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Abstract

A new reduced order model (ROM) is proposed here for reconstructing super-critical
flow past circular cylinder and lid driven cavity using time-scaling of vorticity data
directly. The present approach is a significant improvement over instability-mode
(developed from POD modes) based approach implemented in Sengupta et al. [Phys
Rev E 91(4):043303, 2015], where governing Stuart–Landau–Eckhaus equations are
solved. In the present method, we propose a novel ROM that uses relation between
Strouhal number (St) and Reynolds number (Re). We provide a step by step approach
for this new ROM for any Re and is a general procedure with vorticity data requiring
very limited storage as well as being extremely fast. We emphasize on the scientific
aspects of developing ROM by taking data from close proximity of the target Re to
produce DNS-quality reconstruction, while the applied aspect is also shown. All the
donor points need not be immediate neighbors and the reconstructed solution has
equivalent relaxed accuracy. However, one would restrain the range where the flow
behavior is coherent between donors. The reported work is a proof of concept utilizing
the external and internal flow examples, and this can be extended for other flows
characterized by appropriate Re–St data.
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Introduction
High performance computing using DNS for complex flow problems provide insight into
physical mechanism at prohibitive cost of data storage, as voluminous data are created
to resolve small scales in both space and time. DNS of Navier–Stokes equation (NSE)
to understand flow generates huge amount of data. The major challenges of big data
are processing, storage, transfer and analysis. The central motivations here is to replace
time/memory-intensive DNS for the model problems of flow past a circular cylinder and
LDC. Similar attempts are recorded in [34,37] and other references contained therein.
Memory requirements of such instabilitymode-basedROMin [34] comedowndrastically,
due to the requirement of storing only fewer coefficients of the SLE equations and initial
conditions. Henceforth this reference will be called SHPG for brevity.
There are numerous efforts in developing ROM’s, e.g. via Koopmanmodes, as in [12,31];

dynamicmode decomposition in [32]; POD-based analysis of Reynolds-averaged Navier–
Stokes (RANS) in [22,23,40]. In [9], authors reported low-dimensional model for 3D flow
past a square cylinder using solutions of NSE obtained by a pseudo-spectral approach.
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However, even using thousands of snapshots, the reconstruction error was of the order
of 30%, indicating an exponential divergence between any model prediction and the actual
solution outside the snapshot range. In [24], authors used fourth order finite difference
scheme for spatial discretization of NSE in primitive variable formulation for time accu-
rate simulation for POD analysis of the flow field. The time discretization used second
order accurate, three-time level discretization method, which invokes a numerical extra-
neousmode. Itwasnoted thatwithonly fourPODmodes, themodelwithout pressure term
gives rise to important amplitude errors which cannot be compensated by an increase in the
number of modes. In naive energy-based POD approaches, researchers calculate ampli-
tude functions of POD representation by solving ODE’s derived from NSE by simplifying
nonlinear and pressure terms. Iollo et al. [16] have shown that this approach is inher-
ently unstable. Thereafter many stabilzation techniques have been proposed [5,8,10,15]
in the finite element framework. A survey on projection based ROM for parametric prob-
lems is proposed by Benner et al. [7]. POD-Galerkin continues to be an active field of
research for fluid dynamics problems, it has lead to recent successful application to finite
volume [19,41,42] in velocity–pressure formulation. Generally, this approach enters in
the reduced basis framework popularized in the early 2000s [20,28] which is presented
in detail in Quarteroni et al. books [29,30]. Authors in [25] have also used an adaptive
approach to construct ROM with respect to changes in parameters, by first identifying
the parameters for which the error is high. Thereafter a surrogate model based on error-
indicator was constructed to achieve a desired error tolerance in this work. Recent work
lead by Pitton and Rozza [26,27] has focused on applying ROM to detect bifurcations
in the context of fluid dynamics. To do so, they developed accurate ROM and evaluated
steady state eigenvalues of these ROM linearized Navier–Stokes operator to detect bifur-
cations. Yet, it was shown in [18] that singular LDC flow requires extremely accurate
numerical schemes due to very high sensitivity to numerical conditions. Consequently,
in this paper, we rely on previously established bifurcation diagram (see Refs. [17,37] for
details) to bound the ROM domain.
Other approaches have been explored, in particular relying on interpolation instead

