feedback controller
equation is defined as

−kR1 • −kR2•̇

u(t)

controller

y(t)

interface

solid

k c

fluid

αm (1 − α)m

−kR1 • −kR2•̇

u(t)

y(t)

k

m

c

a b

Fig. 1 Simplified model problem: aMonolithic, b partitioned
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u(t) = − kR1y(t) − kR2ẏ(t). (3)

The constant factors kR1 for the displacement and kR2 for the velocity in the control input
are used to tune the controller. Inserting Eq. (3) into (1) one gets

mÿ(t) + (c + kR2) ẏ(t) + (k + kR1) y(t) = 0, (4)

with the initial conditions from Eq. (2), which is a controlled SDoF system. In the fol-
lowing this is referred to as simplified model problem. This system stays linear and one-
dimensional. The reason for this is the treatment of the control input u(t) as Neumann
boundary condition on the SDoF system, which corresponds to a disturbing force z(t).
Therefore no additional displacement degree of freedom is added. This results in pure
force control for the considerations in this work.

Monolithic approach

For the temporal discretization of the monolithic model problem the implicit Euler time
integrator also called “first order backwards differentiation formula” (BDF1) is used. The
BDF1 is defined as:

yn+1 = yn + δtẏn+1,

ẏn+1 = ẏn + δtÿn+1.
(5)

Herein δt is the discrete time step size and yn+1 and yn are the discrete instances of the
displacements, velocities ẏn+1 and accelerations ÿn+1 at time steps tn+1 and tn, with n
being the time step counter. Rewriting Eq. (5) and applying it to Eq. (4) leads to the time
discrete monolithic expression of the coupled system.

(
m + (c + kR2) δt + (k + kR1) δt2

)
yn+1 − (2m + (c + kR2) δt) yn + myn−1 = 0 (6)

and its discrete initial conditions
y−1 = y0 − δtẏ0,
y0 = y0.

(7)

Thus it is subsequently possible to derive statements, which reflect the choice of the
controller parameters kR1 and kR2 for which the controlled system shows stable dynamics.

Analysis of the time-continuous problem

The stability region�c for the time-continuous, monolithic simplifiedmodel problem Eq.
(4) is derived using its characteristic polynomial. The characteristic polynomial reads

p(s) = ms2 + (c + kR2)s + (k + kR1). (8)

This is Eq. (4) transformed to the complex s-plane by a Laplace transform, where s is a
complex number. The roots of Eq. (8) are defined as

{s ∈ C | p(s) = 0}. (9)

In this case asymptotically and bounded input bounded output (BIBO) stability coincide
[14, p. 63, et seq.] or [15, p. 45, et seq.]. The time-continuous stability region �c results in

�c =
{
kR1, kR2 ∈ R

∣∣
∣∣max
i=1,2

{Re{si}} ≤ 0
}

= {
kR1, kR2 ∈ R

∣∣kR1 ≥ −k ∧ kR2 ≥ −c
}
. (10)

Herein si denote the two poles of the time-continuous problem, which are specified by its
eigenvalues.
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Analysis of the time-discrete problem

In a similar way, the stability region �d for the time-discrete, monolithic model problem
Eq. (6) is determined. Its characteristic polynomial reads

p(z) = (
m + (c + kR2) δt + (k + kR1) δt2

)
z2 − (2m + (c + kR2) δt) z + m = 0. (11)

This is Eq. (6) transformed to the complex z-plane by a matched z-transform. The roots
of Eq. (11) are defined as

{z ∈ C | p(z) = 0}. (12)

Finally, the map between the time continuous s-plane and the time discrete z-plane is
defined as

z = esδt . (13)

The disturbance force z(t) is not to bemixed up with the z from thematched z-transform.
The two basic stability conditions change for the time discrete case [14]. Consequently,

the time-discrete region �d formulated in the z-plane results in

�d =
{
kR1, kR2 ∈ R

∣∣∣
∣max
i=1,2

{|zi|} ≤ 1
}
. (14)

Mapped back to the s-plane with Eq. (13) this reads

�d = {kR1, kR2 ∈ R

∣∣
∣∣
1
δt ln

(
max
i=1,2

{|zi|}
)

≤ 0}
= {kR1, kR2 ∈ R

∣∣kR1 ≥ −k
∧ kR2 ≥ −c − δt(kR1 + k)}. (15)

Herein zi denote the two poles of the time-discrete problem, which are specified by its
eigenvalues.
Clearly recognizable in Eq. (15) is the fact that the time-continuous stability region

�c representing real physics gets extended to an apparently larger, time-discrete stabil-
ity region �d. This has to be taken into account when conducting a simulation based
controller design.

Partitioned approach

The initial step of a partitioned approach is the decomposition of the multi-physics prob-
lem into single-physics subproblems and appropriate interface constraints covering the
interactions. This is referred to as partitioning [6] and is shown in Fig. 1b.
A preparatory step for reaching a suitable partitioning of the simplified model problem

is the reformulation of the ODE Eq. (1) as

(αm)ÿ(t) + ((1 − α)m)ÿ(t) + cẏ(t) + ky(t) = u(t) + z(t). (16)

The disturbance force on the right hand side z(t) has to be split up into zF(t) and zS(t),
since Eqs. (17) and (18), which are the partitioned equations, need a disturbance force
each. In combination with Eqs. (2) and (3) this leads finally to the partitioned, simplified
model problem:

((1 − α)m) ÿF(t) + cẏF(t) = zF(t), (17)

is referred to as the fluid subsystem (index F),

(αm)ÿS(t) + kyS(t) = uS(t) + zS(t), (18)
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as the structural subsystem (index S) and

uC(t) = − kR1yC(t) − kR2ẏC(t), (19)

as controller subsystem (index C). The physical interaction is shifted to the interface
constraints (index I)

yF(t) − yS(t) = 0,

zF(t) + zS(t) = 0,

yS(t) − yC(t) = 0,

uS(t) − uC(t) = 0.

(20)

The initial conditions for the structure are given with

yS(0) = y0,
ẏS(0) = ẏ0.

