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Eép/i;:gsstt;:'ggﬁfegﬁgfg'v”e A coupled hydromechanical code based on a distributed brittle damage material
Milano, Piazza Leonardo da Vinci model has been developed in order to simulate hydraulic fracturing processes. As
32,20133 Milan, Italy specific feature, the code does not assume the development of a discrete number of
sharp cracks but considers a diffused damage that takes place under overall
confinement of the system. The code is validated against a laboratory test reproducing
the local effects of a hydraulic fracturing procedure. The numerical model of the
laboratory test is then used to conduct a parametric analysis where the influence of the
principal hydromechanical parameters on the hydraulic fracturing performance is
assessed. Finally, the code is applied to simulate multiple hydraulic fracturing
interventions in a large scale shale reservoir. In all applications considered, the model
shows a good predictive capability in terms of damage extension.
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Introduction

Hydraulic fracturing is a process characterized by the nucleation and propagation of
multiple diffused fractures in soil or rock masses as a consequence of a localized solici-
tation driven by hydraulic pressure. Hydraulic fractures are found frequently in normal
geophysics and geology situations, e. g., magma-driven propagation cracks [42,48]. In
industrial applications hydraulic fractures are created artificially: heat production from
geothermal reservoirs and the estimate of rock mass stress state [3,18,54] are just a couple
of examples. In the last decades hydraulic fracturing has been employed massively in the
field of extraction of hydrocarbons from unconventional reservoirs [47]. In this context,
the United States Environmental Protection Agency defines hydraulic fracturing as a pro-
cess that creates artificial fractures in the rock formation to facilitate the flow of natural
fluids, therefore increasing the volume of recovered hydrocarbons. The first attempts to
improve the production of reservoirs through fracturing started on the late 1930s making
use of artificial explosions, and later of acidizing treatments. The first hydraulic fractur-
ing process specifically for stimulation was performed in 1947, in western Kansas (USA).
Hydraulic fracturing is now used extensively in the petroleum industry to stimulate hydro-
carbon wells, in order to increase or, in many cases, to activate their production, cf. 23]
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and [47]. The oil or gas production as a consequence of a hydraulic fracturing treatment is
influenced strongly on length, extension and width of the induced fractures [40]. Although
hydraulic fracturing is associated commonly with low permeability gas shales, it is has been
applied also to other diverse geological situations, including weakly consolidated offshore
sediments, coal beds, and naturally fractured reservoirs [1].

To design satisfactory hydraulic fracturing treatments in a reservoir, it is of outmost
importance to estimate qualitatively and quantitatively the evolution of the fracture net-
work as a function of the parameters of the process through analytical or numerical mod-
els. Regrettably, modelling of hydraulic fracturing processes is a demanding task, due to
the numerous coupled processes involved: (i) the mechanical deformation induced by the
localized peak of fluid pressure within the porous medium; (ii) the flow of the fluid within
the fracture and the fluid exchange with the surrounding porous medium; (iii) the actual
propagation of the fracture surfaces that modify the permeability of the medium [1,10].
The hydro-mechanical process is transient in nature, and its evolution is characterized by
a strongly non-linear, non-local and history-dependent response: the actual evolution of
fractures in a heterogeneous formation is a complex phenomenon and it is very difficult
to obtain reliable predictions through simple models.

Looking back at the literature in the topic, early attempts to model hydraulic fracturing
were based on analytical solutions, obtained by assuming that a unique well-defined crack
propagates within an elastic medium under the action of a pressure, thus disregarding the
hydromechanical coupling and nonlinear effects. Such models are not able to account for
the fluid flow within the reservoir, the damage processes around the stimulated area, and
the fluid-solid interaction. Moreover, such models do not account for the existence of a
moving boundary and for the stress singularity at the crack tip. Classical examples in two-
dimensional setting are: the Perkins—Kern (PK) model [39], based on plane strain crack
solution; the Perkins—Kern—Nordgren model, an extension of the PK model accounting
for the effect of fluid loss [36]; the Kristianovic—Zheltov—Geertsma—de Klerk (KGD) plane
strain model [26]. The strong simplifying assumptions at the basis of these models imply
severe limitations to their applicability and predictive capabilities, as demonstrated by
field measurements [52]. The remarkable differences between model predictions and
field observations can be justified possibly by the presence of complex multiple fracture
systems induced by the hydraulic solicitation, or the presence of a layer of small cracks
around the main hydraulic fracture [5,6], or by the infiltration of the pumping fluid in
the porous rock [13]. In spite of such limitations, the use of analytical models is still
widespread, because of their negligible computational cost. Moreover, analytical or semi-
analytical models proved able to give insights on the competing processes that control
the propagation of fluid-driven fractures, for both impermeable and permeable materials
(see, e.g., [8,9,19,21,22,25,29,33,43]), evidencing the presence of different timescales and
length scales in the evolution of a single fracture. Recently, theoretical models have been
used to describe the propagation of arrays of closely spaced fractures [9, 32]. Despite scaling
provides interesting frameworks to classify different regimes of hydraulic fractures as well
as to design small-scale laboratory tests that mimic field conditions, this procedure can be
hardly applied for complex injection geometries or in situations where the state of stress
is not uniform, or the reservoir material is heterogeneous. Finally, the microstructural
features of rocks make scaling procedures rather complex (if not impossible), due to the
dramatic dependence of rock hydro-mechanical properties on its microstructure: scaled
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model tests performed on brittle-elastic materials like glass or polymethyl methacrylate
is precluded for real rocks [17].

