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Abstract

The definition of the surface plays an important role in the solution of contact
problems, as the evaluation of the contact force is based on the measure of the gap
between the solids. In this work three different methods to define the surface are
proposed for the solution of contact problems within the framework of the 3D
Cartesian grid finite element method. A stabilized formulation is used to solve the
contact problem and details of the kinematic description for each surface definition are
provided. The three methods are compared solving some numerical tests involving
frictionless contact with finite and small deformations.
Keywords: Contact, Immersed boundary, cgFEM, NURBS

Introduction
In recent years some alternatives to standard Finite Elementmethods have been developed
under the category of immersed boundary methods [1–3], also known as fictitious or
embedded domain methods. The common idea in these methods is that the FE mesh is
obtained by discretizing a simple domain (usually cuboid) which fully embeds the analysis
domain, but is independent of the analysis boundaries, which may be complex. Within
this category is the Cartesian grid finite element method (cgFEM) for solving elasticity
problems in 2D [4] and 3D [5]. The main differentiating features of cgFEM with respect
to other immersed boundary methods are that the cgFEM is able to consider the CAD
geometry (represented byNURBS) for the numerical integration and the use of a stabilized
Lagrange multiplier method for the imposition of Dirichlet boundary conditions (see [5]
and [6] for further details).
In order to solve the contact problemwith cgFEMwe use a stabilized Lagrangian formu-

lation first presented in [7]. The method has similarities with Nitsche-based formulations
proposed in [8–11] with a relevant difference in the stabilizing stress field. In our case
we use a smooth field calculated with the Zienkiewicz and Zhu Superconvergent patch
recovery (SPR) technique [12–14]. In a first approach, the developed contact formulation
was applied to cgFEM considering a linear facet discretization of the boundary, based on
the intersections between the Cartesian grid with the CAD geometry.
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Several attempts to enhance the definition of the contact boundaries have been devel-
oped in the framework of body-fitted meshes, usually known as surface smoothing, using
diverse techniques such as Hermite, Bezier spline and NURBS interpolations [15–18],
Gregory patches [19] or Nagata patches [20]. It is proven in these works that the enhance-
ment of the contact surfaces results in more accurate solutions and increased robustness
of the contact algorithm. A relevant contribution in the consideration of CAD geometries
is the isogeometric analysis [21] (and its applications in contact simulation, e.g. [22,23]),
in which the basis functions for the approximation of the solution are the same used for
the CAD definition. There are also NURBS-enriched formulations as in [24,25], where
isogeometric basis functions are included only in the contact elements.
As the cgFEM is able to consider the CAD geometry, it seems appropriate to use this

surface definition to improve the gap measure. In [26] the deformed surface is defined
as a combination of the undeformed CAD geometry and the finite element displacement
field. This paper can be considered as an extension of [26], where we study the effect of
the surface definition (hence the contact gap) when solving frictionless contact problems
with cgFEM. In addition to the previous approaches, linear facets and a combination of
FE solution and NURBS surface, in this work we propose a new method in which the
deformed configuration is defined as a NURBS surface, i.e., the control points of the
original CAD surface are updated such that the new configuration fits the finite element
displacement field of the contact surface.
The paper is structured as follows: in “Contact kinematics” section the kinematic vari-

ables of the problem are stated. The different alternatives to define the contact surface
are presented in “Discretization of contact kinematics” section. The formulation used to
solve the contact problem is described in “Stabilized Lagrangian contact formulation” sec-
tion. Finally the differentmethods are compared with some numerical tests in “Numerical
examples” section.

Contact kinematics
Figure 1 shows the undeformed and deformed configurations of two solids�(i) coming in
contact. The indexes (1), (2) represent the so-called slave and master bodies respectively.
�
(i)
c is the part of body (i) that can interact with the other body. Let X be the initial

configuration of a given material point in �(i), i = 1, 2. We describe the motion of �(i)

with the mapping ϕ : � −→ R
3. Therefore x(i) = ϕ

(
X(i), t

)
for a given point at time t.