(21)

Thus, the structural domain is represented by the elastic spring k and the point mass
share αm, the fluid domain by the linear damper c and the point mass share (1−α)m. The
interface constraints cover the interactions between these two domains (FSI) and between
structure and controller (SCI). y(t) describes the displacement, which corresponds to the
measured output. z(t) is the disturbance (force) originating from the partitioning and u(t)
the control input. The interface constraint equations are formulated in Eq. (20).
The parameter α ∈ [0, 1) describes the mass distribution between fluid and structural

subsystem, i.e.
mS
m = α and

mF
m = 1 − α, (22)

and allows to precisely quantify the added-mass effect [8,10,16], which also applies to
FSCI problems. Also other “α”-parameters regarding the damping c and the stiffness k
would be feasible [8, p. 5]. At this stage only one parameter α associated with the mass
m is considered. In the dominating FSI subproblem the convergence properties of the
relaxed iteration factor βA in the limit case δt → 0 depend only on this one parameter
[11, Sect. 3, p. 763].
The temporal discretization of the partitioned simplified model problem Eqs. (17), (18),

(19), (20) and (21), with the BDF1 scheme leads to the discrete, partitioned, simplified
model problem. It consists of the discrete fluid Eq. (23), structural Eq. (24) and controller
subsystem Eq. (25):

zn+1
F = (1 − α)m + cδt

δt2 yn+1
F

− (1 − α)m + cδt
δt2 ynF − (1 − α)m

δt ẏnF,

zn+1
F = GF

(
yn+1
F

)
,

(23)

yn+1
S = δt2

αm + kδt2 z
n+1
S + δt2

αm + kδt2 u
n+1
S

+ αm
αm + kδt2 y

n
S + αmδt

αm + kδt2 ẏ
n
S,

yn+1
S = GS

(
zn+1
S , un+1

S

)
,

(24)

un+1
C = −kR1δt + kR2

δt yn+1
C + kR2

δt ynC,

un+1
C = GC

(
yn+1
C

) (25)
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and the discrete interface equations

yn+1
F − yn+1

S = 0,

i.e. IFS,y
(
yn+1
F ,yn+1

S

)
= 0, (26)

zn+1
F + zn+1

S = 0,

i.e. IFS,z
(
zn+1
F ,zn+1

S

)
= 0, (27)

yn+1
S − yn+1

C = 0,

i.e. ISC,y
(
yn+1
S ,yn+1

C

)
= 0, (28)

un+1
S − un+1

C = 0,

i.e. ISC,u
(
un+1
S ,un+1

C

)
= 0. (29)

The operators G and I describe the input-output relation for the specific subsystem and
the interface constraint for the specific coupling, respectively.
The FSI subproblem, i.e. the coupling between fluid and structure, converges to the

solution of Eqs. (23), (24), (26) and (27). The emerging system is the “fluid–structure (FS)
subsystem”, GFS

(
un+1
S

)
. Accordingly, the converged solution of the SCI subproblem, i.e.

the coupling between structure and controller fulfills Eqs. (24), (25), (28) and (29). This
leads to a “structure–controller (SC) subsystem”, GSC(zn+1

S ).

Alternatives of the Gauss–Seidel pattern for three different physical fields
Three different alternatives for the serial Gauss–Seidel pattern for the fluid–structure–
control interaction problem are described and applied to the partitioned simplifiedmodel
problem consisting of Eqs. (23)–(29). The resulting nonlinear interface equation system
can be solved in different ways. Since in this contribution we want to concentrate on
the algorithmic aspects of the overall problem, the simplest iterative technique applying
fixed point iterations Eq. (30), accelerated by relaxation Eq. (31) is used [17, p. 652–659].
Applying a Gauss–Seidel pattern, this implies the subsequent solution of all involved
single-physics subsystems in each iteration step.

k+1yn+1
S = 1A kyn+1

S + bn. (30)
k+1yn+1

S = β
(
1A kyn+1

S + bn
)

+ (1 − β) kyn+1
S ,

k+1yn+1
S = βA kyn+1

S + βbn, (31)

Herein the index k indicates the iteration counter for the interface iterations, the index n
the counter for the time integration, β denotes the user-defined relaxation parameter, 1A
and βA denote the unrelaxed and relaxed iteration factors.
For each of those variants the limits of the unrelaxed 1A and the relaxed βA iteration

factors are derived and the optimal relaxation parameter β∗ is calculated. The algorithms
in pseudocode notation for the different alternatives can be found in the appendix.

No nesting (FSCI)

In the context of this subsection, the acronym FSCI also stands for the more specific
iterative coupling scheme illustrated in Fig. 2, where the Gauss–Seidel communication
pattern is realized without nesting of any subproblems, i.e. the coupled problem is solved
with a single fixed-point iteration loop. This means only one interface equation system
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IFSCI has to be solved. In the graphical representation as a block diagram, each of the
physical fields and the interface equations are outlined by one of the blocks. The arrows
describe the input and output quantities, which are passed between the blocks. Applying
Eq. (30) to the partitioned, simplified model problem the equations of the algorithm
condense down to

k+1yn+1
S

(24)= GS
(
kzn+1

S , kun+1
S

)

(27),(29)= GS
(
−kzn+1

F , kun+1
C

)

(23),(25)= GS
(
−GF

(
kyn+1

F

)
,GC

(
kyn+1

C

))

(26),(28)= GS
(
−GF

(
kyn+1

S

)
,GC

(
kyn+1

S

))
,

i.e. k+1yn+1
S = 1AFSCI

kyn+1
S + bn.

(32)

Herein bn is the part remaining constant during the iteration process.
The limit of the iteration factor

lim
δt→0

{1AFSCI} = α − 1
α

, (33)

shows pure dependency on the mass distribution α.
Supplemented by relaxation, the FSCI scheme shown in Eq. (32) is extended to

k+1yn+1
S = βGS

( − GF(kyn+1
S ),GC(kyn+1

S )
) + (1 − β) kyn+1

S ,

i.e. k+1yn+1
S = βAFSCI

kyn+1
S + βbn.

(34)

The limit of the iteration factor

z
n+1
F = GF

(
y

n+1
F

)

y
n+1
F z

n+1
F

y
n+1
C

u
n+1
C

y
n+1
S

y
n+1
S

z
n+1
S

u
n+1
S

k+1y
n+1
S = GS(z

n+1
S , u

n+1
S )

u
n+1
C = GC

(
y

n+1
C

)

interface constraints

IFSCI
(

y
n+1
F , y

n+1
S ,

z
n+1
F , z

n+1
S , y

n+1
S ,

y
n+1
C , u

n+1
S , u

n+1
C

)
= 0

fluid (CFD) subsystem

structural (CSM) subsystem

controller (CLC) subsystem

Fig. 2 Block diagram for FSCI scheme
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lim
δt→0

{
βAFSCI

} = α − β

α
, (35)

is now clearly determined by the mass distribution α and the relaxation parameter β .
The optimal relaxation parameter becomes

β∗
FSCI = αm + kδt2

m + (c + kR2) δt + (k + kR1) δt2
. (36)

Each term in the denominator is positive, non-zero for physically relevant parameters and
stable controller settings according to Eq. (10). Thus, it can always be found.