of projection. Among them, discrete empirical interpolation method (DEIM) in [6,11]
has encountered widespread success with applications ranging from non-linear multi-
parameter interpolation to hyper reduction techniques. A new family of interpolation
method parametric PDEs problems has been developed by Amsallem and Farhat in series
of papers [1–3]. The Grassmann interpolation method relies on a series of projection
from the Grassmann manifold of solutions onto flat vector spaces on which usual inter-
polation techniques can be used. Then the interpolated field is projected back onto the
manifold. This approach has proved very successful for aeroelastic flows [2] and has also
been combined with other ROM tools such as DEIM in [4]. Yet, this approach relies on a
complexmathematical framework and requires careful tuning to be accurate, for instance
choosing the projection origin point. These issues have been addressed in recent thesis
by Mosquera [21] which also proposes alternative algorithms. These technical difficulties
motivate the introduction of simpler, physics based interpolation methods such as the
one proposed in this paper.
The flow governed by unsteady NSE presents the physical dispersion relation linking

each length scale (wavenumber) with corresponding time scale (circular frequency). Thus,
the ranges of time and length scales are important, even though a single St and Re are often
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used todescribe theflowfield.Multitudeof length and time scales also are inherently noted
in [18] via POD modes and multiple Hopf bifurcations for flow in LDC. The existence of
such ranges assists in developing a ROM, when donor Re’s are in the same range, where
the target Re resides. If one takes one or two donor points far from the range where
target Re resides, the presented ROM will provide a reconstructed solution, still with
acceptable accuracy. These aspects of multiple Hopf bifurcations and existence of ranges
of Re is highlighted in the present research, apart from developing an efficient ROM for
this model problem.
For a vortex dominated flow, the time scale is defined as St (= fD/U∞), relating dom-

inant physical frequency (f ) with flow velocity, (U∞) and the length scale (D). However
the flow does not display a single frequency, as one notices several peaks for both flows in
Fig. 1. The time series of the vorticity data at indicated locations are shown in the left hand
side frames. While the flow past a circular cylinder displays a single dominant peaks with
side bands in the spectrum (shown on the right hand side frames), the flow inside LDC
clearly demonstrates multiple peaks. This property has been explored thoroughly for the
LDC in [17] to explain the roles of multiple POD modes.
Specifically for flow past circular cylinders, an empirical relation of the type has been

provided

St = St∗ + m/
√
Re (1)

in [13] with experimental data, for variation of St with Re in the wide range of 47 < Re <

2 × 105, with values of St∗ and m being different, for different ranges of Re. Instead of
using such an algebraic additive relationship, here we propose a power law relation and
test it for the range: 55 ≤ Re ≤ 200, for the purpose of demonstration. Consequently a
relationship between Re and St will be proposed, in order to perform interpolation on the
vorticity time series.
The existence of unique St for a fixed value of Re, as embodied in Eq. (1) implies that

employing simple-minded interpolation strategies like Lagrange interpolation,will display
unphysical wave-packets in reconstructed solution, as the time scales are function of Re
at the target. This is clearly demonstrated in Fig. 3. The proposed ROM tackles this issue
with the time scaling technique that is presented in this article.
The paper is formatted in the following manner. In the next section, governing equa-

tions employed for DNS and associated auxiliary conditions are described. In “Need for
time scaling” section, the proposed time-scaling interpolation algorithm is presented.
Time-scaled ROMof vorticity field is applied to two complex flows in “Time-scaled ROM
applied to the ow past a cylinder” section. Summary and conclusions are provided in the
last section.

Governing equations and numerical methods
DNS of the 2D flow is carried out by solving NSE in stream function-vorticity formulation
given by,

∇2ψ = −ω (2)
∂ω

∂t
+ ( �V · ∇)ω = 1

Re
∇2ω (3)

where ω is the only non-zero, out-of-plane component of vorticity for the 2D problem
considered. The velocity is related to the stream function as �V = ∇ × �� , where �� =
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a

b

Fig. 1 DNS time series and their associated FFT’s are shown for a the flow inside a LDC and b the external
flow past a cylinder, at indicated points in the flow

[0 0 ψ]T , with (D) and (U∞) used as length and velocity scales for non-dimensionalization.
Equations (2) and (3) are solved in an orthogonal curvilinear coordinates (ξ , η) and the



Sengupta et al. Adv. Model. and Simul. in Eng. Sci.           (2018) 5:26 Page 5 of 20

Fig. 2 Direct Lagrange interpolation of DNS vorticity disturbance time series between Re causes wave
packets in the cylinder wake at point (0.504, 0.0)

governing equations in transformed plane are

∂

∂ξ

(
h2
h1

∂ψ

∂ξ

)
+ ∂

∂η

(
h1
h2

∂ψ

∂η

)
= − h1h2ω (4)

h1h2
∂ω

∂t
+ h2u

∂ω

∂ξ
+ h1v

∂ω

∂η
= 1

Re

{
∂

∂ξ

(
h2
h1

∂ω

∂ξ

)
+ ∂

∂η

(
h1
h2

∂ω

∂η

)}
(5)

where h1 and h2 are the scale factors of the transformation given by: h21 = x2ξ + y2ξ and
h22 = x2η + y2η . The co-ordinate given by ξ is along azimuthal direction for the flow past
the cylinder and along x-direction for flow inside LDC and the co-ordinate η is in the
wall-normal direction for flow past the cylinder and along y-direction for the flow inside
LDC. No-slip boundary condition is applied on the wall for both the flows via(