The necessity of developing fully three-dimensional models thus stems from the typical
material and stress anisotropy observed in rock formations, which causes the deviation of
cracks from an ideal planar path and the non easily predictable propagation across multiple
layers [40]. Thus, pseudo-three-dimensional models (P3D) have been proposed [24,34, 35,
44,46], and further extended to account for complex fracture networks or natural fractures
[51]. More versatile approaches include planar-3D (PL3D), based on a 2D description of
the coupled flow equations and of the fracture footprint [2,44], ad fully 3D models, based
on elasticity equations and used to describe the changes of the width of an existing fracture
opening displacement with the pressure of the fluid. The computational cost, higher than
the one requested by P3D models, is balanced by the possibility to obtain reliable results
also in geological situations characterized by irregular stress and inhomogeneities [1].

With the improvement of the computational power, in recent years plenty 3D numerical
approaches have been proposed to tackle hydraulic fracturing. Approaches are based on
Finite Difference (FD), Finite Element (FE), Boundary Element (BE), Distinct Elements
Methods (DE), or a combination of the different methods. Most approaches rely on the a
priori knowledge of a single crack geometry and topology. A 3D numerical scheme based
on a surface integral method to find crack opening for any pressure distribution obtained
via a 2D FE discretization of the continuity equation has been discussed in [14].

A FE scheme to simulate the 3D evolution of non-planar hydraulic fractures, accounting
for hydro-mechanical coupling, linear elastic fracture mechanics, and lubrication theory
was discussed in [11]. Hydromechanical coupling has been treated with a mixed approach,
where the evolution of an existing crack was analyzed with a geomechanical FE solver and
the flow equations was solved with a FD scheme [30]. The literature testifies a recent effort
to develop more reliable models of fracture propagation in the context of hydraulic fractur-
ing [28]. Zero-thickness cohesive elements with proper fracture criteria and constitutive
laws have been used in [10]. Cohesive fracture propagation under hydraulic pressure, sim-
ulating explicitly the fluid flow across of network of discrete fractures, has been discussed
in [45]. The Extended Finite Element Method [31] and the Virtual Element Method [7]
have also been used with the aim to increase the predictive capabilities in reproducing
the evolution of fracture networks. All these approaches rely on the explicit modelling
of pre-existing fractures or defects, a very strong limitation because in field applications
the location of fractures is unknown. Further shortcomings are related to the difficulties
to model the interactions between natural and induced fractures, the complexity of the
adaptive discretization procedures, and the overall computational cost, unacceptable for
simulations at the reservoir scale.

Alternatively, by adopting a continuum point of view, fracture networks induced by
hydraulic fracturing can be described by a complex pattern of micro-cracks in contrast
to a set of well-defined and localized cracks. Using this approach, the modification of
the microstructure due to the progression of damage can be rendered readily in terms
of modification of hydraulic conductivity, and linked to the reservoir production. Using
a continuum approach, it is possible to ascertain the dominant role of shear failure with
respect to tensile failure in hydraulic fracturing processes [12]. A continuum approach
based on damage mechanics has been considered in the 3D fully coupled thermal-porous-
mechanical FE model discussed in [53].
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As well known, damage models are affected by mesh dependency and their use requires
the introduction of a characteristic length, which can be embedded in non-local models.
By the way of contrast, in the present study we use a continuum model of distributed brittle
damage characterized by multiple length scales, that is not affected by mesh dependency.
The material model has been introduced in terms of linearized and finite kinematics in
[15,16], and embedded into a in-house finite element code for the solution of coupled
hydro-mechanical problems. The approach has the built in capability of dealing with the
interaction between closely-spaced fractures, both natural and induced by the treatment,
as well as with the leak-off of the fluid into a permeable rock. Complex geological situ-
ations can be also easily accounted for, including reservoir heterogeneity, non-uniform
far-field stress states and material anisotropy, as generally encountered in shale reservoirs.
Finally, the constitutive model used at the material level can be easily calibrated on the
basis of classical laboratory tests performed on rock samples, like uniaxial and triaxial
tests, proving able to reproduce the most relevant peculiarities of rock behaviour like the
confining stress dependence and dilation upon shearing. We discuss the validation of the
code against experimental results and use the validated code for a parametric analysis and
the simulation of hydraulic fracturing processes in a shale reservoir.

