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Abstract

The principal aim of this work is to provide an adapted numerical scheme for the
approximation of elastic wave propagation in incompressible solids. We rely on
high-order conforming finite element with mass lumping for space discretisation and
implicit/explicit, second-order, energy-preserving time discretisation. The time step
restriction only depends on the shear wave velocity and at each time step a Poisson
problem must be solved to account for the incompressibility constraint that is imposed
by penalisation techniques.
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Introduction
Since large applications in computational mechanics concern nearly and pure incom-
pressible elasticity (living tissues, biomaterials), a great effort has been made in the last
40 years to provide accurate finite element method (FEM) formulations for the approxi-
mation of elasticity in incompressible solids. However, themajority of the works proposed
in the literature only deals with static computations. The main contributions to date can
be mainly divided into two categories: pure displacement methods and mixed methods.
On the one hand, displacement-based FEM can provide accurate solutions of quasi or

pure incompressible elasticity problems; nonetheless, the space resolution necessary to
provide anaccurate solution is far greater than theone required for a compressiblematerial
[1,2]. Indeed, these methods can suffer of undesirable limitations, such as ill-conditioning
of the stiffness matrix, spurious or incorrect pressures and numerical locking (severe
stiffening near the incompressible limit) [2], especially if low-order shape functions are
adopted, due to the enforcement of the incompressibility constraint—i.e. the requirement
that the displacement field is divergence-free. Locking is due to the fact that, in case of
incompressible materials, volumetric strains approach zero, while the pressure field is of
the order of the boundary traction, therefore it cannot be computed from strains, but it
must be calculated directly from the equilibrium equations [2,3]. Several methods have
been proposed to improve accuracy of displacement-basedmethods.Among them,we cite
the reduced/selective integration method proposed in [4], the B-bar method [5] and the
F-barmethod [6]. Thesemethods circumvent volumetric locking by reducing the number
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of discrete incompressibility constraints enforced at the quadrature points [7]. We also
cite a method adapted to nearly-incompressible materials with volumetric energy penalty
function in the framework of the continuum-based absolute nodal coordinate formulation
(ANCF) [8].
On the other hand, mixed finite element methods [9] have proven effective and even

necessary to obtain accurate results in the resolution of incompressible fluid flows and
incompressible elasticity. In these methods, the constrained problem is rewritten in form
of an unconstrained saddle-point problem, due to the introduction of a second variable
(namely, the pressure).However, not allmixedmethods are stable. In fact, the convergence
properties of this formulation are governed by stability considerations, involving ellipticity
requirements and the famousLadyzenskaya–Babǔska–Brezzi (LBB) inf-sup condition [10,
11]. For example, equal-order interpolation both for displacement and pressure field does
not satisfy the LBB condition for classical mixed FEM [9]. If this stability condition is not
satisfied, severe unphysical oscillations in the pressure field can appear, named “spurious
pressure modes”. Stabilised methods have been proposed to overcome the limitations of
classical mixed FE formulations in the field of incompressible fluid dynamics (see [12–14]
and references therein for throughout reviews on the subject). Brezzi and collaborators
[15] proposed to extend the equation accounting for incompressibility in Stokes flows
by adding a laplacian of the pressure field. Other methods are based on the addition of
artificial high-order differential terms to the discrete continuity equation, in order to let
the formulation satisfy the LBB condition (for more details, see [16]). We cite for example
the StreamlineUpwindPetrov–Galerkinmethod [17–19]. Similar stabilisedmethods have
been recently extended to the context of linear elasticity [20–24].
All the aforementionedmethods can be straightforwardly extended to the discretisation

of dynamic equations using implicit time discretisation (e.g. Implicit Euler scheme or
implicit Newmark schemes). However, at each time step, the resolution of the resulting
linear system is required for the computation of the velocity field (or most often the
displacement field in elasticity). We highlight that, in linear elasticity, this could be done
in practice by performing a factorisation of the matrices to invert, since they are constant
in time.However, for large scale problems, it is not possible to store any factorisation of the
matrices and it is even difficult to store preconditioners. A popular approach to increase
the efficiency of dynamic solvers was first proposed in computational fluid dynamics in the
late 1960s [25–28], and it is called fractional-step projection. This family of methods aims
at accurately solving the equation governing viscous incompressible fluids by performing
a time-discretisation in which viscosity and incompressibility are treated in two separate
steps. In more detail, the first half-step (Burgers step) corresponds to an elliptic Boundary
Value Problem (BVP) for an intermediate velocity, accounting for viscosity diffusion and
advection. The second half-step (projection step) represents an inviscid problem where
the end-of-step, divergence-free velocity is computed, along with pressure distribution.
This step essentially consists in solving a Poisson problem. In this way, at each time step
two decoupled elliptic equations are solved, and this is very advantageous for large scale
simulations [29–31].
Less effort has been made to develop efficient methods for the treatment of the incom-

pressibility constraint in elastodynamics. Since the underlying physics is wave propaga-
tion, fully explicit methods seem to be good candidates to obtain efficient schemes (this
is possible for nearly-incompressible media). We cite in this context a recent method
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for quasi-incompressible elastodynamics [32] with linear finite elements, extended in
[33] to the purely incompressible case. Furthermore, a recent velocity/stress formulation
for the simulation of linear elastodynamics in nearly-incompressible solids with weakly
enforced boundary conditions was proposed by Scovazzi and collaborators [34]. How-
ever, the stability constraint (CFL condition) is drastically limited by the enforcement of
incompressibility. In this regard, the efficiency of the fractional-step projection algorithm
mentioned above, along with the similarities with viscous incompressible fluids, suggests
the possibility to adopt the main ideas of this method to design an efficient scheme for
incompressible elastodynamics.
Afirstmethod that integrates a fractional time-stepmethod for Lagrangian formulations

of elastodynamics problems has been proposed by Lahiri and collaborators [35]. In this
paper, the authors use variational integrators that take advantage of the Hamilton varia-
tional principle to construct a discrete approximation of the integral of the Lagrangian
over a given interval, and they adopt linear finite element discretisation in space.
We have developed a numerical scheme that carefully takes into account the intrinsic

properties of the wave equation. Namely, we construct a conservative time discretisation,
and treat implicitly only the terms corresponding to “informations” travelling at infinite
velocity (i.e. the incompressibility constraint) by solving a Poisson problem. The fully
discrete scheme that we propose to efficiently solve the incompressible elastodynamic
problem is

⎧
⎪⎨

⎪⎩

ỹn+1
α,h − 2 ỹn

α,h + ỹn−1
α,h

Δt2
+ Ah ỹnα,h + BT

h p̃nα,h = f nh,

Bh ỹnα,h = α Δt2 Ch CT
h p̃nα,h,

(1)

whereAh denotes a stiffness operator (independent of the compressibility parameters),BT
h

and Bh correspond to discrete gradient and divergence operators, and ChCT
h represents

a discrete laplacian operator. The coefficient α corresponds to a penalisation parameter
and (ỹn

α,h, p̃
n
α,h, f

n
h) denote respectively the displacement field, the pressure and the source

term.
Therefore, if effective methods for explicit time-discretisation are used, our algorithm

requires at each time step the resolution of a scalar Poisson problem (that can be done
by several, efficient algorithms) and few matrix-vector multiplications for the explicit
methods.
Note that the stability condition for Scheme (1) reads

Δt2 � 4 ‖Ah‖−1 4α − 1
4α

, α > 1/4.