∂ψ

∂η

)
body

= 0 and ψ = constant

For the flow inside LDC, the corresponding conditions are given by the same equations,
except along the lid, the right hand side of the first condition is given by U∞. These
conditions are used to solve Eq. (4) and to obtain the wall vorticity ωb, which in turn
provides the wall boundary condition for Eq. (5). At the outer boundary of the domain for
flow past cylinder, uniform flow boundary condition (Dirichlet) is provided at the inflow
and a convective condition (Sommerfeld) is provided for the radial velocity at the outflow.
The convection terms of Eq. (5) are discretized using the high accuracy compactOUCS3

scheme for flow past the cylinder and the combined compact difference (CCD) scheme for
the flow inside LDC, both ofwhich provides near-spectral accuracy for non-periodic value
of the convective acceleration terms, as explained in detail in [33]. A central differencing
scheme is used to discretize the Laplacian operator of Eqs. (4) and (5) for the circular
cylinder and the CCD scheme is used for the flow inside LDC. An optimized four-stage,
third-order Runge–Kutta (OCRK3) dispersion relation preserving method in [36] is used
for time marching. Equation (4) is solved using Bi-CGSTAB method given in [44].
These samemethods have been used earlier for validating and computing the respective

flows in [37], SHPG for flow over cylinder and in [35,38,39] for flow inside the LDC. Here
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a

b

Fig. 3 Variation of equilibrium amplitude of disturbance vorticity with Re indicating the segments of Re with
respect to bifurcation sequences for a flow in LDC and b for flow past a cylinder

the simulations are performed in a fine grid, with (1001 × 401) points in the ξ and η

directions for the flow past circular cylinder, and (257×257) points are taken for the LDC
problem.

Need for time scaling
The proposed ROM aims at interpolating vorticity fields at a target Re (Ret ) from pre-
computed DNS at different donor Re’s. If Lagrange interpolation is used directly, then it
will not work due to variation of St with Re. Even with close-by donor Reynolds numbers
data, upon interpolation, will produce wave-packets for flow past a cylinder as shown in
Fig. 2. In this figure, results are shown for Re = 83, as obtained by DNS of NSE (shown
by solid lines) and that is obtained by Lagrange interpolation of NSE solution donor data
obtained for Re = 78, 80, 86 and 90.
We have also noted in SHPG that the flow past a circular cylinder suffers multiple Hopf

bifurcations (experimentally shown in [14,43]) and in [38] for flow inside LDC and flow
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over cylinder. Hence the accuracy of reconstruction naturally demands that the target
and donor Re’s should be in the same segments of Fig. 3, as the flow fields are dynamically
similar. In Fig. 3, the equilibrium amplitude of disturbance vorticity are plotted as a
function of Re for both the flows. The equilibrium amplitude refers to the value of the
disturbance quantity, which settles down in a quasi-periodic manner, due to nonlinear
saturation after the primary and secondary instabilities. Presence of multiple quadratic
segments in Fig. 3, indicates multiple bifurcations originating at different Re’s. Thus, it is
imperative that one identifies the target Re in the same segment of donor Re’s for DNS-
quality reconstruction for flow past circular cylinder as in SHPG and for flow inside LDC
in [17]. In each of these sectors of Re, the flow behaves similarly and the (St, Re)-relation
is distinct. It is to be emphasized that the present sets of simulations are performed using
highly accurate dispersion relation preserving numerical methods.
The physical frequency (f ) varies slowly with Re and superposition of time-series of

donor data causes beat phenomenon observed by superposition of waves of slightly differ-
ent frequencies. Thus, the knowledge of variation of St with Re is imperative in scaling out
f -dependence of donor data before Lagrange interpolation and this is one of the central
aspects of the present work. After obtaining frequency-independent data at target Re, one
can put back the correct f -dependence via its variation with Re at the target Reynolds
number.
In Fig. 3a, the range of Re from 8000 to 12,000 for the LDC is subdivided according to

the bifurcation sequence uncovered in [18] using a (257 × 257)-grid. For the purpose of
interpolation, four ranges are defined with the first one given by: RI = [8020 : 8660] that
corresponds to externally excited range, which shows rapid variation of the amplitude,
nearly culminating in a vertical fall at the onset of solution bifurcation. The used CCD
scheme, for flow in LDC, has near-spectral accuracy, as explained in [35,39], and the onset
of unsteadiness is due to aliasing error predominant near the top right corner of LDC,
while truncation, round-off and dispersion errors are negligibly small. To avoid the issue
of lower numerical excitation in the present work, a pulsating vortex is placed (ωs) at
x0 = 0.015625, and y0 = 0.984375 whose spread is defined by the exponent α given in the
following,