Hydromechanical model
We adopt the standard hydro-mechanical framework for porous media in linearized kine-
matics. In consideration of the highly nonlinear behaviors involved in fracture and fric-
tional contact, in this study we opt for Therzaghi’s approach to porous mechanics, disre-
garding the more general approach due to Biot. The adoption of the simplified Terzaghi
model is based on the assumption of negligible compressibility of solid grains: as well
recognized, cf. [20], this ansatz is acceptable for soils, yet debatable for sandstones and
mudstones. Our assumption has been forced by the need of obtaining a simplified model
for wide field applications and motivated by the following reasons. Biot’s theory has been
developed for linear elastic porous media and, in particular, the Biot-Wills coefficient
o, introduced to deliver a modified effective stress able to account for solids and fluid
compressibility, was derived under the assumption of linear elastic behavior. In prob-
lems where failure is not of concern and linear elasticity is a good approximation of rock
behavior, Biot’s approach has been proved to be predictive in terms of volume change, pore
pressure built up, and expelled fluid volumes [20,50]. By the way of contrast, the inter-
pretation of failure data on sedimentary rocks, i.e., shales or limestones of main interest
for hydraulic fracturing, show that the assumption « = 1, corresponding to Terzaghi’s
approach, is more in line with the experiments [27,41]. The key mechanical issues of
the present work are related to diffused fracturing and failure and, additionally, available
failure criteria are expressed in terms of Terzaghi’s effective stress. Finally, the effects of
elastic behavior of the porous matrix are negligible in all the considered applications.
Note that the simplifying assumption of negligible fluid and solid compressibility affects
the constrained specific storage coefficient of the material (i.e., the inverse of Biot modulus
M), which attains a null value. However, the particular applications of the proposed model
render this assumption acceptable from the engineering point of view. In fact, for mass
balance purposes, the significant increase in the hydraulic conductivity of rocks due to
the opening of multiple fractures and the consequent increase of the fluid flow diminish
the relevance of the contribution of the compressibility of the fluid.
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Assuming full saturation of the void space, incompressibility of the solid particles, and
incompressibility of the fluid, the linear momentum balance and the fluid mass balance
read:

V.o+b=0, (1)

on 5
- 2)

where o is the Cauchy stress tensor, b is the body force vector, v is the seepage velocity, n

Viov=—

is the porosity (i.e. the volume of the voids over the total volume of the porous medium),
and ¢ the time. Porosity changes are related to volume changes through the relation

on e

i a_tv , 3)
where ¢, is the volumetric strain, assumed positive for expansion. According to Terzaghi’s
effective stress principle, the deformability and the strength in the porous medium are

related to the effective stress o/, defined as

o =0 +pl, (4)
where p denotes the pore fluid pressure and I the identity tensor. Accordingly, all the
constitutive equations will be expressed in terms of effective stresses:

o =0d'(e), (5)
where & denotes the small strain tensor.

For the fluid flow, we assume a linear relation between fluid velocity v and the gradient
of the hydraulic head 4, according to the Darcy law:

v=—k2yp, ©)
14

where k is the permeability tensor, p¢ and p¢ are fluid density and fluid viscosity, respec-
tively, g is the gravitational acceleration, and /% is the hydraulic head

=zt 2. )
rtg

Note that in / only the elevation head z and the pressure head are considered, while
the kinetic contribution is neglected due to the low seepage velocity. Static boundary
conditions on the Neumann boundary I'; of outward normal n require

on=t,
where t are the surface tractions. On the Dirichlet boundary I', the displacement assumes
known values @
u=nu
Hydraulic boundary conditions on the Neumann boundary I'; of normal n require
q-n=dgu,

where g, is the assigned flux. On the Dirichlet boundary I', the pressure assumes known
values p

p=p.
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The constitutive model

We recall briefly the features of the linearized constitutive model, described in detail
in [15]. The material is initially homogeneous, linear elastic and isotropic, and reacts to
the application of loading according to the Hooke’s law. Critical conditions of loading
lead to the attainment of ultimate tensile or shear stress states, that induce the inelastic
behavior with formation of multiple parallel planar fractures, named ‘faults’ in reason of
their repetitive structure in sharp contrast to the formation of a single, localized fracture.
The inelastic behavior manifests itself in terms of reduction of stiffness of the material,
therefore the material model falls in the class of damage models and it is named brittle
damage model.

Unlikely standard damage models, based on a phenomenological description of the
material response that leads to pathological mesh dependent effects, the model here con-
sidered is microstructured, or complex, and therefore it is not plagued by dependency
on the discretization. Brittle damage microstructures assume the aspect of equidistant
planes, with an orientation N and a spacing L, where the scale of the spacing is different
from the scale of the body. Microstructures are embedded in the elastic matrix and are
recursive: a second set of parallel faults, of orientation N and spacing Ly, can form within
an existing set of faults, of orientation N; and spacing L;, that provide a container for the
kinematics of the second set of faults. The outermost set of faults is called rank-1, and the
rank of the microstructure correspond to the number of nested sets of faults.

We begin to describe the damaging behavior of model in the case of the pre-existence
of an unique family of faults, disregarding for the moment how the set of faults forms.
To simplify the notation we drop the index 1 from the symbol of orientation and spacing.
The kinematics of the damaged material accounts additively for the deformation of the
matrix and for fault opening, in the form

e =symVu =" + e (8)

where u is the displacement vector, e™ is the deformation of the matrix and &f the defor-
mation due to fault activity. The deformation due to the fault is related to the relative
displacement of the two surfaces of the fault (displacement jump) A according to

1
ef:symVuf:Z(A®N+N®A) 9)

where ® denotes the dyadic product.