for some operator norm ‖ · ‖ that we define later. Contrarily to the standard results
one could expect (i.e. Δt2 � 4 ‖Ah‖−1, see [36]), the stability condition is slightly more
constraining due to the factor (4α − 1)/4α.
Our approach is a strategy to approximate elastic wave propagation in quasi-

incompressible media. In order to do that, we introduce a first good approximation: the
pure incompressible formulation. Then, we construct a penalised formulation to approxi-
mate the pure incompressible problem. Our procedure is justified by arguments of stab-
ility, computational cost and numerical convergence of the resulting schemes.
Finally, the work we propose is closely related to the Selective Mass Scaling Method

(SMS) developed in [37] for wave propagation in quasi-incompressible materials. In this



Caforio and Imperiale Adv. Model. and Simul. in Eng. Sci.           (2018) 5:30 Page 4 of 27

method, the mass matrix is modified: artificial mass is added, hence obtaining very good
stability properties at the cost of computing amassmatrix that cannot be lumped anymore.
The problem is then implicit for the displacement field, and thus it not possible to use fast
solvers (like FFT solvers) for the inversion of a scalar Poisson problem.
The article is organised as follows. In “Continuous framework” section we provide two

standard formulations of the continuous elastodynamic problem for quasi-incompressible
andpure incompressiblemedia alongwith a novel formulation for the treatment of incom-
pressibility by penalisation. Furthermore, we derive the variational formulation associated
with each problem. “Space discretisation” section deals with the abstract framework for
space discretisation of the incompressible elastodynamics equation by Spectral Element
Method. In “Time discretisation” section we provide the time discretisations for each
formulation by finite difference. Then, a stability analysis based on energy considera-
tions is performed for each scheme in “Stability analysis” section and pros and cons
are discussed. Numerical results, including convergence curves to the solution of the
incompressible elastodynamics equations for different choices of materials, are shown in
“Two-dimensional numerical convergence results” section. Finally, a three-dimensional
illustration in a more realistic test case for elastography imaging is shown in “A three-
dimensional test case” section.

Continuous framework
The equation of elastodynamics

Given a domainΩ ⊂ Rd smooth enough, with d = 2 or d = 3, we introduce the following
notations to define Hilbert spaces for the elastic displacements

H := {
v ∈ L2(Ω)d

}
, X := H1

0 (Ω)d, X′ = H−1(Ω)d.

For the sake of simplicity,we consider homogenousDirichlet conditionon the boundary of
the propagation domain.We also need to consider divergence-free displacements. Hence,
we introduce the following subspace of X

V := {v ∈ X | div v = 0}.
Pressure is a variable of interest, and is sought in the spaces

L := L20(Ω) =
{

q ∈ L2(Ω) |
∫

Ω

q = 0
}

, M = {q ∈ H1(Ω) | q ∈ L}.

As usual, we identify L andH with their dual in what follows. Moreover, for the sake of
conciseness, we define, given a function space A on Ω ,

Ck (A) := Ck ([0, T ];A), k ∈ {0, 1, 2, . . .},
where T > 0 is a given final time of observation. Furthermore, we introduce
ΩT := [0, T ] × Ω . Our aim is to analyse the propagation of elastic waves in heteroge-
nous, anisotropic, incompressible solids and we consider as a reference model the follow-
ing partial differential equation (PDE) system: For f given and sufficiently regular, find
y
λ

∈ C2(H) ∩ C1(X) such that

⎧
⎨

⎩

ρ ∂2t yλ
− div

(Cε(y
λ
)
) − λ ∇div y

λ
= f in ΩT ,

y
λ
(t = 0) = 0, ∂ty

λ
(t = 0) = 0 in Ω ,

(QI)
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withλ ∈ R+ the bulkmodulus, that is assumed to be large, due to nearly-incompressibility,
ρ(x) the strictly positive density of the medium and C(x) the elasticity tensor which is
symmetric, coercive and bounded, i.e. there exist two positive scalars c, C such that

c|ε|2 � C(x)ε : ε � C|ε|2, ∀ ε. (2)

Non-dimensionalisation

Since we are going to consider a limit process where the bulk modulus tends to infinity,
a first step is to non-dimensionalise our system of equations. To do so, we introduce a
typical length scale L of the domain Ω , a typical observation time τ and a shear modulus
μ, and we define a non-dimensionalised displacement as follows:

ŷ
λ̂
(t, x) := L−1y

λ
(τ t, L x), t ∈ [0, T̂ ], x ∈ Ω̂ ,

where Ω̂ is a rescaled domain and T̂ = T/τ is of the order of unity. Note that t and x
refer now to non-dimensionalised variables. We also introduce the non-dimensionalised
quantities

ρ̂ = L2ρ
τ 2μ

, Ĉ = μ−1 C, λ̂ = λ

μ
, f̂ = L

μ
f .

Then, the equation of elastodynamics can be recast as
⎧
⎨

⎩

ρ̂ ∂2t ŷλ̂
− div

(Ĉε(ŷ
λ̂
)
) − λ̂ ∇div ŷ

λ̂
= f̂ in [0, T̂ ] × Ω̂ ,

ŷ
λ̂
(t = 0) = 0, ∂t ŷ

λ̂
(t = 0) = 0 in Ω̂ .

We also introduce here the pressure field pλ associated with the displacement field y
λ
. Its

non-dimensionalised counterpart is given by

p̂λ̂(t, x) := μ−1pλ(τ t, L x), t ∈ [0, T̂ ], x ∈ Ω̂ .

For the sake of simplicity, we drop the notation ·̂ throughout the rest of the paper.

Themixed and penalised formulations

Existence and uniqueness results for problem (QI) are well-known (see [36]). An alter-
native, equivalent formulation to (QI) is obtained by introducing the scalar function
pλ := λ div y

λ
. The couple (y

λ
, pλ) ∈ C2(H) ∩ C1(X) × C0(L) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

ρ ∂2t yλ
− div (C(x)ε(y

λ
)) − ∇ pλ = f in ΩT ,

div y
λ

= λ−1 pλ in ΩT ,

y
λ
(t = 0) = 0, ∂ty

λ
(t = 0) = 0 in Ω .

(QIM)

Since λ is large, it is natural to approximate the solution of (QIM) by the solution obtained
at the limit as λ goes to infinity. More precisely, if one defines (y, p) and some corrector
functions (y1, p1) and (y2, p2) such that

y
λ

= y + λ−1y1 + λ−2y2 + · · · , pλ = p + λ−1p1 + λ−2p2 + · · · , (3)

then a standard asymptotic analysis procedure shows that (y, p) satisfies a pure incom-
pressible problem. This formulation reads
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Find (y, p) ∈ C2(H) ∩ C1(V) × C0(L) such that

⎧
⎪⎪⎨

⎪⎪⎩

ρ ∂2t y − div (C(x)ε(y)) − ∇ p = f in ΩT ,

div y = 0 in ΩT ,

y(t = 0) = 0, ∂ty(t = 0) = 0 in Ω .

(IM)

Observe that the function p in (IM) acts as a Lagrange multiplier to enforce incompressi-
bility. If we assume that (IM) is the standard problem to solve, then Eq. (QIM) can be seen
as an approximate penalised formulation of (IM). Existence, uniqueness and regularity
results of problem (IM) can also be induced from (QI) by a limit process as λ → ∞.
We now introduce another formulation by penalisation of the problem (IM), inspired

from existing formulations for the Stokes problem [14]. It reads
Find (ỹ

α
, p̃α) ∈ C2(H) ∩ C1(X) × C0(M) such that

⎧
⎪⎪⎨

⎪⎪⎩

ρ ∂2t ỹα
− div (C(x)ε(ỹ

α
)) − ∇ p̃α = f in ΩT ,

div ỹ
α

= −α Δp̃α in ΩT ,

ỹ
α
(t = 0) = 0, ∂t ỹ

α
(t = 0) = 0 in Ω .