ωs = A0[1 + cos(π (r − r0)/0.0221)] sin(2π f0t) for (r − r0) ≤ 0.0221

where in the presented results here we have taken f0 = 0.41 for the single amplitude,
A0 = 1.0.
For the next two ranges, no explicit excitation is needed (i.e., A0 = 0) to achieve a

stable limit cycle. RII = [8660 : 9350] and RIII = [9450 : 10,600] are ranges for which
the amplitude (Ae) follows a square root law, these are however different because of the
peculiar behavior of the flow in the vicinity of Re = 9400, which indicates the onset of
second Hopf bifurcation. Finally, RIV = [10,600 : 12,000] is difficult for interpolation, as
one can see two branches in this range, one of which is unstable (U-branch) with respect
to any miniscule vortical excitation, as opposed to the stable one (S-branch). The flow
past cylinder is also divided in ranges as shown in Fig. 3b. The range of Re from 55 to 130
is subdivided according to the bifurcation sequences by: 55 ≤ Re ≤ 68; 68 ≤ Re ≤ 78;
78 ≤ Re ≤ 90; 90 ≤ Re ≤ 100 and 100 ≤ Re ≤ 130. For example, to reconstruct solution
for Re = 83, we have used data in the range of 78 ≤ Re ≤ 90 for the most accurate ROM.
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Table1 Scaling constant and base Reb for different range of Res
Re range Scaling constant ( n) Basic Re ( Reb)

55−68 − 0.49 ± 0.02 60

68−78 − 0.41 ± 0.02 72

78−90 − 0.37 ± 0.02 80

90−100 − 0.32 ± 0.02 95

100−130 − 0.28 ± 0.02 110

Formulation andmodeling of ROM

In Eq. (1), a relation between St and Re is shown for a wide range, for the latter. In the
proposed ROM here, we do not need DNS data for the target Re, as was the case in SHPG
to train the ROM. This is a significant improvement over the previous approaches. One
should scale out dependence of DNS data on f or St, for any Re, by a proposed power law
scaling given below,

St(Res)
St(Reb)

=
(
Reb
Res

)n
(6)

The exponent n will depend upon the segment of Re shown in Fig. 3, with Reb denoting
a base Reynolds number in each segment. Here in this equation, any donor Re is indicated
as Res. Thus in a cluster of four donor Re’s, one is identified as Reb and the other three
identified as Res. From Eq. (6) one identifies n, by the following,

n = log(St(Res)/St(Reb))
log(Reb/Res)

(7)

The scaling exponent n is a characteristic number of each segment and Reb. In Table 1,
we show five segments and the corresponding n, along with Reb used in each range. For
the flow past a circular cylinder, the value of n is obtained with the tolerance of ±0.02
for all Re’s in the respective segment. As discussed in [18], f is almost constant on each
segment, so that we can set n = 0 for the LDC, individually in each segment. Having fixed
n for any Res in the segment of choice, time-scaling is performed by the following,

ts = tb
(
Reb
Res

)n
+ t0(Reb, Res) (8)

To interpret Eq. (8), we plot the disturbance vorticity for the flow past a cylinder at a
fixed location in the wake center-line (x = 0.504, y = 0), in Fig. 4. The same format of
time scaling should apply to many other flows, including the same for the internal flow
inside a LDC. It is noted that there exists a time-shift between the maximum of these two
time series, shown as t0 in the figure. Let us consider the time for Reb as tb, and then to
apply the proposed time-scaling for the data for Res, we change the physical time of Res,
by the expression given in Eq. (8). Consequently, the left hand side of Eq. (8) is the scaled
time. After obtaining t0, it is needed to collapse the two time series for Res and Reb, so
that themaximum for these two time series coincide. Thus having fixed the base Reynolds
number in each windows of bifurcation sequences, we can obtain the time-scaled abscissa
for each Res in that range.
The search for t0 is performed in such a way that the phases of both Reb and Res match

accurately. One should note that the effects of t0 are significant, despite the fact that it has
a very small value. There are many ways to compute t0, but accuracy must be very high
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Fig. 4 Variation of disturbance vorticity at a point (0.504, 0.0) with tb and ts for Reb and Res , respectively, for
the pair of Reb = 80 and Res = 86 in the bifurcation sequence 78 ≤ Re ≤ 90

in estimating it. A specific way is to view the time series in the spectral plane and using
the imaginary part of FFT to be used as the accuracy parameter, as described in the next
subsection.