Since we are solving quasi-static problems, we will omit the time variable and assume that
the load increments are small enough. Then, the position vector for any point in �(i) is
given as

x(i) = ϕ
(
X(i)

)
(1)

To enforce the contact constrain, a pair of points x(1), x(2) is defined such that the
following equation is fulfilled:

x(2)
(
�(2)

)
= gNn(1) + x(1)

(
�(1)

)
; x(1) ∈ �(1)

c , x(2) ∈ �(2)
c (2)

where �(i) ≡ (ξ , η)(i) are the convective coordinates of �
(i)
c and gN is the contact normal

gap. The normal vector to the surface is obtained from the tangent vectors to the surface
x,ξ and x,η:
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Fig. 1 Sketch of two deformable solids getting in contact

n(i) = x(i),ξ × x(i),η∥∥∥x(i),ξ × x(i),η
∥∥∥
; x(i),ξ = ∂x(i)

∂ξ
, x(i),η = ∂x(i)

∂η
(3)

We use a ray-tracing scheme to build the contact pair, so, x(1) remains fixed and Eq.
(2) has the unknowns �(2) and gN . The method for solving this equation depends on
the parametric transformation x(2)(�(2)). Equation (2) can be directly solved for linear
facets. However, if the surface is defined using rational transformations (e.g. NURBS) (2)
becomes non-linear, so we use a Newton-Raphson scheme.
From now onwards we assume that (ξ , η)(2) ≡ (ξ , η). We can now take variations in (2):

δx(2) (ξ , η) = δgNn(1) + gN δn(1) + δx(1) (4)

Taking into account that δn(1) · n(1) = 0,n(1) · n(1) = 1 and projecting Eq. (4) into n(1)

we obtain the variation of the normal gap:

δgN =
(
δx(2) (ξ , η) − δx(1)

)
· n(1) (5)

Discretization of contact kinematics
The finite element (FE) approximation of these continuum variables introduces two
important sources of error. One is related to the discretization of the analysis domain
�h which usually differs from the original �. The approximation of the continuum dis-
placement with the FE variable uh introduces the discretization error. We define this
field from the nodal value u using linear shape functions, uh = Nkuk , where uk is the
displacement of node k .
In this work we want to assess the performance of three different alternatives for the

definition of ϕ. In the first alternative we will consider a linear approximation of �.
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a b c

Fig. 2 Disctretization mesh of a torus in cgFEM. In green, elements internal to the domain. In red, elements
cut by the boundary (boundary elements). Elements completely outside the domain are not considered
during the analysis. a Phys. domain �. b Discretization �h . c Internal and boundary elements

cba

Fig. 3 Surface and volume discretization using the Marching Cubes algorithm and cgFEM. a Inside-outside
test of nodes using intersections data. bMarching Cubes topology. c Volume (green) and surface (red)
quadratures considering CAD geometry

The second alternative, first introduced in [7], includes the CAD definition of �
(i)
c in

the reference configuration, combined with the FE approximation of the displacements.
Finally we present an alternative in which the CAD surface is deformed such that it fits
the FE solution.

Previous considerations regarding cgFEM

Surface topology with the Marching cubes algorithm

In body-fitted contact FEM formulations the discretized domain �h is created so that
there are nodes located at �(i) and the surface segments are directly faces of the elements
in�h. In cgFEM [4,5]�h is a regular cuboid in which the analysis domain� is completely
embedded. This embedding domain can be easily meshed with a sequence of regular
Cartesian grids (Fig. 2b). Thus, there are no nodes located on �(i) and there exist elements
cut by the boundary, depicted in red in Fig. 2c. The consideration of the boundary within
these elements is implicitly achievedbyonly integrating thematerial part of the intersected
element. A 2D sketch of the numerical integration construction procedure for an element
cut by the boundary is shown in Fig. 3. Given the inside-outside status of the nodes
(Fig. 3a), the Marching Cubes algorithm [27] classifies the intersected pattern into 16
unique configurations. Then a tetrahedron (triangles in 2D) topology is created for each
configuration. Only the subdomains in the material side are kept (Fig. 3b) for numerical
integration. Instead of creating linear surface and volume segments using this topology,
cgFEM is able to take into account the NURBS definition of �c, as explained in [5],
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a

b

c

Fig. 4 Convective to local coordinates transformation. A point located at � in the surface parametric space
(a) is mapped to the reference configurationX (�) on the global coordinates system (c) and then to the local
element space (b) with coordinates ζe

using a technique based on the work of Sevilla et al. [28]. With this procedure the points
used for surface numerical integration are located over the actual CAD definition of the
boundary (Fig. 3c), and the volume subdomains account for the actual intersected volume
in the element. Other specific methods to obtain the volume and surface subdomains and
quadratures for particular cases, such asmultiple surfaces within a boundary element, can
be found in [5].