(QIP)

First, note that (QIP) is different from (QIM) due to the introduction of the laplacian
operator in the second equation. Furthermore, one can observe that (QIP) differs from the
other formulations by several important but subtle aspects. First, the pressure p̃α is sought
in a more regular space, namely C0(M), that is mandatory to give an appropriate meaning
to the introduced Laplace operator. Second, system (QIP) is not a closed set of equations.
Indeed, a boundary condition is required for the secondequation for thepressure, that now
has a trace (we recall that we use homogeneous Dirichlet conditions on the displacement).
A standard choice is to use homogenous Neumann boundary conditions

∇ p̃α · n = 0 on [0, T ] × ∂Ω . (4)

Then, using the same arguments as before, i.e., writing

ỹ
α

= y + α ỹ1 + α2 ỹ2 + · · · , p̃α = p + α p̃1 + α2 p̃2 + · · · , (5)

one can see that (ỹ
α
, p̃α) can be approximated by (y, p), solution of the pure incompressible

mixed formulation (IM). Reciprocally, (ỹ
α
, p̃α) represents another approximation of the

pure incompressible mixed formulation (IM). Moreover, eliminating the unknown p̃α , it
is possible to rewrite (QIP) as

ρ ∂2t ỹα
− div

(Cε(ỹ
α
)
) − α−1∇(−Δ)−1divỹ

α
= f , (6)

where Δ−1 : L → M stands for the inverse Laplace operator equipped with a
homogeneous Neumann boundary condition. It is possible to prove that the operator
−div

(Cε(·)) − α−1∇(−Δ)−1div(·) defines a self-adjoint coercive bilinear form. Conse-
quently, existence and uniqueness of the solution can be retrieved from (6) by standard
theory.

Remark 1 Note that the choice (4) is arbitrary. In the context of the Stokes equations
it was observed (see [31] and reference therein) that it results in a boundary layer that
deteriorates the approximation of the gradient of the solution. Correcting terms can be
introduced in specific cases (see again [31]) but their analysis is more difficult.
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Weak formulation of the continuous PDE

Let us first consider the weak formulation associated with (IM). Given f sufficiently regu-
lar, it reads:
Find (y, p) ∈ C2(H) ∩ C1(X) × C0(L) such that for all w ∈ X, q ∈ L

⎧
⎪⎪⎨

⎪⎪⎩

m(∂2t y, w) + a(y, w) + b(p, w) = (f , w),

b(q, y) = 0,

y(t = 0) = 0, ∂ty(t = 0) = 0,

(7)

wherewehavedefined thebilinear formsm : X×X → R,a : X×X → R andb : L×X → R

such that

m(y, w) :=
∫

Ω

ρ y · w dΩ , a(y, w) :=
∫

Ω

C ε(y) : ε(w)dΩ ,

b(p, w) :=
∫

Ω

p div w dΩ .

Note that the bilinear formm(·, ·) is symmetric and positive. Furthermore, due to Eq. (2)
and the Korn inequality, the bilinear form a(·, ·) is symmetric and coercive in X. We can
write (7) as a set of equations written in X′ × L for all t ∈ [0, T ]. To do so, we introduce
the linear continuous operatorsM : X → X′, A : X → X′, such that ∀ (y, w) ∈ X × X

〈My,w〉 = m(y, w), 〈Ay, w〉 = a(y, w), (8)

and we define the divergence operator B : X → L and its transpose BT : L → X′ such
that, ∀ (y, q) ∈ X × L,

(By, q)L = b(q, y) = 〈BTq, y〉, (9)

where (·, ·)L denotes the standard scalar product of L2(Ω). Note that the operatorM can
be continuously extended to an operator fromH toH and, if ρ ≡ 1, then it is the identity
operator. Finally, the variational formulation can be equivalently rewritten
Find (y, p) ∈ C2(H) ∩ C1(X) × C0(L) such that for all t ∈ [0, T ]

⎧
⎨

⎩

M ∂2t y + Ay + BTp = f in X′,
B y = 0 in L,

(IMv)

and

y(t = 0) = 0, ∂ty(t = 0) = 0.

Analogously, the variational formulation associated with system (QIM) reads, equiva-
lently,
Find (y

λ
, pλ) ∈ C2(H) ∩ C1(X) × C0(L) such that for all t ∈ [0, T ]

⎧
⎨

⎩

M ∂2t yλ
+ Ay

λ
+ BTpλ = f in X′,

B y
λ

= λ−1I pλ in L,
(QIMv)

and

y
λ
(t = 0) = 0, ∂ty

λ
(t = 0) = 0,
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where I is the identity operator from L to L. Concerning the problem (QIP) with the
boundary condition (4), we propose a variational formulation that reads
Find (ỹ

α
, p̃α) ∈ C2(H) ∩ C1(X) × C0(M) such that for all (w, q) ∈ X × M

⎧
⎨

⎩

m(∂2t ỹα
, w) + a(ỹ

α
, w) + b(p̃α , w) = (f , w),

b(q, ỹ
α
) = α (∇p̃α ,∇q)L,

(10)

and

ỹ
α
(t = 0) = 0, ∂t ỹ

α
(t = 0) = 0.

It is not straightforward to write equations in dual spaces from the variational formulation
(10). This is due to the fact thatwe have changed the functional space inwhich the pressure
is sought. To do so, we introduce the divergence operator C : H → M′ and its transpose
CT : M → H defined by

c(q, w) = −
∫

Ω

∇ q · w dΩ 〈Cw, q〉 = (CTq, w)H = c(q, w), (11)

where (·, ·)H denotes the standard scalar product on L2(Ω)d . Then, by identification of
the operator B as an operator from X toM′ (instead of an operator from X to L), one can
show that (10) is equivalent to Find (ỹ

α
, p̃α) ∈ C2(H) ∩ C1(X) × C0(M) such that, for all

t ∈ [0, T ],
⎧
⎨

⎩

M ∂2t ỹα
+ A ỹ

α
+ BT p̃α = f in X′,

B ỹ
α

= αC CT p̃α inM′,
(QIPv)

and

ỹ
α
(t = 0) = 0, ∂t ỹ

α
(t = 0) = 0.

Note that the operator C corresponds to an extension of the operator B. Inversely, the
gradient operator BT represents the extension of CT in a larger space. This distinction in
the notation is not relevant in the continuous framework, but it will be fundamental at
the discrete level.

Space discretisation
Let us now consider a regular finite-dimensional spaceXh ⊂ X for the discretisation of the
displacement field andMh ⊂ M for the discretisation of the pressure field. These spaces
are obtained by finite element approximation of X and M, respectively. Furthermore,
inspired by [29], in order to discretise accordingly the variational formulation (10) that
we propose, we introduce a third finite-dimensional space denoted Yh ⊂ H that should
satisfy, for the sake of simplicity,

Xh ⊂ Yh and ∇Mh ⊂ Yh.

We define the embedding ih : Xh → Yh and its transpose iTh : Yh → Xh such that for all
(yh, wh) ∈ Xh × Yh

(yh, i
T
h wh)H := (ihyh, wh)Yh := (yh, wh)Yh , (12)

where (·, ·)Yh stands for the approximation of the scalar product in H that is defined
using quadrature formulae (it is a symmetric coercive and continuous bilinear form in
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Yh for the norm in H). In a more general way, we assume that quadrature formulae
do not corrupt symmetry and positivity properties of the bilinear forms. We introduce
the discrete divergence operator Ch : Yh → Mh and the discrete gradient operator
CT
h : Mh → Yh such that for all (ph, wh) ∈ Mh × Yh

(ph, Chwh)L := (CT
h ph, wh)Yh := −(∇ph, wh)Yh .