Computing the initial time-shift (t0)
The present method is both accurate and computationally cheap, since it relies on the
fast Fourier transform (FFT) that is provided in the numpy library. A FFT is applied to
the vorticity time series at one relevant space point. On one hand, for the LDC problem
it has been shown in [18] that (0.95, 0.95) point near the top right corner is relevant for
monitoring the flow behavior. On the other hand for the flow past a circular cylinder,
point (0.504, 0.0) in the cylinder wake is adequate. For each sampled frequency, a complex
value (z(f ) = Aeiθ ) is obtained consisting of the modulus (A), which corresponds to the
amplitude and a phase (θ ). Consequently, we can recover the phase associated with the
leading frequency (L) for both signals θb and θs. Finally the time shift of signal s with
respect to the signal b is given by

t0 = θLb − θLs
2π f L

(9)

Here, f L is the lead frequency in the amplitude spectrum for both the signals as t0 is
computed only after the frequency scaling has been performed, with θ as the angle of the
complex value of the FFT associated with the lead frequency for signal b or s. This method
yields reliable and accurate values of t0, as the ROM accuracy will prove in the following
sections.

Time-scaling ROM algorithm for discrete DNS data

In this subsection, a brief recap of the time shifting procedure for ROM building is given
for the simple case of discrete signals ωb(ti) and ωs(ti) with {ti}Ni=1 indicating the time
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discretization. It can bedirectly applied to any space-timedependent field,with a reference
signal chosen at a reference point. The ROM is then built as follow:

1. Perform the algorithm (Algorithm 1) on all signals, except the base donor signal, in
order to scale their oscillations.

2. Perform Lagrange interpolation on the scaled donor signals at target Ret for all
discrete times ti.

ω̄�(ti) =
∑

s∈donors
ω̂s(ti)ls(Ret ) (10)

where ω̄� is the target signal and ls are the Lagrange interpolation polynomials.
3. Scale-back ω̄� to the physical time with t� = t−t0(Ret )

(Reb/Ret )n
.

The last step of the ROM is to scale back ω̄�(t) to the physical time, t�. Indeed, the interpo-
lation is performed at grid points for t, which is actually the time-scaled representation of
the target vorticity field. Thus the scale-back operation is computed to associate ω̄� with
the scaled-back time t�. One should note that the final domain is cropped according to the
information lost after each shift, despite this the discrete time points match the original
discretization.

Algorithm-1: Time-scaling algorithm for discrete signals

input: ωb, Reb, ωs, Res, t = {ti}N
i=1

output: ω̂s /* the time scaled signal.*/

1. Perform FFT on both signals

2. Scale frequencies
(
C =

(
Reb
Res

)n)

3. Evaluate t0(Reb, Res) =
θL
s −θL

b
fL
s 2π

4. New time ts = Ct + t0 is associated with ωs

5. Interpolate the time-scaled signal ω̂s(t) from ωs(ts)

/* At this point, one can perform Lagrange interpolation between

the donor points to the target Re to obtain ω̄∗.*/

return ω̂s

Time-shifting ROM applied to the LDC flow
As we have shown in [18], the main frequency of the LDC flow is nearly constant across
large ranges of Re, as shown here in Fig. 5. Thus, the time-scaling procedures simplify to
a time-shifting procedure with n = 0, resulting in ts = t − t0 for the donor and target
points, which have the same frequency in Fig. 5.
FollowingAlgorithm 1 given above, we have obtained the vorticity field for Re = 10,040,

using the donor points at Re = 10,000, 10,020, 10,060 and 10,080. From the reconstructed
ROM data, we have shown the vorticity time series in Fig. 6 for four representative points
near four corners. Despite the change in the vorticity magnitude by two orders, the accu-
racy of reconstruction is excellent and match almost exactly.
In Fig. 7, the reconstructed vorticity contours inside the LDC is shown for Re = 10,040,

at the indicated time of t = 1900.199 by solid line, with the same donor data of Re’s for
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Fig. 5 Frequency variation for Re = [8700, 12,000] for the first three leading frequencies of the vorticity time
series at point (0.95, 0.95) obtained for the last 50 periods. The dotted lines indicate the presence of multiple
dominating peaks in the spectrum

the use in the ROM following Algorithm 1. The corresponding solution obtained by DNS
of NSE-Solution for Re = 10,040 is shown in the same figure by dotted lines. It is readily
observed that these exact and ROM solution overlap each other in the full domain with a
relative RMS error of 7.1 × 10−4.
The above exercise shows the special case of a flow, which is multi-periodic with respect

to time, yet the predominant frequency remains constant over different ranges of Re,
allowing one to use the special version of time scaling with power law exponent given by,
n = 0 in Eqs. (6) and (7). Thus, one needs to simply apply a time-shift and reconstruct by
the methods described in “Computing the initial time-shift (t0)” and “Time-scaling ROM
algorithm for discrete DNS data” subsections.
Next, ROM is performed for Re = 9600, with the donor points at Re = 9350, 9500,