Nesting of the FSI sub–problem ([FS]CI)

The acronym [FS]CI denotes the specific iterative coupling scheme illustrated in Fig. 3,
where the Gauss–Seidel communication pattern is depicted with nesting of the FSI sub-
problem, which is indicated by bracketing [FS]. The nesting of sub-problems corresponds
to the inclusion of bi-coupling schemes mentioned in [18]. As it can be seen in Fig. 3, two
interface constraint equations are to be set up. One for the FS subproblem (inner inter-
face constraints) IFSI and one for the overall coupling between the FS subsystem with the
control subsystem (outer interface constraints) I[FS]CI. At first the FS loop is iterated with
constant control input until convergence. The converged values are used as information
for the iterations of the outer loop. If the outer loop does not converge, the algorithm has
to return to the inner loop. Before proceeding to the next time step, inner and outer loop
have to be converged. The scheme is again applied to the partitioned simplified model
problem. Since the pure FSI is solved in its own iteration loop, it is possible to calculate
the best relaxation factor once for the FSI problem, involving two coupled fields and for
the complete FSCI problem involving three coupled fields.

fluid (CFD) subsystem

z
n+1
F = GF

(
y

n+1
F

)

z
n+1
Fy

n+1
F

inner interface
constraints

IFSI
(

y
n+1
F , y

n+1
S ,

z
n+1
F , z

n+1
S

)
= 0

u
n+1
C = GC

(
y

n+1
C

)

y
n+1
S z

n+1
S

y
n+1
C u

n+1
C

y
n+1
S

u
n+1
S

y
n+1
S = GS

(
z

n+1
S , u

n+1
S

)

outer interface
constraints

I[FS]CI
(

y
n+1
S , y

n+1
C ,

u
n+1
S , u

n+1
C

)
= 0

structural (CSM) subsystem

controller (CLC) subsystem

FSI

Fig. 3 Block diagram for [FS]CI scheme
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The inner FSI fixed-point iteration of the algorithm condenses down to

l+1
kyn+1

S
(24)= GS

(
l
kzn+1

S , kun+1
S = const.

)

(27)= GS
(
−l

k zn+1
F , kun+1

S = const.
)

(23)= GS
(
−GF

(
l
kyn+1

F

)
, kun+1

S = const.
)

(26)= GS
(
−GF

(
l
kyn+1

S

)
, kun+1

S = const.
)
,

i.e. l+1
kyn+1

S = 1AFSI l
kyn+1

S + kbn.

(37)

Herein the iteration counter l is used for the inner iteration loop and the iteration counter
k for the outer iteration loop. For the inner FSI fixed point iteration the constant part is
kbn.
The limit of the inner iteration factor

lim
δt→0

{1AFSI} = α − 1
α

, (38)

shows pure dependency on the mass distribution α.
Supplemented by relaxation the inner FSI part of the scheme reads

l+1
kyn+1

S = βGS
(

− GF(l k yn+1
S ), kun+1

S = const.
)

+ (1 − β)l k yn+1
S ,

i.e. l+1
kyn+1

S = βAFSI l
k yn+1

S + βkbn.
(39)

The limit of the inner iteration factor

lim
δt→0

{
βAFSI

} = α − β

α
, (40)

now is obviously determined by the mass distribution α and the relaxation parameter β .
The optimal relaxation parameter becomes

β∗
FSI = αm + kδt2

m + cδt + kδt2 . (41)

It can always be found since each term in the denominator is positive non-equal to zero
for physically relevant parameters independent of the controller settings.
Assuming convergence, the inner FSI fixed-point iteration can be substituted by the

equivalent FS subsystem GFS
(
kun+1

S

)
for analyzing the outer [FS]CI fixed-point iteration.

Consequently, this outer [FS]CI fixed-point iteration of the algorithm condenses down to

k+1yn+1
S = GFS

(
kun+1

S

)

(29)= GFS
(
kun+1

C

)

(25)= GFS
(
GC

(
kyn+1

C

))

(28)= GFS
(
GC

(
kyn+1

S

))
,

i.e. k+1yn+1
S = 1A[FS]CI

kyn+1
S + bn.

(42)

Herein the factor bn remains constant during all iterations. The limit of the outer iteration
factor

lim
δt→0

{
1A[FS]CI

} = 0, (43)

is always zero, independently of the parameter setting.
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Supplemented by relaxation the outer [FS]CI part of the scheme reads
k+1yn+1

S = βGFS
(GC(kyn+1

S )
) + (1 − β)kyn+1

S ,

i.e. k+1yn+1
S = βA[FS]CI

kyn+1
S + βbn.

(44)

The limit of the outer iteration factor

lim
δt→0

{
βA[FS]CI

} = 1 − β , (45)

shows pure dependency on the relaxation parameter β .
The optimal relaxation parameter becomes

β∗
[FS]CI = m + cδt + kδt2

m + (c + kR2) δt + (k + kR1) δt2
. (46)

Each summand in thedenominator is positive andnon-equal to zero for physically relevant
parameters and stable controller settings according to Eq. (10). Thus, it can always be
found.

Nesting of the SCI sub–problem (F[SC]I)

The acronym F[SC]I denotes the specific iterative coupling scheme illustrated in Fig. 4,
where the Gauss–Seidel communication pattern is depicted with a nesting of the SCI
subproblem, which is made clear by bracketing [SC]. Comparable to the [FS]CI problem,
for the F[SC]I problem two interface equations are also to be set up. ISCI for the inner
and IF[SC]I for the outer iteration loop. As already indicated, the solution procedure for
the F[SC]I problem is done just the other way around like in the [FS]CI problem.
Accordingly, first the SC loop is iterated applying a constant disturbance force until

convergence. The converged values are used as information for the iterations of the outer
loop. If the outer loop does not converge, the algorithm has to return to the inner loop.
Before proceeding to the next time step, inner and outer loop have to be converged.
The scheme is again applied to the partitioned simplified model problem. The inner SCI
fixed-point iteration of the algorithm condenses down to

fluid (CFD) subsystem

z
n+1
F = GF

(
y

n+1
F

)

z
n+1
Fy

n+1
F

outer interface
constraints

IF[SC]I
(

y
n+1
F , y

n+1
S ,

z
n+1
F , z

n+1
S

)
= 0

u
n+1
C = GC

(
y

n+1
C

)

y
n+1
S

z
n+1
S

y
n+1
C u

n+1
C

y
n+1
S u

n+1
S

y
n+1
S = GS

(
z

n+1
S , u

n+1
S

)

inner interface
constraints

ISCI
(

y
n+1
S , y

n+1
C ,

u
n+1
S , u

n+1
C

)
= 0

controller (CLC) subsystem

structural (CSM) subsystem

SCI

Fig. 4 Block diagram for F[SC]I scheme
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l+1
kyn+1

S
(24)= GS

(
kzn+1

S = const., l kun+1
S

)

(29)= GS
(
kzn+1

S = const., l kun+1
C

)

(25)= GS
(
kzn+1

S = const.,GC
(
l
kyn+1

C

))

(28)= GS
(
kzn+1

S = const.,GC
(
l
kyn+1

S

))
,

i.e. l+1
kyn+1

S = 1ASCI l
kyn+1

S + kbn.