Observe that CT
h corresponds to the operator CT ≡ −∇ applied to functions in Mh,

considering the resulting functions in the larger space Yh. Then, we define another
discrete divergence operator Bh : Xh → Mh and another discrete gradient operator
BT
h : Mh → Xh as

Bh := Ch ih and BT
h := iTh CT

h . (13)

One can observe that, for all (ph, wh) ∈ Mh × Xh, we have

(Bh wh, ph)L = (Ch ih wh, ph)L = (ih wh, CT
h ph)Yh

= (wh, iTh CT
h ph)H = (wh, BT

h ph)H. (14)

Note also that the following commutative diagrams (taken from [29]) hold

Xh Mh

Yh

Bh

ih Ch

Xh Mh

Yh

BTh

CT
h

iTh

We introduce the linear continuous operators Mh : Xh → Xh and Ah : Xh → Xh such
that for all (vh, wh) ∈ Xh × Xh

(Mhvh, wh)H = mh(vh, wh), (Ahvh, wh)H = ah(vh, wh). (15)

where the subscript h in the notation of the bilinear forms stands for the use of quadrature
rule in the computation of integrals.
The finite element approximation of (IMv) reads

Find (yh, ph) ∈ C2(Xh) × C0(Mh) such that for all t ∈ [0, T ]

⎧
⎨

⎩

Mh ∂2t yh + Ah yh + BT
h ph = f h in Xh,

Bh yh = 0 inMh,
(IMh)

and

yh(t = 0) = 0, ∂tyh(t = 0) = 0,

where f h(t) ∈ Xh denotes some approximation of f . Analogously to the pure incompressi-
ble mixed formulation, we can retrieve the space discretisation associated with (QIMv).
It reads
Find (y

λ,h, pλ,h) ∈ C2(Xh) × C0(Mh) such that for all t ∈ [0, T ]

⎧
⎨

⎩

Mh ∂2t yλ,h + Ah yλ,h + BT
h pλ,h = f h in Xh,

Bh yλ,h = λ−1Ihpλ,h inMh,
(QIMh)

and

y
λ,h(t = 0) = 0, ∂ty

λ,h(t = 0) = 0.
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The operator Ih : Mh → Mh is such that for all (ph, qh) ∈ Mh

(Ihph, qh)L = (ph, qh)Lh ,

where (·, ·)Lh stands for the approximation of the scalar product in L by quadrature
formulae.
Finally, we are able to give the space discretisation associated with the novel formulation
we propose (QIPv). It reads
Find (ỹ

α,h, p̃α,h) ∈ C2(Xh) × C0(Mh) such that for all t ∈ [0, T ]

⎧
⎨

⎩

Mh ∂2t ỹα,h + Ah ỹα,h + BT
h p̃α,h = f h in Xh,

Bh ỹα,h = α ChCT
h p̃α,h inMh,

(QIPh)

and

ỹ
α,h(t = 0) = 0, ∂t ỹ

α,h(t = 0) = 0.

Note that the operator ChCT
h corresponds to a discrete laplacian operator on Lh. Indeed,

for all (ph, qh) ∈ Mh × Mh

(ChCT
h ph, qh)L = (CT

h ph, C
T
h qh)Yh = (∇ph,∇qh)Yh .

Therefore, ChCT
h : Mh → Mh is invertible for any reasonable choice of finite element

spaces and quadrature rule. This is obviously also true for Ih andMh.
Let us insist on the importance of the introduction of the space Yh. First, it is related

to the definition of the quadrature formulae in H in the definition of (12). Second, even
if exact integration is performed, the introduction of the space Yh allows us to take into
account the fact that, in general, the gradient of functions in Mh does not belong to Xh.
Indeed, if thiswas the case, thenCh andBhwouldbe the sameoperator and thepenalisation
strategy would be useless in terms of computational efficiency (see the discussion in “Fully
discrete schemes” section).
In the numerical results we present in this work we use high-order Spectral Finite

Element, as in [38] and [39]. Since we consider a simple geometry for our purposes, we
construct a quasi-uniform triangulation of Ω composed of quadrangles or hexahedra

Ω =
N⋃

i=1
Ki, Ki ∩ Kj = ∅, Fi(K̂ ) = Ki,

where K̂ is the unit square or the unit cube and ∀ i ∈ {1, 2, . . . , N },Fi denotes the invertible
transformation of the reference element K̂ to the deformed element Ki. Then, we define

Xh = {
φ ∈ C0(Ω)d | φ|Ki ◦ Fi ∈ Qr(K̂ )d

}
,

where Qr is the set of polynomials with degree r � 1 in each variable of space. To
obtain mass-lumping (meaning that Mh can be inverted trivially) one must choose the
quadrature points in the computation ofmh(·, ·) at the same location as the interpolation
points (see [40]). Sufficient accuracy is obtained if the interpolation and quadrature points
correspond in the reference elements to the Gauss–Lobatto points of same order (r in
our case, that gives (r + 1)d quadrature/interpolation points in the reference elements).
For the computation of ah(·, ·) we use the same quadrature rule as for the computation of
mh(·, ·) (which gives sufficient accuracy on non-distortedmesh, see [41]). Then, we choose

Mh = {
ϕ ∈ C0(Ω) | ϕ|Ki ◦ Fi ∈ Qr−1(K̂ )

}
.
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Note that the major difference here is that we choose a lower-order finite element space,
butMh is still constructed using continuous finite element. It is mentioned in [9] that this
choice is compatible withXh in the sense that a discrete inf-sup condition is satisfied (the
importance of this condition is further detailed below). In addition, we assume that (·, ·)Lh

is computed using Gauss–Lobatto quadrature points of order r−1. Hence, mass-lumping
is achieved and the operator Ih is easily invertible. Finally, we define

Yh = Xh + {
ψ ∈ L2(Ω)d | ψ |Ki ◦ Fi ∈ Qr−1(K̂ )d

}

and (·, ·)Yh is computed using the Gauss–Lobatto quadrature points of order r − 1. Note
that we have the inclusion ∇Mh ⊂ Yh only if all the Fi are affine. We believe that this is
only a technical limitation. However, numerical results are provided only in that case.

Time discretisation
This section deals with the time discretisation of the semi-discrete formulations obtained
by FE approximation in space.We consider only finite difference schemes that are centred,
in order to preserve energy conservation at the discrete level. In what follows, the fully
discrete schemes for the standard formulations (IM) and (QIM) are provided. Moreover,
we propose the fully discrete scheme for the novel formulation (QIP).

Fully discrete schemes

Let us consider a time interval [0, T ], with T > 0, and define the partition tn = nΔt, with
n ∈ {0, 1, . . . , N }, and Δ t = T/N . The fully discrete scheme corresponding to (IM) for
n ∈ {0, 1, . . . , N } is constructed based on a simple second-order finite difference scheme,
namely a leapfrog scheme.We shall consider two sequences of approximate displacement
fields {ynh ∈ Xh} and pressures {pnh ∈ Lh} such that (y0h, y

1
h) is given and for n ∈ {1, , N }

⎧
⎪⎨

⎪⎩

Mh
yn+1
h − 2 ynh + yn−1

h
Δt2

+ Ah ynh + BT
h pnh = f nh in Xh,

Bhynh = 0 inMh,
(IMnh)

with f nh = f h(t
n). The implementation of scheme (IMnh) can be done using Schur com-

plement techniques. It reads as follows: given (yn−1
h , ynh), first compute pnh from

(Bh M−1
h BT

h ) p
n
h = Bh M−1

h (f nh − Ahynh); (16)

then, yn+1
h is given by

yn+1
h = Δt2M−1

h f nh + 2 ynh − yn−1
h − Δt2M−1

h Ah ynh − Δt2M−1
h BT

h pnh.