The behaviour of the matrix is assumed to be linear elastic, defined by the Young
modulus E and the Poisson ratio v. The behaviour of the faults follows the classical
cohesive theories: it is assumed that during the early stages of damage the separation of
the fault planes is resisted by the cohesive traction T. The relation between the cohesive
traction and A is expressed through a cohesive law T = T(A, q), where q denotes a
set of variables accounting for the irreversibility of the fault separation process. Here we
assume a scalar cohesive law, expressed in terms of an effective opening displacement A,
defined as the weighted average of the normal component, Ay = A - N, and the sliding
component, As = |A — NAy|, of the displacement jump, as

A=a2 +p2az. (10)
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Fig. 1 Linear decreasing cohesive law. The parameters of the model are the cohesive strength T, and the
critical energy release rate G¢, defined as the area enclosed by the linear loading envelope

The weight B can be seen as the ratio between the shear and the tensile strength of the
material [37].

Adopting a thermodynamically consistent approach, we postulate the existence of a
cohesive energy per unit surface @ (4, q), dependent on A and on an appropriate set of
internal variables, g, necessary to describe irreversibility. The cohesive law follows as

0P A 0A

= A 3K = T(A)a—A, (11)

through an effective cohesive traction T(A). We assume a simple effective linear decreas-
ing law, see Fig. 1, defined by two parameters: the tensile strength T, (corresponding to
the peak) and the critical energy release rate G, (corresponding to the area enclosed by the
cohesive law). Cohesive forces vanish once the critical opening displacement A, = 2G. /T,
is attained. Irreversibility is enforced by assuming elastic unloading up to the origin,
thus the only internal variable needed is the maximum attained effective displacement
q = Amax. Upon attainment of full decohesion, friction remains the sole dissipation
mechanism for the material. Friction is included in the model through a dual dissipation
potential per unit area ¥* [38], which for the classical Coulomb model reads:

Y*(A & A) = tmax{0, —N - 0N} |A|, (12)

where 1 = tan ¢ is the friction coefficient and ¢ is the friction angle, N - 6N the normal
component on the traction vector on the fault plane, and | A| is the norm of the rate of the
displacement jump.

Upon time discretization the local state of the material at time ¢,41 can be obtained
variationally. We introduce an incremental work of deformation per unit of volume E,
that accounts for all the energies involved in the process. We assume the state of the
material at time ¢, to be known and the total deformation &,,1 at time £,,41 to be assigned.
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The incremental work of deformation is

1
Ey(ent1 Apsts Guy1) = WO (ef,,n_;,_l) + Z® (An+1 Gnv1)

At A1 — A
+TI/I* (%1 En+1s An+1) ’ (13)

where W™ (e}, ) is the elastic strain energy density per unit volume of the matrix (depend-
ing on the deformation of the matrix), @ /L is the cohesive energy density per unit volume,
and the third term accounts for the frictional dissipation density in the time interval At.
The inelastic variables characterizing the state of the material at time ¢, = ¢, + At, i. e,
A, 41, guy1, are obtained through a constrained optimization conducted with respect to
the inelastic variables A, 41 and g,.+1, that accounts for the irreversibility of decohesion

Gnt1 = Gn> (14)
and for impenetrability of the faults upon closure
ANpy1 = Cp 2 0. (15)

The constant Cy may account for the presence of granular additive, that can be used to
maintain the fracture, produced by pressurization, open even after the dissipation of the
fluid pressure.

The constrained minimization, formulated as

inf E,(&nt1, Ayt q;ﬁ—l); (16)
Aui1 gnil

dn+1 = qn
ANpt1 = Cyp =0

leads to a set of four equations and two inequalities in the unknowns A,;1, g,+1. The
solution is sought by setting one of the two inequalities as an equality and solving the
equations not automatically satisfied. If also the second inequality is satisfied, the solution
is accepted. Otherwise, the procedure is repeated by assuming the satisfaction of the
second inequality [37].

Assaid, at the beginning the material is purely elastic, and faults are not present, thus the
orientation N is not defined, and it has to be computed during the calculations on the basis
of the applied load. Prior to onset of damage, at every load increment the purely elastic
solution is computed. If at a particular integration point the effective stress violates the
Mohr-Coulomb (under overall compression) or the Rankine (under a tensile state) criteria,
faults are inserted according to the attained failure condition. Notably, in [15] has been
proved that the orientation of the faults is the natural outcome of energy optimization, if
N is considered as an unknown unit vector in Eq. 16, see the Appendix in [15] for details.
Note that, for the Mohr—Coulomb criterion, the parameter 8 coincides with the friction
coefficient pu.