(47)

Again the iteration counter l is used for the inner iteration loop and the iteration counter
k for the outer iteration loop. As defined for the FSCI and the [FS]CI problem, kbn is the
constant part of the inner iteration loop.
The limit of the inner iteration factor

lim
δt→0

{1ASCI} = 0, (48)

is always zero independently of the parameter setting.
Supplemented by relaxation the inner SCI part of the scheme reads

l+1
kyn+1

S = βGS
(
kzn+1

S = const.,GC(l k yn+1
S )

)
+ (1 − β)l k yn+1

S ,

i.e. l+1
kyn+1

S = βASCI l
k yn+1

S + βkbn.
(49)

The limit of the inner iteration factor

lim
δt→0

{
βASCI

} = 1 − β , (50)

shows pure dependency on the relaxation parameter β .
The optimal relaxation parameter becomes

β∗
SCI = αm + kδt2

αm + kR2δt + (k + kR1) δt2
. (51)

αm and (k + kR1) δt2 in the denominator are positive and non-equal to zero for physically
relevant parameters and stable controller settings according to Eq. (10).
Thus, the optimal relaxation factor can always be found by additionally requiring
kR2δt �= − (

αm + (k + kR1) δt2
)
.

Assuming convergence, the inner SCI fixed-point iteration can accordingly be substi-
tuted by the equivalent SC subsystem GSC

(
kzn+1

S

)
for analyzing the outer F[SC]I fixed-

point iteration. Consequently, this outer F[SC]I fixed-point iteration of the algorithm
condenses down to

k+1yn+1
S = GSC

(
kzn+1

S

)

(27)= GSC
(
−kzn+1

F

)

(23)= GSC
(
−GS

(
kyn+1

F

))

(26)= GSC
(
−GF

(
kyn+1

S

))
,

i.e. k+1yn+1
S = 1AF[SC]I

kyn+1
S + bn.

(52)

The limit of the outer iteration factor

lim
δt→0

{
1AF[SC]I

} = α − 1
α

, (53)

shows pure dependency on the mass distribution α.
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Supplemented by relaxation the outer F[SC]I part of the scheme reads
k+1yn+1

S = βGSC
(
−GF

(
kyn+1

S

))
+ (1 − β)kyn+1

S ,

i.e. k+1yn+1
S = βAF[SC]I

kyn+1
S + βbn.

(54)

And the limit of the outer iteration factor

lim
δt→0

{
βAF[SC]I

} = α − β

α
, (55)

now is obviously determined by the mass distribution α and the relaxation parameter β .
The optimal relaxation parameter becomes

β∗
F[SC]I = αm + kR2δt + (k + kR1) δt2

m + (c + kR2) δt + (k + kR1) δt2
. (56)

It always exists since the denominator is positive and non-equal to zero for physically
relevant parameters and stable controller settings according to Eq. (10).
From the simplifiedmodel problem it can be concluded that all three types of theGauss–

Seidel schemes show unconditional stability for reasonable physical parameters and stable
controller settings. Furthermore, it was possible to derive optimal relaxation parameters
β∗. Thus, the schemes can be subsequently applied to a multi-degree of freedom problem
for further investigations,whichhavenot beenpossiblewith the simplifiedmodel problem.

Numerical results for a multi-degree of freedom FSCI problem
The inspiration for the multi-degree of freedom FSCI experiment were the numerical
benchmarks proposed in [19,20, p. 195–197]. Since the investigations should go beyond
the study of the pure FSI effects, the experimental setup had to be slightly modified. All
in all, the principle arrangement remains the same and can be seen in Fig. 5.
In contrast to the rigid cylinder in [19], a square, as suggested in [20], is placed in the

channel. To this rigid square an elastic flag (characters R to E) is attached. The square
and flag are placed asymmetric in the channel in order to stimulate a fast onset of the
excitation mechanism depicted in Fig. 7. The phenomenology of the problem is described
in [19,20].
In the following we are actively trying to influence the dynamics of the structure by a

controller, extending the FSI to the FSCI problem. The main objective of this is to reduce
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Fig. 5 Dimensions and boundary conditions of the numerical FSCI experiment
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Fig. 6 Computational structural mechanics high fidelity model

or in the best case entirely suppress the amplitude of the end-point displacement at point
E. Similar to the simplified model problem, the control input is a Neumann boundary
condition, which is applied at the root point of the flag R. For the design of the controller,
a reduced order model is necessary [15,21], which is exemplarily shown in Fig. 8. This low
fidelity structural model was only used for the controller. In the coupled FSCI simulation
the structure was simulated like in classical FSI by the high fidelity model depicted in
Fig. 6.
For all simulations of the multi-degree of freedom FSCI problem the open-source soft-

ware Kratos Multi-Physics [22,23] was used.

Description of the subsystems involved

Just as mentioned in the introduction, the FSCI problem involves three subsystems,
namely a fluid flow, a structural mechanics part and a controller.
At first the computational fluid dynamics (CFD) subsystem is introduced. The main

dimensions and the boundary conditions of the problem can be seen in Fig. 5. The time
constant inlet velocity is described by the function

vF,in(η) = vmax4
η

H
(
1 − η

H
)
. (57)

This is a quadratic parabola with vmax at its peak value. Herein η is the coordinate running
form the bottom of the channel to its width H . The material parameters for the fluid
flow are chosen in accordance to the CFD3 specifications in [19], leading to a strongly
unsteady flow with vortex shedding. This vortex shedding is additionally supported by
the aforementioned eccentric placement of the square in the channel. Thus the following
specifications are chosen: ρF = 1000 kg/m3, νF = 0.001m2/s and vin = 2m/s, which
leads to a Reynolds number Re = 200. The fluid flow is discretized by a monolithic
finite element formulation with triangular elements developed in [24], using a variational
multi-scale (VMS)method for stabilization. In this case, the integration in time is done by a
second order backwards differentiation formula (BDF2). The BDF2 scheme approximates
the velocity as

ẏn+1 = 1
δt

(
3
2
yn+1 − 2yn + 1

2
yn−1

)
. (58)