One can see that the pressure field is an intermediate unknown that acts as a Lagrange
multiplier to enforce the constraintBhyn+1

h = 0.Note thatwe use the notationpnh by analo-
gy with the quasi-incompressible schemes that we present in what follows. Moreover, the
system (16) is well-posed if BT

h is injective and Bh surjective. This corresponds to verify
that the LBB condition is satisfied, i.e. there exists a constant c > 0 such that

inf
qh∈Mh

sup
wh∈Xh

(Bhwh, qh)
‖wh‖X ‖qh‖L � c, (17)

where, if c does not depend on the discretisation parameter, one recovers an optimal
convergence behaviour.
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Note that for the incompressible, linear Stokes problem it is standard to show [42–45]
that standard second-order discrete space-time discretisation can be achieved as soon
as the LBB condition holds. We assume that similar results hold for the elastodynamic
problem (IMh). Finally, note that Eq. (16) can be solved at each time step by itera-
tive algorithms and, since the underlying problem is symmetric, the Conjugate Gradient
method is a good candidate. However, it is important to highlight the fact that the opera-
tor Bh M−1

h BT
h = Ch ih M−1

h iTh C
T
h is much more complicated to invert than Ch CT

h due
to the presence of the term ih M−1

h iTh that has the effect to widen the bandwidth of the
corresponding finite element matrix. Our aim is to specifically tackle this problem by
avoiding—at each time step—the inversion of Bh M−1

h BT
h , and inverting instead Ch CT

h ,
for which we have efficient solvers.

Remark 2 If non-zero initial displacement y
λ
(t = 0) = y0 and/or initial velocity

∂ty
λ
(t = 0) = v0 are considered, or if the source term f h is not 0 at time t = 0,

then, to preserve the expected second-order consistency, the computation of the first two
iterates is performed as follows:

y0h = yh,0, y1h = yh,0 + Δt vh,0 + Δt2

2
Mh

(
f 0h − Ah yh,0 − BT

h p0h) (18)

where p0h is computed from (16) with n = 0, and (yh,0, vh,0) belong to Xh × Xh and
correspond to an approximation of (y0, v0).

In order to write the fully discrete scheme corresponding to (QIM) for n ∈ {1, . . . , N },
we define two sequences of approximate displacement fields {yn

λ,h ∈ Xh} and pressures
{pn

λ,h ∈ Mh} such that (y0
λ,h, y

1
λ,h) is given and for n ∈ {1, . . . , N }

⎧
⎪⎨

⎪⎩

Mh
yn+1
λ,h − 2 yn

λ,h + yn−1
λ,h

Δt2
+ Ah ynλ,h + BT

h pnλ,h = f nh in Xh,

Bhynλ,h = λ−1Ih pnλ,h inMh.
(QIMnh)

Observe that the Scheme (QIMnh) is fully explicit, due to the use of the mass-lumping
technique (we recall that Mh and Ih are easily invertible). However, we show in the fol-
lowing section that, due to stability considerations, the maximum time step allowed is
considerably reduced by the fact that the pressure term is treated explicitly. Observe that
the first two iterates can be computed using (18) with p0h replaced by p0

λ,h = λ I−1
h Bhy0.

Finally, we provide the fully discrete scheme corresponding to (QIP) for n ∈ {1, . . . , N }.
We define two sequences of approximate displacement fields {ỹn

α,h ∈ Xh} and approximate
pressures {p̃n

α,h ∈ Mh} such that (ỹ0
α,h, ỹ

1
α,h) is given and for n ∈ {1, , N }

⎧
⎪⎨

⎪⎩

Mh
ỹn+1
α,h − 2 ỹn

α,h + ỹn−1
α,h

Δt2
+ Ah ỹnα,h + BT

h p̃nα,h = f nh in Xh,

Bhỹnα,h = α Δt2 Ch CT
h p̃n

α,h inMh.
(QIPnh)

Note that here, for consistency reasons, we have rescaled the penalisation parameter by
Δt2 and assume α is independent of Δt. This choice should guarantee the second-order
consistency in time that is expected from the leapfrog time discretisation. Note that we
can directly rewrite the second equation in (QIPnh) as

p̃nα,h = (Ch CT
h )

−1

α Δt2
Bhỹnα,h. (19)
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Consequently, this step is equivalent to solving a discrete Poisson problem for the pressure
at each time step, with homogeneous Neumann boundary conditions on the boundary
∂Ω . One of the main advantages of this formulation is that the Poisson problem is very
standard and its solution can be retrieved by fast solvers. In addition, observe that the first
two iterates can be computed using (18) with p0h computed with Eq. (19) for n = 0 and
ỹ0
α,h ≡ yh,0. Observe that by injecting (19) in (QIPnh), we retrieve

Mh
ỹn+1
α,h − 2 ỹn

α,h + ỹn−1
α,h

Δt2
+ Ah ỹnα,h + BT

h (Ch CT
h )

−1Bh

α Δt2
ỹn
α,h = f nh. (20)

Remark 3 Finally, note that it is not obvious to see why the solution computed by the
Scheme (QIPnh) should satisfy Bhỹnα,h � 0 as Δt goes to 0, since Ch CT

h p̃n
α,h may explode

with Δt. Among other objectives, the stability analysis below describes precisely in which
sense Bhỹnα,h is small.

Remark 4 TheSMSmethod, first introduced in [46], consists in adding an inertial term. In
the specific case of quasi-incompressible materials, it is suggested in [37] to add the volu-
metric contribution of the stiffness operator. In our framework, starting from (QIMnh),
after eliminating the pressure term pn

λ,h, by SMS strategy one could obtain the Scheme

(
Mh + βλBT

h I−1
h Bh

) yn+1
β ,h − 2 yn

β ,h + yn−1
β ,h

Δt2
+ Ah ynβ ,h

+ λBT
h I−1

h Bh ynβ ,h = f nh, (21)

where β is some well-chosen parameter. Note that the operators Ih and Bh embed the
definition of adequate quadrature formulae to avoid numerical locking effects (typically,
reduced integration must be used). Furthermore, observe that

β
yn+1
β ,h − 2 yn

β ,h + yn−1
β ,h

Δt2
= − yn

β ,h + β

Δt2
yn+1
β ,h +

(

1 − 2
β

Δt2

)

yn
β ,h + β

Δt2
yn−1
β ,h ,

and therefore the Scheme (21) can be rewritten, with θ := β

Δt2
, as

Mh
yn+1
β ,h − 2 yn

β ,h + yn−1
β ,h

Δt2
+ Ah ynβ ,h

+ λBT
h I−1

h Bh
(
θyn+1

β ,h + (1 − 2 θ )yn
β ,h + θyn−1

β ,h

) = f nh.

The scheme above is an explicit-implicit hybrid scheme (see [47]) which has a stability
condition depending only on (Mh,Ah) (i.e. the operators related to the shear wave propa-
gation only) as soon as θ � 1/4. Although very good stability properties can be proved,
at each time step one has to find the solution of a linear system for the displacement field
and, thus, it not possible to use fast solvers for the inversion of a scalar Poisson problem.
This last point motivated the introduction of the Scheme (QIPnh).

Stability analysis

The aim of this section is to find uniform estimates of the discrete energy of the different
schemes, i.e.

sup
n∈{0,1,...,N }

|En+ 1
2

h | � C, (22)
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where the constant C depends on the final time step T = N Δt and on the data of
the continuous problem, but is independent ofΔt and h. However, if explicit schemes are
employed for timediscretisation, the time step is limited by a stability condition depending
on h. We refer to [36] for further reading.
For the sake of simplicity, we consider a time tn such that the source term has vanished

(i.e. f h(t) = 0, ∀t � tn). Then, the energy of the continuous problem is constant in
time. In order to retrieve a discrete counterpart of this energy, we consider for every
formulation, as a test function, the centred discrete approximation of the time derivative
of the displacement at time tn.