9800 and 10,000. The choice of the second target Re for LDC is made on purpose, as the
bifurcation diagram in Fig. 3a shows that the flow has discontinuity in equilibrium ampli-
tude in the chosen donors the bounds of RIII for Re = 9400 and 10,600. The interpolated
vorticity time series are compared with direct simulation results, as shown in Fig. 8, at
those same sampling points used in Fig. 6. Once again the match is excellent between
interpolated results with DNS data with a very low RMS error of 5.6 × 10−4.
In Fig. 9, the interpolated vorticity contours for Re = 9600 are compared with those

computed directly from NSE to show that interpolation works globally in the flow field
and not merely at chosen sampling points. In this flow field, the power law exponent is
zero and the strength of the interpolation is in obtaining the initial time shift (t0) obtained
using Algorithm 1, obtained from the FFT of the donor point vorticity with respect to the
baseline Re chosen.
Regarding the CPU time gain, the full order model (FOM) typically requires 24 h to

reach stale limit cycle and captures 100 cycle. The offline phase requires four samples per
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Fig. 7 Disturbance vorticity contour plot for reconstructed vorticity (solid lines) and DNS vorticity (dotted
lines) field at nondimensional time t = 1900.199 for target Re = 10040 with donor points having Re = 10,000,
10,020, 10,060 and 10,080

range while the online phase is very quick. Indeed, the time-scaling itself is run only one
time series at point (0.95, 0.95) which is negligible as compared to the interpolation step at
each of the 257 × 257 grid point. All considered, for a t ∈ [1900, 1940] with 0.2 sampling
rate, the online phase requires 10s CPU time. This means that the cost of running one
query of the ROM is approximately 0.01% of the full order model:

online 1 query
FOM 1 query

= 10 s
24 h

	 0.01% (11)

Due to the very small number of donors required, the ROM offline phase is relatively
cheap as compared with other ROM with a break even value of 4.

offline + online time
FOM time

= 4 × 24 h + 10 s
24 h

	 4 (12)

This last comment should bemitigated by the need of pre-established bifurcation diagram
that usually requires tens of FOM run. If these runs are saved, they can be used directly as
input in the ROM, thus removing the need for actual offline phase. These CPU time gain
estimates are also valid for the flow past a circular cylinder presented in the section as the
orders of magnitude are the same.
In the following, we study the case of flow past a circular cylinder to show the efficacy of

the proposed time-scaling algorithm used here. For this flow also one notices presence of
multiple time scales, but with a predominant frequency characterized by St, which follows
the power law given by Eq. (6), with nonzero power law exponent, n.

Time-scaled ROM applied to the flow past a cylinder
All the time-scaled relation and corresponding power law exponent in Eq. (7), is applicable
here for ROM with ω obtained by DNS. The time scaled interpolation of the ROM for
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Fig. 9 Disturbance vorticity contour plot for reconstructed vorticity (solid lines) and DNS vorticity (dotted
line) field at nondimensional time t = 1900.199 for target Re = 9600 with donor points {9350, 9500, 9800 and
10, 000}

Table 2 RMS error estimates of interpolation for Re = 83

Cases Re of donor points Error for interpolation using

donor points

I (78,80,86,90) 0.0434535949140671049

II (72,80,86,90) 0.0438833300701889223

III (68,80,86,90) 0.0445922677374889012

IV (55,80,86,90) 0.0624577915198629291

V (55,80,86,130) 0.140945940261735560

VI (55,68,72,86) 1.3159752726807628345

VII (55,68,72,130) 8.52240911220835436

disturbance vorticity for different combination of donor points, as indicated in Table 2,
are obtained and root mean square (RMS) error with respect to DNS data are compiled in
the table summed over all the points in the domain. Case I in the table corresponds to the
case of donor points at Re = 78, 80, 86 and 90, which is noted as the most accurate based
on RMS error for the ROM reconstruction for Re = 83.When we choose the donors with
Re = 55, 80, 86 and 130 for Case V in Table 2, the RMS error is again low, as compared to
cases where only one donor point is taken from the same segment containing the target
Re. As has been noted before, for higher accuracy one must choose donor points from the
same segment of target Re, as clearly shown in Table 2 in a quantitative manner.
We draw the attention on error estimates provided inTable 2 for different combinations

of donor Re’s. It is evident from the table that the best result is obtained when all four
donor points are in the same segment of target Re, as in Case I. In Cases II to IV, we have
taken the lowest Re, farther to the left with increase in RMS error, with lowering of the
smallest donor Re. But in Case V, the extreme Re’s are chosen as 55 and 130, and yet the
RMS error is acceptable, as two of the donor Re’s belong to the segment of target Re. In
contrast, for the Case VI, only a single donor Re belongs to the same segment, resulting
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Re

t 0
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-1.5

-1

-0.5
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0.5

1

1.5

78,80,86,90
55,80,86,130

Variation of t0 with Re for interpolation of vorticity directly

(78, 0.10)