By including an additional energetic term, that describes the misfit energy necessary for
the accommodation of the faults within the outer fault family, the minimization process
provides also the spacing L. The misfit energy represents the energy stored in the boundary
layers that form where the faults meet a confining boundary. Since the compatibility
between the faults and their container is satisfied only on average, material develops
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boundary layers that penetrate into the faulted region to a certain depth. The boundary

layer can be modelled as an array of dislocations of alternating sign, thus the misfit energy

density can be derived from standard dislocation models [37] in the form
A2 1 L

E™S(A L) = C—

~log — 17
LlLogLo (17)

where L; is the size of the container, C is a material constant proportional to the elastic
modulus of the matrix, and the coefficient Ly (with the dimension of a length) plays the
role of a core cutoft to bound the lowest scales. The misfit boundary energy is minimized
by narrow boundary layers, which are related to small values of L, in competing demand
with the cohesive energy, which is minimized by large L. By assuming L as unknown
and minimizing the incremental work of deformation with respect to L, the optimization
procedure provides also the value of L. Remarkably, for the linear decreasing cohesive law,
the optimal fault separation L is found to be independent of A and given by

L =1Ly exp |:1———:| . (18)

In the presence of multiple fault families, the model can be employed in a recursive
manner, by replacing the elastic behavior of the matrix with a new brittle damage behavior.
The number of nested fault families defines the rank of the microstructures.

Permeability and porosity

The simple fracture pattern that characterizes the model provides an analytical expression
of the porosity and the permeability of the damaged material. The change in porosity due
to the fault activity #f can be computed as the first invariant of the fault small strain tensor

f_f _ AN

= = . 19
n Sk 7 (19)

Thus the total porosity of the material is obtained by adding the fault porosity to the
matrix porosity #™, which is assumed to be related to the matrix volumetric strain

n=n"+n. (20)
An additive decomposition holds also for the permeability tensor k
k=Kk"+k, (21)

where k™ is the permeability of the matrix, assumed to be isotropic and dependent on
matrix porosity via a Kozeny—Carman type relationship, and k is the permeability due to
the fault activity [15]

(n™)3
k™ = Cxc ——1, 22
k KC Ty (22)
1 ApN3
kf = ET(I—N@N), (23)

where I is the identity tensor and Ckc is a material constant. The permeability of a rank-Q
material can be estimated as the sum of the contributions of the single fault families, as
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Q g A ° o
K = Zl—%(I—N’@JN’). (24)
=1

Numerical solution

The solution of the coupled problem is achieved through finite elements (FE), using a
in-house developed code. The finite element discretization is applied to the weak form
of the governing differential equations. The linear momentum balance (1) accounting for
the Terzaghi principle reads

/(a/—i—lp):Vst:/ f~de+/b~st, (25)
v L v

where s is a test function field and Vs the corresponding gradient. The weak form of the
continuity Eq. (2) reads

9
/—”ndV—/q-vndvz—/ Gundrl, (26)
v 9t v r,

where 7 is test function and V7 the corresponding gradient.

We use a different FE discretization for the displacement field and the pressure field.
For the displacements, we use tetrahedral elements with quadratic interpolation for dis-
placement u and test function s, and linear interpolation for p and test function 1. The
matrix form of the discretized problem is

KP+HU = Q¥*(), (27)
HTP + F"'(U) = F™(¢), (28)

where P collects the nodal pressures, U the nodal displacement components, U the nodal
velocity components, F!(¢) the external forces, F"'(U) the internal forces, Q®*!(¢) the
imposed nodal hydraulic fluxes. Moreover K is permeability matrix and H the coupling
matrix.

In the solution algorithm, coupling is enforced weakly, by solving separately the time
discretized equations. For the solution of the continuity equation we adopt a direct solver,
while for the solution of the linear momentum balance equation we use an explicit non-
linear solver based on the concept of dynamic relaxation. The code is parallelized with a
shared memory algorithm.

Numerical applications

The brittle damage model has been conceived to describe degradation in geomaterials
as a consequence of the modification of the microstructure, due to the onset of diffused
cracking with a specific geometry. As such, the model is not able to simulate classic
problems of linear elastic fracture mechanics, since it does not feature the presence of
an isolated sharp crack tip and it is not possible to monitor the progressive separation
of two fracture flanks. Moreover, it has been mathematically and numerically proved
[37] that the model is particularly efficient in modelling failure in compression. For these
reasons, it is not significant to validate the model against the propagation of single sharp
fractures. The validation of the model has been done by simulating a small scale hydraulic
fracture laboratory test [4]. The experimental test has been performed on a concrete
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specimen in controlled, properly applied, boundary and initial conditions. As expected
in experiments conducted on opaque geo-materials (e.g., rock or concrete), authors in
[4] reported the time history of the measured borehole pressure and the post-mortem
diffused fracture pattern. The material was characterized for the elastic properties, while
the missing strength properties used in the numerical simulations have been taken from
the literature.

The results of the numerical analyses are reported in terms of two significant quantities:
the fracture volume V4, and the fracture surface S¢. The fracture volume Vi is defined as
the volume of the opened faults, i. e.,

A/ ANe
w:ZZL—gveg, (29)
e=1g=1 ~°&
where Nt is the number of elements that experienced failure, N, the number of integration
points of the element e, Ay, and L., are the normal opening displacement and the
spacing, respectively, relevant to the g-th integration point of the element e. Clearly, the
fracture volume depends on the opening of the faults and it decreases upon dissipation of
the pore pressure. The total fracture surface S is the sum of the fracture surfaces of the
Nt element that experienced failure:

Ne Ng
Ve
4

e Ty (30)

e=1g=1

In all the subsequent calculations we blocked the formation of nested microstructures
and allowed the material to develop only one family of faults.