Stability of scheme (IMnh)

Let us first consider formulation (IMnh). By scalar product in the first equation in (IMnh)
with

vh = yn+1
h − yn−1

h
2Δt

(23)

aswell as by discrete differentiationof the second equation in (IMnh) andby scalar product
with pnh we obtain

⎧
⎪⎪⎨

⎪⎪⎩

(
Mh

yn+1
h − 2 ynh + yn−1

h
Δt2

+ Ah ynh + BT
h pnh,

yn+1
h − yn−1

h
2Δt

)

H
= 0,

(
Bh

yn+1
h − yn−1

h
2Δt

, pnh
)

L
= 0.

(24)

Then, due to symmetry of Bh and Eq. (14), we can simplify the first equation in (24). We
have

(
Mh

yn+1
h − 2 ynh + yn−1

h
Δt2

+ Ah ynh,
yn+1
h − yn−1

h
2Δt

)

H
= 0. (25)

We define the discrete energy at time n + 1
2 as

E
n+ 1

2
h = E

n+ 1
2

k − Δt2

4
E
n+ 1

2
kp + E

n+ 1
2p , (26)

where the kinetic energy reads

E
n+ 1

2
k := 1

2

(

Mh
yn+1
h − ynh

Δ t
,
yn+1
h − ynh

Δ t

)

H

,

the potential energy reads

E
n+ 1

2
p := 1

2

(

Ah
yn+1
h + ynh

2
,
yn+1
h + ynh

2

)

H

,

and the mixed energy term is defined as

E
n+ 1

2
kp := 1

2

(

Ah
yn+1
h − ynh

Δ t
,
yn+1
h − ynh

Δ t

)

H

.

Then, after some computations, using the symmetry properties of the operators Mh and
Ah, we obtain from (25) the discrete conservation property

E
n+ 1

2
h − E

n− 1
2

h
Δt

= 0. (27)

It now remains to prove that En+ 1
2

h is positive.
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Proposition 1 A sufficient condition for the stability of scheme (IMnh) is

Δt2 � 4 ‖M−1
h Ah‖−1, (28)

with

‖M−1
h Ah‖ = sup

0 �= yh∈Xh

ah(yh, yh)
mh(yh, yh)

. (29)

Proof The proof is very standard (see [36]). Consequently, we only prove the positivity
of the energy. We provide here some details for the sake of completeness. Let us first
consider the definition of En+ 1

2
h . Since En+ 1

2
s is positive by definition, we can easily retrieve

the lower bound for the energy

E
n+ 1

2
h � 1

2

(
(
Mh − Δt2

4
Ah

) yn+1
h − ynh

Δ t
,
yn+1
h − ynh

Δ t

)

H

. (30)

Hence, the energy is positive if

mh(yh, yh) − Δt2

4
ah(yh, yh) � 0, ∀ yh ∈ Xh. (31)

Finally, Eq. (31) can be rewritten as

Δt2

4
sup

0 �= yh∈Xh

ah(yh, yh)
mh(yh, yh)

� 1, (32)

oncluding the proof. ��

Remark 5 Note that Proposition 1 introduces an abstract CFL condition. Moreover, we
expect the following estimation

‖M−1
h Ah‖ ∼ c2s

h2
, (33)

with cs a positive constant, depending on the elasticity tensor driving the shear wave
propagation. Consequently, we obtain the sufficient stability condition

Δt � h
cs
. (34)

Therefore, the time step is not affected by the pressure wave propagation, that is travelling
at an “infinite” velocity at the incompressible limit.

Stability of the scheme (QIMnh)

By similar reasoning, we can retrieve en energy estimation for the formulation (QIMnh).
We retrieve, after some computations,

(

Mh
yn+1
λ,h − 2yn

λ,h + yn−1
λ,h

Δt2
+ Ah ynλ,h + λBT

h Bhynλ,h,
yn+1
λ,h − yn−1

λ,h
2Δt

)

H

= 0. (35)

We introduce Ah,λ := Ah + λBT
h Bh. Then, if we define the discrete energy E

n+ 1
2

h as in Eq.
(26), with Ah,λ instead of Ah, we can assert the following proposition.

Proposition 2 A sufficient condition for the stability of scheme (QIMnh) is

Δt2 � 4 ‖M−1
h Ah,λ‖−1, (36)
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with

‖M−1
h Ah,λ‖ = sup

0 �= yh∈Xh

ah(yh, yh) + λ‖Bhyh‖2L
mh(yh , yh)

. (37)

Remark 6 Note that, by definition,

‖M−1
h Ah,λ‖ � ‖M−1

h Ah‖ + λ‖M−1
h BT

h Bh‖,
with

‖M−1
h BT

h Bh‖ = sup
0 �= yh∈Xh

‖Bhyh‖2L
mh(yh , yh)

.

By similar reasoning to Eq. (33), we can now introduce a constant cp, related to the
maximum generalised eigenvalue of the operator (BT

h Bh,Mh) such that

λ‖M−1
h BT

h Bh‖ ∼ c2p
h2

. (38)

Therefore, we can assert

‖M−1
h Ah,λ‖ ∼ c2s + c2p

h2
. (39)

Consequently, the stability condition (36) imposes a significant restriction on the time
step.

Δt2 � h2

c2s + c2p
Note that, because of the non-dimensionalisation, we expect cs to be close to the unity,
whereas, cp is given by the velocity ratio between pressure and shear waves. For soft tissues
this ratio is around 103. This makes in practice the Scheme (QIMnh) not efficient and
justifies our need to formulate more adequate methods for the limit—incompressible—
problem.

Stability of the scheme (QIPnh)

Finally, let us analyse the stability estimates related to the novel formulation (QIPnh). By
analogous reasoning, we get from (20)

(

Mh
ỹn+1
α,h − 2ỹn

α,h + ỹn−1
α,h

Δt2
+

(

Ah + 1
αΔt2

Qh

)

ỹn
α,h,

ỹn+1
α,h − ỹn−1

α,h
2Δt

)

= 0, (40)

where we have defined Qh := BT
h (Ch CT

h )
−1Bh. Then, the discrete energy at time n + 1

2
reads

E
n+ 1

2
h = E

n+ 1
2

k − Δt2

4
E
n+ 1

2
kp + E

n+ 1
2

p , (41)

with kinetic energy

E
n+ 1

2
k :=

(

Mh
ỹn+1
α,h − ỹn

α,h
Δ t

,
ỹn+1
α,h − ỹn

α,h
Δ t

)

H

,

potential energy

E
n+ 1

2p :=
(

(
Ah + 1

αΔt2
Qh

)
,
ỹn+1
α,h + ỹn

α,h
2

,
ỹn+1
α,h + ỹn

α,h
2

)

H

,
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and mixed energy term

E
n+ 1

2
kp :=

((

Ah + 1
αΔt2

Qh

) ỹn+1
α,h − ỹn

α,h
Δ t

,
ỹn+1
α,h − ỹn

α,h
Δ t

)

H

.

Before providing a stability estimate for (40), we introduce the following lemma.

Lemma 1 Let Ph := CT
h (Ch CT

h )
−1Ch : Yh → Yh. Then Ph is a projection and

‖Ph‖L(Yh) � 1.

Proof The proof consists in demonstrating that P2
h = Ph. That follows easily by the

definition of Ph. ��
We are now able to assert a stability condition for Scheme (QIPnh).