Again ẏn+1, yn+1, yn and yn−1 denote the velocity and displacements at the discrete time
instances tn+1, tn and tn−1. The time step is set to δt = 0.01 s for all subsystems. The
fluid problem is formulated in arbitrary Lagrangian-Eulerian (ALE) kinematics [25] with
a mesh motion algorithm based on [26].
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Next, the computational structural mechanics subsystem (CSM) is presented. The CSM
subsystem is represented by a high fidelity multi-degree of freedom model which is the
initially suggested CSM system as proposed in [19]. The specifications of the high fidelity
model can be seen in Fig. 6.
Herein, zs(ξ , t) is thedisturbance force fromthefluidflowand yS(ξ , t) is thedisplacement

of the structure at the interface. Again one can see that the control input uS(t) is applied
only at the root point of the elastic flag and the displacement yS(t) is measured solely at
its tip. The special aspect of the high fidelity model is the back part of the square (finely
crosshatched), which is originally assumed to be rigid in [19], but is considered elastic in
the current investigation. It is used to linearly distribute the root point excitation along
the back side of the square in order to match the ALE boundary conditions of the fluid
domain. Therefore a pseudo material with ν = 0 and ρ = 0 is set, to avoid artificially
introduced deformations and inertia effects at the back of the square. The high fidelity
CSM model itself is discretized by a structured mesh of 4-node (2D) non-linear, fully
integrated plane stress elements formulated in Total Lagrangian kinematics. In this case
the temporal discretization is performed byNewmark’smethod. Thematerial used for the
simulations is a linear St.VenantKirchhoffmaterialwith theparametersρs = 1000 kg/m3,
ES = 5.6 · 106 N/m2 and νS = 0.4. The values used for the simulations match the CSM2
benchmark of [19] scaled by the factor of γ . The gravity constant is set to g = 2m/s2 and
is acting in ξ direction. Figure 7 shows an extract of the simulation results for one second
by using the parameters for fluid flow and structural model described in this subsection
(γ = 102) in order to show the deformation mechanism. The figure shows the deformed
mesh and the velocity contours. The controller is not activated yet. The displacements at
point E with and without activated controller are plotted in Figs. 10 and 11.
Themesheson the interfaceof fluid and structure subsystemcoincide, thusnoadditional

mapping operation is necessary.
The third subsystem consists of a low fidelity CSMmodel, which is implemented in the

controller and the control law itself. In the low fidelity CSM model the overall structural
dynamics are condensed to a single degree of freedom system. The low fidelity model
can be seen in Fig. 8. It has been derived from the high fidelity multi-degree of freedom
model. The structural model itself is approximated by a simple second-order ODE, which
matches the boundary conditions of the high fidelity model and is used by the controller
to calculate uS(t). The distributed displacements yS(ξ , t) between points R and E are
approximated by quadratic shape functions, which should be a good enough assumption
for the dominant mode shape of the investigated problem (see Fig. 7). They are defined

as yu(ξ ) = 1 −
(

ξ−ξR/l
)2

for the control input uS(t) and yx(ξ ) =
(

ξ−ξR/l
)2

for the state
variable xS(t). Thus, the real physics of the high fidelity model reduces to

(γm)ẍS(t) + (γ k)xS(t) = (γ b0)uS(t) + zS(t). (59)

In the latter equation the single state xS(t) directly corresponds to the measured output
yS(t) at the end point E resulting in yS(t) = xS(t). The parameter b0, which is associated
with the control input at the root pointR, uS(t), is used to replace the root point excitation,
which avoids introducing an additional degreeof freedom.Applying theprinciple of virtual
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Fig. 7 Deformed structure with velocity contours and deformed finite element mesh for the numerical
experiment from 10.0 to 11.0 s by snapshots in steps of 0.25 s
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0

0

m
γc,γk

xS(t)

control input
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meas.
output

= yS(t)

γb0

Fig. 8 Computational structural mechanics: low fidelity CSM model for the controller design
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Table 1 Values selected for controller parameters

Component Parameter Value Unit

Controlled system m 0.0144 kg

c 0 N s/m

k 2.400549 N/m

b0 −1.600366 N/m

e 0.01 1

State-feedback Q I –

r 1 –

kR1 −0.3028 1

kR2 −1.0027 s

State observer λB −2000 rad/s

kB 2000 rad/s

work (PvW) with a distributed cross sectional mass μ = ρwh, where w is the width, h the
height of the cross section and with ẼI is the distributed sectional stiffness, leads to

μ

∫ ξR+l

ξR
y2x(ξ )dξ ẍS(t) + ẼI

∫ ξR+l

ξR
y2x(ξ )dξxS(t)

= μ

∫ ξR+l

ξR
yx(ξ )yu(ξ )dξ üS(t)

+ ẼI
∫ ξR+l

ξR
yx(ξ )yu(ξ )dξuS(t) +

∑

i
yx(ξi)zηS(ξi, t).

(60)

The last term of Eq. (60) denotes the discrete disturbance forces coming from the nodes
i on the interface mesh of the fluid domain which are to be summed up here. The open
parameters in Eq. (59) can be obtained as:

m = μl
5

= ρwhl
5

, k = ẼI l
5

= ESwh3
4l3 ,

b0 = −ẼI 2l
15

= ESwh3
6l3 , zS(t) =

∑

i

(ξi − ξR
l

)2
zηS(ξi, t).

(61)

Those approximations are applied to the centerline of the structure and have to be pro-
jected to the surfaces of the flag by appropriate projection operations. The time discrete
low fidelity CSMmodel is finally given with the adapted time discretization Eq. (24) from
the simplified model problem. The equivalent values to match the multi-degree of free-
dom model for m, k and b0 can be found in Table 1. Those parameters can be scaled by
the parameter γ accordingly.
With the low fidelity CSM model, the controller can be designed. In this case, a state-

feedback control following state observer is implemented, which is state of the art for
modernmethods for controller design and is also used in the context ofmany applications
in control theory. Herein, the controller state feedback matrix is specified via a linear-
quadratic regulator approach (LQR) and the observer output-feedback matrix is set via
pole placement as generally described in [15,21]. The block diagram can be seen in Fig. 9.
The controlled system, which is seen by the controller, is represented by the equation

(γm)ÿ(t) + (γ c)ẏ(t) + (γ k)y(t) = (γ b0)u(t) + ez(t), (62)

including the measured output y(t), the control input u(t), the disturbance force z(t) and
the scaling factor γ . For a parameter exploration to design the controller, the disturbance
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KR

y0, ẏ0z

x̂20

yd = 0 u y

x̂

−
controlled system

(γm)ÿ + (γc)ẏ + (γk)y =
(γb0)u + ez

reduced state observer

open- and closed-loop controller

Fig. 9 Block diagram for the controlled system with following state observer [21], p. 334

force z(t) is applied from recorded FSI simulations of the system. The system is rewritten
in state-space representation, with x1 := y(t) and x2 := ẏ(t) being the entries in the state
vector x = [x1, x2]T, reading

[
ẋ1
ẋ2

]

=
[

0 1
− k

m − c
m

][
x1
x2

]

+
[
0
b0
m

]

u(t) +
[
0
e
m

]

z(t),

i.e. ẋ = Ax + Bu(t) + Ez(t)
(63)

and the output equation

y(t) =
[
1 0

] [
x1
x2

]

,

i.e. y(t) = Cx.
(64)

where A, B, C and E are constant matrices. Since the system is fully controllable and
fully observable, state-feedback control and state observer are possible. Thus a control
law similar to the one presented for the model problem can be used. This is given by

u(t) = −KRx, (65)

with KR = [kR1kR2] being the constant state feedback matrix. Herein the constants in KR
are determinedwith the LQR approach described in detail in [21, chapter 7]. This involves
user-definable weightsQ ∈ R

2,2 related to state the x and r ∈ R
1,1 for control input u(t).