Reference small scale laboratory test

Asreported in [4], a cement block of size 28 cm x 28 cm x 38 cm containing a cylindrical
cavity (height 0.127 m, radius 0.04 m) at the center was pressurized with a fluid up to
failure, see Fig. 2a. The block was initially compressed progressively on the six faces with
different pressures, reaching the final values of o, = 17.3 MPa, 0, = 10.4 MPa and
0; = 24.2 MPa. Subsequently, a viscous fluid mixed with dark ink was injected in the
cavity through a small pipe, with an imposed injection rate of 1 cm?/min, up to failure
of the block. The injected fluid pressure was recorded for the entire duration of the test.
At the end of the test, the specimen was split in twice to visualize the damaged zone,
darkened by the ink.

The solid model of the specimen is discretized into 6280 10-noded tetrahedral elements
and 8945 nodes. To satisty the regularity inf-sup conditions, in each element the inter-
polation functions for the displacement field are quadratic, while for the pressure field
are linear. For the sake of simplicity, the borehole is not explicitly modelled and thus
the effects of stress concentration are neglected, see Fig. 2b. The discretization is finer in
proximity to the cavity, where the pressurized fluid is localized and stress gradients are
expected to be higher. The material parameters used for the numerical simulation are
listed in Table 1. The experimental paper [4] did not provide all the material properties
needed for the numerical simulation, therefore the missing data have been estimated from
the literature.

We began with a preliminary numerical simulation where the experimental injection
flux is applied to the nodes of the mesh that fall within the volume of the cavity. The cor-
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Fig.2 Laboratory test.a Geometry and initial confinement of the concrete block. b Section of the discretized
concrete block, showing the node refinement in proximity of the center of the specimen. The mesh
comprises 6280 solid 10-noded tetrahedra and 8945 nodes

Table 1 Laboratory test [4]

Property Unit Value
Density kg/m? 2000
Young modulus MPa 152 x 10%
Poisson ratio 0.3

Tensile strength (*) MPa 4

Friction angle (*) ° 30

Critical energy release rate (¥) N/m 100

Initial porosity 0.05

Matrix permeability m? 2 x 10714
Lo/ Ac 35,000
Fluid density kg/m? 1000

Fluid viscosity Pas 100

Material parameters used in the numerical analysis. The star (*) denotes the parameters estimated from other literature
sources

responding pressure of the cavity node is recorded and compared with the experimental
data, see Fig. 3.

The predictive ability of the model to describe the pressure history is remarkable. In
particular, although faults begin forming at times around 400 s from the beginning of the
pressurization, a drop in the pressure is observed only when the faults undergo a sufficient
wide opening. Figure 4 compares the distribution of the damage due to the pressurization
obtained in the experiments with the one provided by the numerical simulations. As
expected, the damaged zone extends widely in the plane normal to the direction of the
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Fig.3 Laboratory test. Comparison between the time history of the experimental borehole pressure (dashed
line) and the numerical prediction (solid line) for the experimentally imposed injection flux

Fig.4 Laboratory test. Comparison between the experimental and the numerical results in terms of
extension of the damage induced by the fluid pressure. a Extension of the damaged zone observed in the
experiments [4]. b Visualization of the distribution of the damage in terms of magnitude (dark red color
corresponds to 0.5 mm) of the opening displacements as obtained from the numerical simulation, on a
quarter of the numerical model showing the different extension of damage on the symmetry planes

minimum compressive stress, Fig. 4a. The extension of the damaged zone in the numerical
simulation is visualized in terms of a scalar that describes the extension of the damaged
zone on a quarter of the numerical model that allows to see the different extension of
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damage on the two symmetry planes, Fig. 4b, and is in agreement with the experimental
distribution.

Figure 5 shows the time evolution of fracture surface S and fracture volume V. Figure 5a
shows a progressively increasing curve. Clearly, the fracture process is characterized by
irreversibility and the extension of the fracture surfaces cannot reduce when the fluid
pressure starts to reduce. Indeed, the total fracture surface can extend also when the
pressure peak reduce, since the fluid can flow to other regions and induce the formation
of additional fractures. This particular aspect of hydraulic fracturing has been verified
by means of acoustic emission measurements [49]. Contrariwise, the fracture volume is
related to the level of the opening of the faults, strongly influenced by the fluid pressure,
and therefore it reduces when the fluid pressure goes down.

We conducted a second analysis by applying the fluid pressure recorded during the
experiment, and obtained very similar results in shorter times. Therefore, given the pure
speculative and not applicative nature of this study, for the sake of computational cost,
the subsequent analyses have been conducted by applying the fluid pressure history.

Sensitivity analysis

In order to assess the influence of mechanical parameters on the mechanism of failure
and on the hydraulic fracture efficiency, we have conducted a sensitivity analysis on all
the parameters of the model. The study showed that the response of the system in terms
of evolution of fracture volume and fracture surfaces is affected only by a few parameters:
the material strength (in terms of both the tensile strength T, and the friction angle ¢),
and the initial permeability of the isotropic matrix k™ = kI.