Proposition 3 A sufficient condition for the stability of scheme (QIPnh) is

Δt2 � 4

⎛

⎝ sup
0 �= yh∈Xh

4 α ah(yh, yh)
4 αmh(yh, yh) − ‖yh‖2Yh

⎞

⎠

−1

(42)

and

α >
1
4

sup
0 �= yh∈Xh

‖yh‖2Yh

mh(yh, yh)
. (43)

Proof Again we prove the positivity of the energy En+ 1
2

h . By definition of En+ 1
2

h , since En+ 1
2

p
is positive, we can obtain the estimation

E
n+ 1

2
h �

((

Mh − Δt2

4
Ah − 1

4α
Qh

) ỹn+1
α,h − ỹn

α,h
Δ t

,
ỹn+1
α,h − ỹn

α,h
Δ t

)

H

. (44)

Hence, we need to satisfy

mh(yh, yh) − Δt2

4
ah(yh, yh) − 1

4α
(Qhyh, yh)H � 0, ∀ yh ∈ Xh. (45)

However, by definition of Ph and Lemma 1, we find Qh = iTh Phih and, since we easily
deduce the inequality ‖ihyh‖Yh � ‖yh‖Yh from Eq. (12), we have

(Qh yh, yh)H = (iTh Ph ih yh, yh)H = (Ph ih yh, ih yh)Yh � ‖ihyh‖2Yh
� ‖yh‖2Yh

.

Finally, if (42) holds, then Eq. (45) can be rewritten as

Δt2

4
sup

0 �= yh∈Xh

ah(yh, yh)
mh(yh, yh) − ‖yh‖2Yh

/(4α)
� 1, (46)

concluding the proof. ��

Corollary 1 If exact integration is used and the density ρ is constant, then a sufficient
condition for the stability of scheme (QIPnh) is

Δt2 � 4 ρ ‖Ah‖−1 4 α ρ − 1
4 α ρ

, α >
1
4 ρ

, (47)

with

‖Ah‖ = sup
yh∈Xh yh �=0

a(yh, yh)
‖yh‖2H

.
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Proof If exact integration is used and ρ = const, then

mh(yh, yh) = ρ‖yh‖2H and ‖yh‖Yh = ‖yh‖H.

Consequently, we can simplify Eq. (42) to obtain the result of the corollary. ��

Remark 7 We observe that the CFL condition (47) is well-defined for α > 1/(4 ρ). More-
over, it is slightly worse than condition (28), since

4 α ρ − 1
4 α ρ

� 1

in the allowed range for α. Nevertheless, this condition depends only on the space dis-
cretisation and on the tensor C and the density ρ. Therefore, it is still very advantageous
with respect to condition (36).

As a final comment, note that if the Scheme (QIPnh) is stable, i.e. (22) holds and Δt is
sufficiently small, then

sup
n∈{0,1,...,N }

E
n+ 1

2p � C, (48)

with C independent of Δt. Therefore, denoting ỹn+ 1
2

α,h = (ỹn+1
α,h + ỹn

α,h)/2, we have

sup
n∈{0,1,...,N }

(
Qhỹ

n+ 1
2

α,h , ỹn+ 1
2

α,h
)

H
� α C Δt2.

As a consequence, there exists another constant C independent of Δt such that, by defi-
nition of Qh, we have

sup
n∈{0,1,...,N }

∥
∥
∥
∥(Ch CT

h )
− 1

2Bhỹ
n+ 1

2
α,h

∥
∥
∥
∥
H

� C Δt.

This shows that Bhỹ
n+ 1

2
α,h goes to 0 with Δt, but for a weak norm that involves the inverse

Laplace operator.

Two-dimensional numerical convergence results
In order to perform the numerical validation of the properties of scheme (QIPnh), we
consider as a model problem the elastic wave propagation in a 2D medium, and we take
into account different constitutive laws. In the interest of clarity, we provide the physical
and numerical parameters used for the simulations with their original units of measure.
For the sake of simplicity, we assume constant densityρ = 1050 kgm−1 andhomogeneous
Dirichlet boundary conditions on all the boundaries of the domain. Space discretisation
is performed by high-order Spectral Finite Elements (of order 7 for the displacement,
6 for the pressure). The computational grid is a 1m2 square composed of N uniform
elements of size h = 1/N in each direction. Concerning time discretisation, we adopt the
discretisation introduced in scheme (QIPnh) with penalisation coefficient α = 1/3 ρ and
we choose the time step as

Δt2 = (1 − ε)‖M−1
h Ah‖−1, (49)

wherewe set ε = 0.2 to account for the fact that the expression above is an approximation
of the CFL condition given by Eq. (42) when considering that ρ‖yh‖2Yh

= mh(yh, yh) and
accounting for the approximation of the norm in (49) by a power iteration algorithm.
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Note that the value of this parameter is not tight: ε = 0 also gives stable results. For
each iteration of this scheme, the scalar pressure field (19) is computed by means of an
in-house fast solver for the Poisson problem, based on Higher-Order Fourier Transform.
Note that even when the medium is heterogeneous, the problem for the pressure wave
remains homogeneous, due to incompressibility.
Henceforth, we present a space/time convergence analysis. To do so, we test scheme

(QIPnh) against the pure incompressible scheme (IMnh) for different values of N in
[10, 40]. For each time step of each simulation, the pressure field is evaluated in Eq. (16) by
means of the Conjugate Gradient method, with euclidian norm of the residue lower than
1e − 14 and maximum number of iterations Niter = 2000. The source term considered is
a standard Gaussian profile in space multiplied by a profile in time corresponding to the
first derivative of the Gaussian function. In greater detail, it reads

f (x, y, t) := −2 t
σ 2
t
exp

− (t−tpulse )
2

σ2t ·100 exp−
(

(x−xF )2

σ2s
+ (y−yF )2

σ2s

)

, (50)

with centre (xF , yF ) = (0.5, 0.5)m, covariance σ 2
s = 0.0005, σ 2

t = 0.0005 and mean
tpulse = 0.6 s. We consider several constitutive laws, and we present four convergence
curves for each example, that illustrate the error in L2(ΩT ), C0(L2(Ω)), L2(H1(Ω)) and
C0(H1(Ω)) norms, respectively.

Homogeneous isotropic material

As a first example, we study a homogenous isotropicmedium. A standard constitutive law
for this type of medium is

C ε(y) := με(y). (51)

with shear modulus μ = 80 kPa. Note that from Eq. (51) we retrieve in (QI) the standard
elastodynamic problem for isotropic law. The convergence curves in Figs. 1 and 2 confirm
that second-order convergence is preserved in L2(ΩT ). Note that it is slightly degraded in
and L∞ in time and L2 norm in space. Furthermore, the error does not vary [or it varies
marginally in L∞(L2(Ω))] if we consider a larger tend such that the wave has reached the
boundaries of the computational domain. If we consider H1 norm in space, the error
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Fig. 1 Convergence of scheme (QIP) w.r.t. the space step h, for final time t = 2 s, t = 2.65 s for a
homogeneous isotropic material. Left: Relative L2(ΩT )-error on the displacement. Right: relative
L∞(L2(Ω ))-error on the displacement
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Fig. 2 Convergence of scheme (QIP) w.r.t. the space step h, for final time t = 2 s, t = 2.65 s for a
homogeneous isotropic material. Left: Relative L2(H1(Ω ))-error on the displacement. Right: Relative
L∞(H1(Ω ))-error on the displacement

Fig. 3 Elastic wave propagation in a homogeneous isotropic medium (absolute value of the displacement
field)

is slightly degraded with respect to the previous norms. Moreover, when we consider a
larger time interval (so that we take into account the effects at the boundaries), the error
increases. Figure 3 illustrates three snapshots at t = 1.0 s, t = 2. s and t = 2.65 s, of the
displacement. Themesh is composed byN = 40 elements in each direction. Furthermore,
Fig. 4 depicts the time evolution of the displacement in three locations, indicated in Fig. 3.
Figures 5 and 6 are related to the acceleration. We do not plot the results concerning
the velocity, since they do not provide relevant information. Note that the time evolution
profiles in x and y direction of the location denoted P1 correspond to the profiles in y and
x direction of the location denoted P2, that is the symmetric to P1, due to isotropy.
Concerning the pressure, Fig. 7 indicates that this term corresponds to a correction

mostly at the boundaries of the medium. In addition, symmetric points correspond to the
same pressure time evolution, as depicted in Fig. 8.