With an appropriate choice ofQ �= Q(γ ) and r �= r(γ ) the state-feedbackmatrix becomes
independent of γ , because also A �= A(γ ), B �= B(γ ) and C �= C(γ ).
Since the displacement y(t), being state one, should bemeasured during the simulations,

it is directly accessible (x1 = y(t)). The second state should not be measured directly and
thus needs an approximation. This approximation x2 ≈ x̂2 is done from measurements
of state one by a reduced state observer. The state space representation therefore can be
split up into one part for the measurement y(t) and a second one for the estimation x̂ in
the following way:
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˙̂x = Ax̂ + Bu,

i.e.
[
ẏ(t)
˙̂x2

]

=
[

0 1
− k

m − c
m

] [
y(t)
x̂2

]

+
[
0
b0
m

]

u(t).
(66)

Conducting the observer design and applying the BDF2 scheme results in

xn+1
1 = yn+1,

[LHS] x̃n+1
2 = − 1

δt
(

− 2̃xn2 + 1
2
x̃n−1
2

)
+ [RHS] yn+1,

x̂n+1
2 = x̃n+1

2 + kByn+1,

un+1 = − kR1xn+1
1 − kR2̂xn+1

2 ,

(67)

where

[LHS] = 3
2δt − aB + bBkR2 = 3

2δt + c
m + kB + b0

mkR2,
[RHS] = eB − bB (kR1 + kR2kB) ,

= −
( c
m + kB

)
kB − k

m − b0
m (kR1 + kR2kB) (68)

and x̃2 results from the design of the reduced state observer.
For multi-degree of freedom problems, like the one presented in this section, it is not

possible to derive an optimal relaxation parameter β∗ [11, p. 769] as was done for the
simplified model problem. Thus in this paper it is computed by Aitken acceleration as
proposed for FSI problems in [8,11].

Residual calculation and numerical accuracy

The overall coupled partitioned FSCI problem as well as the fluid subsystem were solved
by an iterative approach. For the structural and the controller subsystem a direct solver
was used. For iterative solution procedures the residual calculation and the accuracy of
the solution play an important role in order to gain correct results [2,27, p. 201]. In the
following a closer look is taken to the iterative solution of the interface equation system.
For FSI [28] shows that in order to achieve the desired accuracy for the coupled problem
using an iterative approach, the numerical accuracy of the solution of the subsystems has
to be at least two orders of magnitude higher than the desired numerical accuracy of the
coupled system. Thus, it makes sense to use the outcome of those investigations also for
the FSCI problem.
Another crucial part is the calculation of the residual of the interface equation system.

Since we are dealing with Dirichlet–Neumann coupling, it is obvious to calculate the
residual vector Ry from the interface displacements, which correspond to the structural
displacements yS of the high fidelity model. This means

kRy = kyS − k−1yS. (69)

The convergence at the interface is achieved if
∥
∥∥kRy

∥
∥∥

/√ndof ≤ εI . (70)

where || . . . || denotes the L2 norm of the residual vector and εI is the desired accuracy on
the interface. The index k denotes the iteration counter. The residual is normalized by the
square root of the number of degrees of freedom on the interface ndof [28]. For the results
in the following simulations the numerical accuracy criteria can be found inTable 2. In this
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Table 2 Recommendation for the numerical accuracy of solvers and interface iterations
on basis of [28]

FSI FSCI [FS]CI F[SC]I

εF 10−(p+2) 10−(p+2) 10−(p+4) 10−(p+4)

εS 10−(p+2) 10−(p+2) 10−(p+4) 10−(p+4)

εinnerI 10−p 10−p 10−(p+2) 10−(p+2)

εouterI – – 10−p 10−p
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Fig. 10 Results: FSI and FSCI with LQR (γ = 102)

table, the proportions of values for the stopping criteria of the coupled simulations for the
different variants of partitioned simulation patterns are listed. At first the overall desired
numerical accuracy, which finally is to be achieved for the overall coupled simulation,
was selected in this case to be p = 7, resulting in a value of εI = 10−7 for the interface
iterations. Afterwards the values of εF for the fluid solver and εS for the structural solver
as well as for the inner interface iteration loop εinnerI and the outer interface iteration loop
εouterI were adopted according to the criteria described above.

Presentation and interpretation of the results

The simulationswere conducted for 15 s and themeasuredoutput, i.e. the tip displacement
(pointE) of the elastic flag, has beenplotted.The result for a pureFSI and aFSCI simulation
with no nesting for a scaling factor γ = 102 and γ = 104 can be seen in Figs. 10 and 12.
Additionally the results for the controlled system can be seen in an amplified version for
γ = 102 in Fig. 11. One can see that the controller applied to the root point R of the flag is
able to reduce the magnitude of the tip displacement at point E in the order of magnitude
of almost 102. In Figs. 10, 11, 12 and 13 the horizontal axis represents evolution in time
and is subdivided into divisions of two seconds for the time interval form 0 to 14 s and is
stretched for the time interval from 14 to 15 s. The vertical axis represents the measured
output corresponding to the tip displacement of the flag. The vertical axes in Figs. 10 and
11 have a different scaling, but both figures show the same results for FSCI with LQR.
Furthermore, the remaining oscillation in Fig. 11 is more regular than the one measured
from the pure FSI simulation.
Although, the parameter setting is chosen to be optimal for the γ = 102, the controller

still works for the value of γ = 104 since the structure behaves more inertial and is stiffer.
Regarding the eigenvalues of the coupled system this means that the eigenfrequencies
of the structure are dominating the overall behavior. It also follows that the number of
interface iterations will decrease. By reducing the factor of γ , the addedmass effect comes
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Fig. 11 Zoomed view: FSCI with LQR (γ = 102)

0 2 4 6 8 10 12 14 14.5 1514

time t in [s]