Tensile strength

Three different values of tensile strength have been considered: T, = 3, 4, and 5 MPa. In
terms of Mohr-Coulomb failure criterion, the change in the tensile strength causes the
translation of the failure surface according to the o — 7 plots in Fig. 6.

A few significant results of the numerical analysis are collected in Table 2.

The time evolution of fracture surface and fracture volume for these values are shown
in Fig. 7. The most evident effect of the increase of T, is the increase in the pressure
necessary to activate the first fracture p; (cf. see Table 2) and the corresponding delay
in the time of first failure, as well as the reduction of the initial extension of the fracture
surface. The time and the extension of the initial fracture surface are visualized with black
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Fig.6 Sensitivity analysis on tensile strength. Failure surfaces in the Mohr plane for the three values of tensile
strength T, = 3, 4, and 5 MPa. Figure shows two Mohr's circles corresponding to the geostatic state and to
the state characterized by a fluid pressure able to cause the failure of the material

Table 2 Sensitivity analysis on tensile strength
T.(MPa) p,(MPa) py(MPa)  S;y (m?) Vi max (mmM3) gy (m?) Vi1 (mm?)

3 8.00 9.00 0464 1.480 0.2241 560 x 1073
4 10.15 1035 0.388 0.870 0.0915 232 x 1074
5 11.32 15.29 0499 0.337 0.0146 497 x 107

p1:fluid pressure for fault formation.

pn: fluid pressure for normal opening. Sy : fracture surface corresponding to the maximum fracture volume. Vi
maximum value of the fracture volume. S : fracture surface at the first fault formation. Vf;: fracture volume at the first fault
formation

diamonds in Fig. 7b. The fact that higher tensile strengths reduce the extension of the
initial fracture surface is related to the higher engagement requested to the material to
attain the strength in the neighborhood of the damaged zone.

Interestingly, the formation of faults does not imply an immediate normal opening of
the faults and the fracture volume may be initially null. Faults in general begin to open at a
higher pressure py, see Table 2. The time and the extension of the initial fracture surface
are visualized with black diamonds in Fig. 7d. Data in Table 2 show that tensile strength of
the material affects significantly the maximum value of the fracture surface and fracture
volume extensions.

Note that these analyses have been conducted at a fixed value of the critical energy
release rate G.. In our material model the tensile strength is strictly related to the critical
opening displacement A., which is also related to the selection of the scaling parameter
L. Therefore a change in T, modifies also the kinematic aspects of the model.

Friction angle

A change in the friction angle does not affect the values of the critical opening displacement
A.. We study the effects of friction angles ¢ =30, 38, and 45°, which in the Mohr-Coulomb
criterion corresponds to three failure surfaces with different slope, see Fig. 8.

The results of the sensitivity analysis for the friction angle are collected in Table 3 and
visualized in Fig. 9. From the data in Table 3 we observe that lower (higher) friction
angles induce higher (lower) fracture surfaces and lower (higher) fracture volumes. This
behavior can be justifed by the fact that for higher level of friction the sliding between
the crack flanks is less prone to occur, and the preferred failure mechanism is the normal
opening. Moreover, Fig. 9 show that higher values of friction angle cause a time delay in
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Fig.8 Sensitivity analysis on friction angle. Failure surfaces in the Mohr plane for friction angles of 30, 38, 45°.
Figure shows two Mohr’s circles corresponding to the geostatic state and to the state characterized by a fluid
pressure able to cause the failure of the material

the formation of the first set of faults, due to a higher fluid pressure necessary to bring the
material to failure, and a higher extension of the fracture surface at the fracture onset.

Matrix permeability

Atthebeginning of the test, the permeability of the block is given by the initial permeability
of the porous matrix. Upon fault formation, the permeability of the material increases as a
function of fault opening and spacing, Eq. (21). A high initial permeability may facilitate the
flow of the fluid in the medium and reduce the local effective stress as so as to anticipate
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surface versus time. b Fracture volume versus time

Table 3 Sensitivity analysis on friction angle

() S¢1(m?) Vg1 (mm3)
30 0.0915 23274
38 0.0100 1517
45 00117 1.9272

Sg1: fracture surface at first fault formation. Vy;: fracture volume at first fault formation
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Fig. 10 Sensitivity analysis on the initial isotropic permeability of the matrix. Black circles: 2 x 10~'% m?. Gray
circles: 2 x 10716 m2. White circles: 2 x 10~ '8 m2. a Fracture surface versus time. b Fracture volume versus
time

the time of the formation of the first fault set. We performed three analysis using the
permeability coefficients k = 2 x 10714,2 x 10716, 2 x 10718 m2,

The results of the analyses are illustrated in Fig. 10. Interestingly, simulations show that
the initial permeability does not affect the timing of first failure, but it does affect the initial
extension of the fracture surface and in general the evolution of both fracture surface and
fracture volume.