Heterogeneous transversely isotropic material

In the perspective of an application to elastography imaging of biological tissues, we
need to analyse more complex constitutive laws. For example, striated muscle tissue
can be modelled as a transversely isotropic medium, i.e. there exists, at every point, a
privileged direction represented by the unit vector τ1, related to the collagen fibre. A
simple transversely isotropic law, inspired by [48] is
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Fig. 4 Time evolution of the displacement field in a homogeneous isotropic medium in three locations (see
Fig. 3 for locations). Left: x direction. Right: y direction

Fig. 5 Elastic wave propagation in a homogeneous isotropic medium (absolute value of the acceleration
field)
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Fig. 6 Time evolution of the acceleration field in a homogeneous isotropic medium in three locations (see
Fig. 5 for locations). Left: x direction. Right: y direction

C ε(y) := με(y) + η

(
1
9
tr

(
ε(y)

)
1 − 1

3
tr

(
ε(y)

)
τ1 ⊗ τ1

−1
3
(τ1 · ε(y) · τ1)1 + (τ1 · ε(y) · τ1) τ1 ⊗ τ1

)

, (52)

with μ = 80 kPa, η = 3400 kPa. In what follows, we present the results for a transversely
isotropic medium in which the fibre direction τ1 varies linearly along the direction y.
This configuration is inspired by the structure of myocardial tissue. In fact, it has been
experimentally validated that muscle fibres are arranged in laminar structures, denoted
sheets, of three to four muscle fibres in the thickness, that are oriented transversely to the
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Fig. 7 Elastic wave propagation in a homogeneous isotropic medium (absolute value of the pressure field)
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Fig. 8 Time evolution of the pressure field in a homogeneous isotropic medium in three locations (see Fig. 7
for locations)
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Fig. 9 Convergence of scheme (QIP) w.r.t. the space step h, for final time t = 0.8 s, t = 1.1 s for a
heterogeneous transversely isotropic material. Left: Relative L2(L2(Ω ))-error on the displacement. Right:
Relative L∞(L2(Ω ))-error on the displacement

heart wall [49,50]. Moreover, the fibre orientation in human left ventricle myocardium
changes linearly throughout the wall thickness, from − 60◦ close to the epicardium to
+ 60◦ near the endocardium [51]. In order to model such a material, we consider an
orientation of τ1 varying linearly from − 60◦ at the bottom of the domain (y = 0) to
+ 60◦ at the top of the domain (y = 1). The resulting medium is highly heterogeneous.
Figures 9 and 10 show that the error worsens moderately in transversely isotropic media
w.r.t. isotropic media. In addition, the order of convergence remains two for L2 norm in
space, and it is slightly degraded in L2(H1(Ω)) and in L∞(H1(Ω)).
Figure 11 illustrates three snapshots at t = 0.5 s, t = 0.75 s and t = 1.1 s of the displace-

ment field, respectively. Themesh is composed byN = 40 elements in each direction. We
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Fig. 10 Convergence of scheme (QIP) w.r.t. the space step h, for final time t = 0.8 s, t = 1.1 s for a
heterogeneous transversely isotropic material. Left: L2(H1(Ω ))-error on the displacement. Right:
L∞(H1(Ω ))-error on the displacement

Fig. 11 Elastic wave propagation in a heterogeneous transversely isotropic medium (absolute value of the
displacement field)

Fig. 12 Elastic wave propagation in a heterogeneous transversely isotropic medium (absolute value of the
pressure field)

do not provide the results concerning the velocity and the acceleration, since they not pro-
vide additional information. Note that the pressure field gives a significant contribution
also in the interior of the domain, as it is illustrated in Fig. 12, due to anisotropy.

A three-dimensional test case
The main application we have in mind is the propagation of elastic waves in nearly-
incompressible biological tissues in the context of ultrasound transient elastography
[52,53]. Therefore, by way of illustration, we propose here a three-dimensional test case,
inspired by elastography imaging of the myocardial tissue. Note that, due to dissipation,
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Fig. 13 Elastic wave propagation in a three-dimensional transversely isotropic medium (absolute value of
the displacement field)

shear waves are fully attenuated in a few wavelength distance, i.e. some millimetres from
the focal point of the ultrasonic beam [54]. As a consequence, we can consider a small
region of interest and a simple geometry. However, there is a need for a fine space dis-
cretisation, compatible with the wavelength of shear waves.
In this example we consider a transversely isotropic domain [defined by Eq. (52)], with

fibre direction τ1 oriented in the xy-plane and varying linearly along the direction z from
−60◦ w.r.t. the x-axis at the bottomof the domain (z = 0) to+ 60◦ at the top of the domain
(z = 0.02m). The geometry of the domain is a parallelepiped of length 0.04m in x and
y directions, and 0.02m in z direction. This configuration represents an approximation
of a region of interest in the left myocardium, selected in the anterior wall at the middle
ventricular level. Density is set equal to ρ = 1050 kgm−1 and homogeneous Neumann
boundary conditions are imposed on all the boundaries of the domain. High-order Spec-
tral Finite Elements (of order 7 for the displacement, 6 for the pressure) are used for the
space discretisation. The computational grid is composed of 24 uniform elements of size
h = 1/24 in each direction, for a total of 14,480,427 degrees of freedom (DOF) for the
displacement field, and 3,048,625DOF for the pressure field.We adopt the time discretisa-
tion introduced in scheme (QIPnh) with penalisation coefficient α = 1/3ρ and we choose
the time step as in Eq. (49), with ε = 0.2, as in “Two-dimensional numerical convergence
results” section. For each time step of the scheme, the Poisson problem for the scalar pres-
sure field (19) is computed by means of our in-house fast solver based on Higher-Order
Fourier Transform, as in “Two-dimensional numerical convergence results” section. In
this way, the time step used in the explicit time discretisation is constrained by the shear
wave velocity only. Figure 13 depicts four snapshots of the solution at different time steps.
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Note that we have also considered an improved approximation by post-processing of
the problem, by combination of the solutions associated with α0 = 1/3 ρ and α1 = 2/5 ρ,
respectively, considering N = 24 elements in each direction. Since we have not noticed
a qualitative change in the behaviour of the solution, we are confident that the observed
solution is a good approximation of the pure incompressible problem. Note also that, due
to the resolution of the Poisson problem by our in-house fast solver, we have drastically
reduced the computational cost of the scheme. In particular, the resolution of 1600 time
steps of the problem on a 12-cores workstation (cores at 2.7GHz and 64GB of RAM at
1867MHz), considering higher-order extension of the scheme (i.e. computation of the
two solutions corresponding to α0 and α1) takes around 4 h.

Conclusions
In this article we have outlined a new numerical scheme that is suitable for approximating
elastic wave propagation in incompressiblemedia, based on amixed explicit/implicit time
discretisation. We have demonstrated that the time step of the resulting algorithm is only
constrained by the shear wave velocity, and it is not limited by the enforcement of incom-
pressibility (as it is the case for fully-explicit time discretisation). Furthermore, if effective
methods are adopted for explicit time-discretisation, our algorithm only entails at each
time step one resolution of a scalar Poisson problem—that can be performed by various,
efficient algorithms—and few matrix-vector multiplications for the explicit part of the
scheme. Moreover, we have presented a two-dimensional numerical test case, to demon-
strate the favourable convergence properties of the scheme, and one three-dimensional
example, to illustrate a realistic application to elastography imaging. A theoretical demon-
strationof second-order convergence in timeof the scheme is out of the scopeof this article
and will be provided in future work.
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