0.0 · 10+0
3.0 · 10−5
6.0 · 10−5
9.0 · 10−5

−3.0 · 10−5

−6.0 · 10−5

−9.0 · 10−5

m
e
a
su

re
d

o
u
tp

u
t

y
in

[m
] 1.2 · 10−4

−1.2 · 10−4

FSI FSCI with LQR

Fig. 12 Results: FSI and FSCI with LQR (γ = 104)

more into play and the system becomes softer. This means the eigenfrequencies of the
fluid flow start to dominate the system behavior and the nonlinear behavior of the coupled
system becomes stronger. It follows that a new controller design has to be conducted. For
a value of γ ≤ 10−2 the structure is too soft and light to be able to control its behavior by
a force applied at its rootpoint R. The results for such an example can be seen in Fig. 13.
In Fig. 14 the overall number of interface iterations per time step for the different

schemes applied to the numerical test example are plotted for the factor γ = 102 for the
different coupling variants are plotted. For example in the case of F[SC]I, we count the
number of interface iterations for the [SC] loop (inner loop) first and afterwards add the
number of interface iterations between [SC] and F (outer loop). It can be seen that the
FSCI scheme needs a similar number of iterations as the pure FSI. One reason for this can
be for example seen in Table 2. For the FSCI problem the number of coupling loops is the
same as for the pure FSI problem and thus also the total number of interface iterations is
almost the equal. Looking closer at the number of interface iterations one can see, that the
FSCI even needs less iterations at certain points than the pure FSI. This is, due to the fact
that the controller stabilizes the system leading to a more homogeneous oscillation with a
smaller amplitude. Using the F[SC]I scheme increases the number of iterations almost by
a factor of three and using the [FS]CI by almost a factor of four. According to Table 2 an
additional loop and also a higher numerical accuracy in the solvers of the subsystems is
needed and the number of overall interface iterations increases. The reason that the F[SC]I
requires fewer interface iterations than the [FS]CI version is the stabilizing behavior of the
controller, which influences the outer FS loop in a positive way. Conversely, the contrary
effect occurs for the [FS]CI scheme.
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Conclusion and outlook
Within this paper, the algorithmic treatment and solution approaches of fluid–structure–
control interaction (FSCI) with iterative Gauss–Seidel schemes is discussed. The aim was
to conduct a fully coupled co-simulation of the FSCI problem, with the controller actively
influencing the dynamics of the system.
The simplifiedmodel problemutilized in a first step is representative of the convergence

behavior and stability for structural force control. Thus, all three developed variants of
the Gauss–Seidel scheme prove unconditional stability for the simplified model problem
in case of physically relevant parameters and stable controller settings. Furthermore,
an optimal relaxation factor β∗ could be determined for the simplified model problem.
Hence, the simplified model problem is qualitatively capable of constituting the basic
properties of the FSCI problem concerning stability and convergence. For the non-linear
multi-degree of freedom problem this means one can conclude from the simplifiedmodel
problem that it should be possible to reduce the displacement significantly by applying
a controller with an appropriate set of controller parameters. Since Aitken acceleration
is utilized instead of a constant relaxation factor, the schemes developed are supposed
to converge in the multi-degree of freedom case. However, since the simplified model
problem only covers the main effects of the FSCI problem (e.g. the added mass effect),
no detailed and quantitative conclusions concerning convergence patterns and stability
issues can be drawn for the multi-degree of freedom problem.
Applying the variants of the Gauss–Seidel scheme, developed by the simplified model

problem, to a non-linear multi-degree of freedom problem in a second step showed good
results. The flow induced vibrations could be reduced significantly. Simulations for differ-
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ent material parameter settings of the CSM subsystem also have shown the limits of the
chosen controller type and design. Furthermore they show the limits for controllability of
this kind of system by applying a force at the root point of the flag. Investigating the total
number of iterations per time step illustrates, that the FSCI scheme with no nesting is the
best variant for controlling the selected multi-degree of freedom problem presented in
this contribution.
As an outlook, more advanced control laws could be applied to the multi-degree of

freedom problem in order to reduce the oscillation even more. Furthermore, the number
of iterations could be reduced by using more sophisticated coupling schemes like for
example presented in [4,29,30].
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Appendix
The appendix shows the algorithms developed for FSCI, [FS]CI and F[SC]I throughout
this paper and are written here in pseudocode notation, in order to facilitate an own
implementation by the reader.
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Algorithm 1: Pseudocode for the partitioned FSCI scheme (no nesting).
// initialize states, i.e. set ICs…
kendx0F ←− xinitF ; kendx0S ←− xinitS ; kendx0C ←− xinitC

// initialize displacements and measured output…
kendy0S ←− yinitS ; kend yS0 ←− yinitS
// time loop…
for n ←− 0 to n ←− nend − 1 do

// predict displacements and measured output…
0yn+1

S ←− kendynS; 0yn+1
S ←− kend ynS

// interface iteration loop, i.e. FSCI loop…
for k ←− 0 to k ←− kmax do

// map displacements from solid to fluid…
// and copy measured output from solid to controller…
kyn+1

F ←− My
(
kyn+1

S

)

kyCn+1 ←− kySn+1

// solve fluid and controller in parallel…

kzn+1
F ←− G

[
kxn+1

F

]

F

(
kyn+1

F

)

kun+1
C ←− G

[
kxn+1

C

]

C

(
kyn+1

C

)

// map forces from fluid to solid…
// and copy control input from controller to solid…
kzn+1

S ←− Mz
(
kzn+1

F

)

kun+1
S ←− kun+1

C

// solve solid…
[kyn+1

S
kyn+1

S

]
←− G

[
kxn+1

S

]

S

(
kzn+1

S , kun+1
S

)

// calculate residuum of displacements and measured output…
kRn+1

y ←− kyn+1
S − k−1yn+1

S
kRn+1

y ←− kyn+1
S − k−1yn+1

S
kRn+1

y,y :=
[
kRn+1

y
kRn+1

y
]

// check for convergence …
kεn+1 ←−

∥∥
∥kRn+1

y,y
∥∥
∥ /

√ndof
if kεn+1 < maxε then

break
end
// update Aitken factor
if k = 0 then

0βn+1 ←− initβ
else

kβn+1 ←− k−1βn+1
k−1Rn+1y,y

T(
k−1Rn+1y,y −kRn+1y,y

)

∥
∥∥k−1Rn+1y,y −kRn+1y,y

∥
∥∥
2

end
// update displacements and measured output…
k+1yn+1

S ←− kyn+1
S + kβn+1 kRn+1

y
k+1yn+1

S ←− kyn+1
S + kβn+1 kRn+1

y
end

end
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Algorithm 2: Pseudocode for the partitioned [FS]CI scheme (nesting of [FS] subsystem).
// initialize states, i.e. set ICs…
kendmendx0F ←− xinitF ; kendmendx0S ←− xinitS ; kendx0C ←− xinitC