(80, 0.00)

(86, -0.50)

(90. -1.0)

(55, 1.265)

(130, -0.975)

Fig. 10 Variation of t0 with Res for Reb = 80 for Case I (solid line) and Case V (dashed line) of Table 2. Shown
in parametric form are the pair of Reynolds number and corresponding optimal t0

in RMS error increasing almost ten folds as compared to the Case V. The worst case
(Case VII) occurs in Table 2, when all the donor Re’s are outside the target Re segment.
This justifies the scientific basis of the adopted ROM keeping the various ranges of Re
punctuated by various Hopf bifurcations shown in Fig. 3b.
Role of t0 is also investigated here forω′ (the disturbance vorticity field) and the variation

of t0 with the Re is shown in Fig. 10 in the subrange 55 ≤ Re ≤ 130. Here, we obtain t0 for
the data sets of (Re = 55, 80, 86, 130) and (Re = 78, 80, 86, 90), as indicated separately in
the figure. Each of the discrete data are marked in the figure with Re and necessary time
shifts in brackets, with Reb = 80. It is noted that the finding of single t0 is far easier and
less time consuming for ω′ for the present version of ROM, as compared to any method
using POD or instability modes, which would require finding different t0 for each retained
modes.
In this method, ω′ is reconstructed using the identical procedure of interpolation after

time-scaling and initial time-shift, using Eq. 8 applied directly on ω obtained by DNS.
Thus, this procedure even circumvents the need to use the time-consuming method of
snapshots to obtain POD modes that is required for any POD based ROM e.g. POD-
Galerkin, interpolated POD. Unlike the methods of solving SLE equations given in SHPG,
proposed ROM in this paper requires storage of at most four DNS data sets in each
segment for most accurate reconstruction. If one is willing to settle for lesser accuracy,
then one can reduce the requirement of performing DNS for two Re only, in each segment
of Fig. 3. Hence this ROM is not memory intensive and it is faster.
Figure 11a, b show the comparison between DNS and the time-scaled interpolated

ω′ at two different points for Re = 70, located along the wake-center line at (0.504, 0.0)
and at (1.014, 0.0), respectively. Excellent match with the DNS data even in the transient
state proves the efficacy of the time-scaling interpolation technique applied to vorticity
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Fig. 11 Reconstructed disturbance vorticity with time-scaling interpolation for a Re = 70 using Re = 68, 72,
and 76 at (0.504, 0.0), b at (1.104, 0.0) and c Re = 83 using Re = 78, 80, 86 and 90 at (0.504, 0.0) and d at
(1.104, 0.0). Within each subfigure, the top frame is for comparison at early times, while the bottom frame
shows comparison at later times

data. It is to be noted that despite the presence of a dominant St, the physical variables
demonstrate multiple time-scales as discussed in the introduction and shown in Fig. 1.
The case for Re = 83 are shown in Fig. 11c, d, which compare the disturbance vorticity

at the same two locations with DNS data. Once again, the reconstructed ROM solution
is indistinguishable from the corresponding DNS data. Thus, it is evident that spectrum
with multiple peaks can be handled by the presented approach of time-scaling with initial
time-shift, utilizing the power law between Re with St.

Summary and conclusion
Here, we have proposed time-scaled ROM for reconstructing super-critical flow past
circular cylinder andflow inside LDCusing time-scaled Lagrange interpolation of vorticity
data obtained byDNS for different donor data at Re’s, largely located in the neighbourhood
of the target Re. In performing the interpolation, a time-scaling is performed following
Eq. (8) along with an initial time-shift, as a direct consequence of (St, Re)-relations given
in Eqs. (6) and (7).
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The proposed method differ from the ROM based on instability modes in SHPG, with
respect to speed, accuracy and generality of application. ROM reconstruction at a target
Re is of DNS-quality, if all the donor points belong in the same Re subrange, identified by
multiple Hopf bifurcations in Fig. 3a, for flow inside the LDC in the range 8700 ≤ Re ≤
12,000 and in Fig. 3b for flow past a circular cylinder, in the range of 55 ≤ Re ≤ 130 and
in Table 1.
Data requirement of present ROM is at most for four Re’s located in the same subrange.