The lack of monotonicity between initial permeability and evolution of the extension
of the fracture surface and fracture volume can be explained as follows. Fracture is the
consequence of two concurrent physical phenomena. On one side, a low permeability
material does not allow a fast fluid pressure diffusion, therefore high pressures concentrate
in a limited region in the neighborhood of the injection point, leading to a concentrated
damage for the material. On the other side a high permeability material facilitates the
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Fig. 11 Large scale reservoir analysis. a Geometry, geostatic loads and location of the localized injections. b
Time history of the applied fluid pressure for the single injection process. The injection time interval is 600 s.
Finite element discretization of the reservoir, mid-section. The mesh comprises 51,066 10-noded tetrahedral
elements and 69,227 nodes

diffusion of the fluid pressure on a larger volume and the reduction of the pressure peaks,
limiting the extension of the damage.

Field application

We use the code to simulate a large scale problem, i. e., the artificial increase of the
permeability of a low-permeability hydrocarbon reservoir by means of a sequence of
hydraulic fracturing processes. We consider a very simplified geometry and homogeneity
for the material.

We consider a parallelepiped domain in a shale reservoir of size 3.5 km x 2.15 km x
2.15 km, subject to geostatic loads o, = 40 MPa, 0y = 50 MPa, and 0, = 60 MPa, see
Fig. 11a. The initial pore pressure of the repository is assumed to be uniform and equal to
p = 24 MPa. The domain is ideally crossed by a horizontal borehole parallel to the x-axis
(not reproduced in the model).

Note that in field application, where hydraulic fracturing is used to create networks
of artificial fractures in deep rock embankments to facilitate the extraction of gas/oil,
the re-closure of cracks is an undesired event. To maintain the level of opening of the
cracks, granular additives named proppant are mixed to the fracturing fluid. Proppant
acts as a constraint to the reclosure of the crack flanks and it is widely used in petroleum
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Fig. 12 Large scale reservoir analysis. a Distribution of the magnitude of the opening displacement on the

faults. Maximum opening 0.5 mm (red color). b Time evolution of the fracture surface (black circles) and
fracture volume (grey circles)

Table4 Sequential hydraulic fracturing of large scale reservoir

Property Unit Value
Density kg/m? 25 x 10°
Young modulus MPa 60 x 10
Poisson ratio 0.20
Tensile strength (*) MPa 25
Friction angle (¥) ° 30

Critical energy release rate (¥) N/m 500

Initial porosity 0.05
Matrix permeability m? 97 x 107"
Lo/ Ac 10

Fluid density kgm™ 103

Fluid viscosity Pas 1073
Proppant diameter mm 0.1

Material parameters used in the numerical analysis. The star (*) denotes the parameters estimated from the literature

engineering. We simulate the effect of nine sequential fluid injections, located along the
borehole at different sites distant 300 m one from the other, by applying the 600 s fluid
pressure history shown Fig. 11b. The domain is discretized in 51,066 10-noded tetrahedral
elements, with 69,227 displacement nodes, see Fig. 11c.

The physical properties adopted for the large scale reservoir simulation are summarized
in Table 4. The results of the numerical analyses are shown in Fig. 12a, which visualizes
the extension of the damage induced by the hydraulic fracturing in terms of magnitude of
the opening displacement.

Figure 12b shows the time evolution of fractured surface and fractured volume. Both
quantities progressively increase in time, following the sequence of fluid injection. The
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presence of proppant in the injection fluid allows the fractured volume to preserve high
values also after the dissipation of the fluid pressures.

Conclusions

We have used a coupled porous-mechanical finite element code, including a brittle damage
material model [15,16,37], to the simulation of a hydraulic fracturing laboratory test [4]
and to the simulation of an extensive hydraulic fracturing procedure in a hypothetical
hydrocarbon reservoir.

We begin by validating the code against the experimental results reported in [4]. For
the simulation it is necessary to complete the experimental data with additional material
parameters that are taken from the literature. Therefore, after the simulation we conduct
a sensitivity analysis on the parameters not provided by the experimental paper (tensile
strength T, friction angle ¢, scaling ratio Lo/ A, and isotropic matrix permeability). The
sensitivity analysis allows to understand the influence of the various parameters on the
results of a boundary value problem.

We conclude the study by applying the code to the simulation of a large scale problem,
i. e., the simulation of an extensive hydraulic fracturing process in a gas/oil reservoir. The
simulation is able to provide important information on two parameters that are usually
taken in consideration to estimate the production of a reservoir: the extension of the
fracture surface and of the fracture volume.

The simulation is extremely simplified and dwarfs the complexity of the real prob-
lem. First, the actual geological information is disregarded. Second, the actual technology
requires the drilling of the borehole, which causes a disturb on the geostatic stress state,
and the pre-fracturing of the hydraulic fracturing sites through small explosions, which
further modifies the original stress state and permeability. Third, the process control
quantity is the amount of fluid injected, while the fluid pressure is an output parameter
registered at the surface end of the borehole and not the actual (unknown) pressure. To
determine the pressure at the hydraulic fracturing location, a complex fluid-dynamical
problem involving a mixture of additives and water should be solved.

On the other side, the oversimplification of the approach leads to a numerical effi-
ciency that allows to obtain in a reasonable computational time an reliable estimate of the
hydraulic fracturing procedure. The code can be considered as a supporting design tool
for technical applications in petroleum engineering.
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