// initialize displacements and measured output…
kendmendy0S ←− yinitS ; kendmend y0S ←− yinitS
// time loop…
for n ←− 0 to n ←− nend − 1

// predict displacements and measured output…
0

mend
yn+1
S ←− kendmendynS; 0

mend
yn+1
S ←− kendmend ynS

// outer interface iteration loop, i.e. [FS]CI loop…
for k ←− 0 to k ←− kmax

// copy measured output from solid to controller…
kyn+1

C ←− k
mend

yn+1
S

// solve controller…

kun+1
C ←− G

[
kxn+1

C

]

C

(
kyn+1

C

)

// copy control input from controller to solid…
kun+1

S ←− kun+1
C

// predict displacements…
k
0yn+1

S ←− k
mend

yn+1
S

// inner interface iteration loop, i.e. FSI loop…
for m ←− 0 to m ←− mmax

// map displacements from solid to fluid…
k
myn+1

F ←− My
(
k
myn+1

S

)

// solve fluid…

k
mzn+1

F ←− G
[
k
mxn+1

F

]

F

(
k
myn+1

F

)

// map forces from fluid to solid…
k
mzn+1

S ←− Mz
(
k
mzn+1

F

)

// solve solid…
[ k
myn+1

S
k
myn+1

S

]
←− G

[
k
mxn+1

S

]

S

(
k
mzn+1

S , kun+1
S

)

// calculate residuum of displacements…
k
mRn+1

y ←− k
myn+1

S − k
m−1yn+1

S
// check for inner convergence…
k
mεn+1 ←−

∥∥
∥ k
mRn+1

y
∥∥
∥ /

√ndof
if k

mεn+1 < maxε then
break

end
// update inner Aitken factor…
if m = 0 then

k
0β

n+1 ←− initβ
else

if dim
{
k
mRn+1

y
}

= 1 then
k
mβn+1 ←− k

m−1β
n+1

k
m−1Rn+1y

k
m−1Rn+1y − k

mRn+1y
else
end

end
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Pseudocode for the partitioned [FS]CI scheme.(continued).

k
mβn+1 ←− k

m−1β
n+1

k
m−1Rn+1y

T(
k

m−1Rn+1y − k
mRn+1y

)

∥
∥∥ k
m−1Rn+1y − k

mRn+1y
∥
∥∥
2

// update displacements…
k

m+1yn+1
S ←− k

myn+1
S + k

mβn+1 k
mRn+1

y
end
// calculate residuum of measured output…
kRn+1

y ←− k
mend

ySn+1 − k−1
mend

ySn+1

// check for outer convergence…
kεn+1 ←−

∥∥
∥kRn+1

y

∥∥
∥ /

√ndof
if kεn+1 < maxε then

break
end
// update outer Aitken factor…
if k = 0 then

0βn+1 ←− initβ
else

kβn+1 ←− k−1βn+1
k−1Rn+1

y
k−1Rn+1

y −kRn+1
y

end
// update displacements and measured output…
k+1
mend

yn+1
S ←− k

mend
yn+1
S

k+1
mend

ySn+1 ←− k
mend

ySn+1 + kβn+1 kRn+1
y

end
end
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Algorithm 3: Pseudocode for the partitioned F[SC]I scheme(nested [SC] subsystem).
// initialize states, i.e. set ICs…
kendx0F ←− xinitF ; kendmendx0S ←− xinitS ; kendmendx0C ←− xinitC

// initialize displacements and measured output…
kendmendy0S ←− yinitS ; kendmend y0S ←− yinitS
// time loop…
for n ←− 0 to n ←− nend − 1

// predict displacements and measured output…
0

mend
yn+1
S ←− kendmendynS; 0

mend
yn+1
S ←− kendmend ynS

// outer interface iteration loop, i.e. F[SC]I loop…
for k ←− 0 to k ←− kmax

// map displacements from solid to fluid…
kyn+1

F ←− My
(

k
mend

yn+1
S

)

// solve fluid…

kzn+1
F ←− G

[
kxn+1

F

]

F

(
kyn+1

F

)

// map forces from fluid to solid…
kzn+1

S ←− Mz
(
kzn+1

F

)

// predict measured output…
k
0y

n+1
S ←− k

mend
yn+1
S

// inner interface iteration loop, i.e. SCI loop…
for m ←− 0 to m ←− mmax

// copy measured output from solid to controller…
k
myn+1

C ←− k
myn+1

S

// solve controller…

k
mun+1

C ←− G
[
k
mxn+1

C

]

C

(
k
myn+1

C

)

// copy control input from controller to solid…
k
mun+1

S ←− k
mun+1

C

// solve solid…
[ k
myn+1

S
k
myn+1

S

]
←− G

[
k
mxn+1

S

]

S

(
kzn+1

S , kmun+1
S

)

// calculate residuum of measured output…
k
mRn+1

y ←− k
myn+1

S − k
m−1y

n+1
S

// check for inner convergence…
k
mεn+1 ←−

∥
∥∥ k
mRn+1

y

∥
∥∥ /

√ndof
if k

mεn+1 < maxε then
break

end
// update inner Aitken factor…
if m = 0 then

k
0β

n+1 ←− initβ
else

k
mβn+1 ←− k

m−1β
n+1

k
m−1Rn+1

y
k

m−1Rn+1
y − k

mRn+1
y

// update measured output…
k

m+1y
n+1
S ←− k

myn+1
S + k

mβn+1 k
mRn+1

y
end
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Pseudocode for the partitioned F[SC]I scheme (continued).

// calculate residuum of displacements…
kRn+1

y ←− k
mend

yn+1
S − k−1

mend
yn+1
S

// check for outer convergence…
kεn+1 ←−

∥∥∥kRn+1
y

∥∥∥ /
√ndof

if kεn+1 < maxε then
break

end
// update outer Aitken factor…
if k = 0 then

0βn+1 ←− initβ
else

if dim
{
kRn+1

y
}

= 1 then
kβn+1 ←− k−1βn+1

k−1Rn+1y
k−1Rn+1y −kRn+1y

else
kβn+1 ←− k−1βn+1

k−1Rn+1y
T(

k−1Rn+1y −kRn+1y
)

∥∥
∥k−1Rn+1y −kRn+1y

∥∥
∥
2

end
end
// update displacements and measured output…
k+1
mend

yn+1
S ←− k

mend
yn+1
S + kβn+1 kRn+1

y
k+1
mend

yn+1
S ←− k

mend
yn+1
S

end
end
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