If one wants to perform ROM with only three Re’s, then the reconstructed data are of
slightly lower accuracy, but of very acceptable quality (not shown here). The present
procedure provides scientific and applied basis of ROM, depending upon the number and
location of donor points of target Re. The formulation of this procedure does not require
the introduction of sophisticated mathematical tools contrary to Grassmann manifold
interpolation but rather focus on physics to enable accurate low order model.
In instability based ROM in SHPG, one stores only the coefficients of SLE equations.

However, one needs to obtain optimal initial conditions for the stiff SLE equations and
is restricted to use of first five POD or three instability modes. This is due to difficulty in
finding optimal initial conditions for SLE equations and only three instability modes have
been used in SHPG. In the present approach, one finds initial time-shift (t0) for the donor
vorticity data with respect to a base Reynolds number. This time shift can be obtained by
FFT based approach as proposed here.
Present study opens the scope of data mining in computational fluid dynamics. DNS of

NSE produces massive amount of data which can be used economically to predict flow
behavior of dynamical systems dominated by single or multiple peaks in the spectrum.
The proposed ROMs can be used at any arbitrary Re on demand, by the proposed ROM
performed with limited number of DNS at neighbouring Re’s. The novel procedure pro-
posed here has been tested for the internal flow inside a LDC and an external flow over a
circular cylinder, as proofs of concept.

Authors’ contributions
Authors’ contributions TKS provided the concept and was active in all work performed for this paper. LL and MA
performed the time scaling numerical implementation and tests for LDC. SIH and AG did the same on the flow around a
circular cylinder. All authors read and approved the final manuscript.

Author details
1High Performance Computing Laboratory, Department of Aerospace Engineering, I. I. T. Kanpur, Kanpur 208 016, India,
2I2M UMR 5295, University of Bordeaux, Bordeaux, France, 3Bordeaux Institut National Polytechnique, I2M UMR 5295,
Bordeaux, France.

Acknowledgements
The authors acknowledge the support provided to the second author from the Raman-Charpak Fellowship by CEFIPRA
which made his visit to HPCL, IIT Kanpur possible. This work reports partly the results obtained during the visit.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 3 April 2018 Accepted: 25 September 2018

References
1. Amsallem D, Cortial J, Carlberg K, Farhat C. A method for interpolating on manifolds structural dynamics

reduced-order models. Int J Numer Methods Eng. 2009;80:1241–58.



Sengupta et al. Adv. Model. and Simul. in Eng. Sci.           (2018) 5:26 Page 19 of 20

2. Amsallem D, Farhat C. Interpolation method for adapting reduced-order models and application to aeroelasticity.
AIAA J. 2008;46:1803–13.

3. Amsallem D, Farhat C. An online method for interpolating linear parametric reduced-order models. SIAM J Sci
Comput. 2011;33:2169–98.

4. Amsallem D, Zahr MJ, Washabaugh K. Fast local reduced basis updates for the efficient reduction of nonlinear
systems with hyper-reduction. Adv Comput Math. 2015;41:1187–230.

5. Baiges J, Codina R, Idelsohn S. Explicit reduced-order models for the stabilized finite element approximation of the
incompressible Navier-Stokes equations. Int J Numer Methods Fluids. 2013;72:1219–43.

6. Barrault M, Maday Y, Nguyen NC, Patera AT. An ‘empirical interpolation’ method: application to efficient
reduced-basis discretization of partial differential equations. C R Math. 2004;339(9):667–72.

7. Benner P, Gugercin S, Willcox K. A survey of projection-based model reduction methods for parametric dynamical
systems. SIAM Rev. 2015;57:483–531.

8. Bergmann M, Bruneau C-H, Iollo A. Enablers for robust POD models. J Comput Phys. 2009;228:516–38.
9. Buffoni M, Camarri S, Iollo A, Salvetti MV. Low-dimensional modelling of a confined three-dimensional wake flow. J

Fluid Mech. 2006;569:141.
10. Caiazzo A, Iliescu T, John V, Schyschlowa S. A numerical investigation of velocity-pressure reduced order models for

incompressible flows. J Comput Phys. 2014;259:598–616.
11. Chaturantabut S. Nonlinear model reduction via discrete empirical interpolation. Ph.D. Thesis Rice Univ., Houston,

Texas. 2011.
12. Chen K, Tu JH, Rowley C. Variants of dynamic mode decomposition: boundary condition, Koopman and Fourier

analyses. J Fluid Mech. 2012;656:5.
13. Fey U, König M, Eckelmann H. A new Strouhal-Reynolds-number relationship for the circular cylinder in the range

47<Re < 2× 105. Phys Fluids Lett. 1998;10:1547.
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