Convective to local coordinates transformation

It is worth to remark that for the case of a point lying on �(i) the reference configuration
mapping is described using the surface convective coordinates, whereas the FE solution
uh is defined with the shape functions of the elements, which are independent of the
geometry. Figure 4 shows the coordinate transformations involved in the evaluation of
the displacement field for a surface point with convective coordinates �, where B (�)
represents the surface parametric transformation to the global space, X = B (�). The
reference and deformed configurations are shown in the Figure with coordinates X and
x, and the reference element used to define the shape functions N(ζe) is depicted on the
left. As all the elements in cgFEM are regular hexahedrons the backward mapping from
the global space to the local element space ζe is straightforward. For a given point with
coordinates X = B (�) we have:

ζe = B (�) − Xe
h/2

(6)

where Xe is the center and h the size of the element. The partial derivatives of this
mappingwith respect to the convective coordinates are involved in the kinematic variables
definition and can be formulated as:

∂ζe

∂ξ
= 2

h
B,ξ ;

∂ζe

∂η
= 2

h
B,η (7)
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Variation of kinematic variables

In this work we use the exact variation of x(1) and x(2), which ensures the symmetry of the
formulation and the conservation of the angular momentum. Therefore the variation of
the position vector for each body is formulated as:

δx(1) = x(1),u δu
δx(2) =

(
x(2),ξ δξ + x(2),η δη + x(2),u

)
δu (8)

The variations δξ and δη in Eq. (8) are obtained by projecting Eq. (4) into x(1),ξ and x(1),η .
Considering that x(1),ξ · n(1) = 0, x(1),η · n(1) = 0, the following system is presented:

[
x(2),ξ · x(1),ξ x(2),η · x(1),ξ
x(2),ξ · x(1),η x(2),η · x(1),η

]{
δξ

δη

}
=

{
gN δn(1) · x(1),ξ − (x(2),u − x(1),u ) · x(1),ξ
gN δn(1) · x(1),η − (x(2),u − x(1),u ) · x(1),η

}
(9)

where the last term to calculate is the variation of the normal gap. Starting from (3), the
variation is evaluated as:

δn(1) = n(1)
,u δu

n(1)
,u = x(1),u,ξ × x(1),η + x(1),ξ × x(1),u,η∥∥n̂(1)

∥∥ − n(1)
∥∥n̂(1)

∥∥
[
n(1) · (x(1),u,ξ × x(1),η + x(1),ξ × x(1),u,η)

] (10)

Surface definition using linear facets

Having the surface segments topology provided by the Marching Cubes algorithm we
define a linear mapping Bl(�) from the unit triangle to the segment in the initial config-
uration, X = Bl(�). Therefore the position vector in the deformed configuration and its
derivatives are defined as:

x = Bl(�) + N (ζe)u, x ∈ �c

x,u = N (ζe)

x,ξ = Bl
,ξ (�) + N,ζe (ζe)

∂ζe

∂ξ
u

x,u,ξ = N,ζe (ζe)
∂ζe

∂ξ

x,ξ ,ξ = N,ζe,ζe (ζe)
∂ζe

∂ξ

∂ζe

∂ξ
u + N,ζe (ζe)

∂2ζe

∂ξ2
u (11)

whereN (ζe),N,ζe (ζe) andN,ζe,ζe (ζe) are the FE shape functions and its respective deriva-
tives, and ζe is evaluated as a function of � from (6). The partial derivatives with respect
to η are evaluated similarly to the terms x,ξ , x,u,ξ and x,ξ ,ξ . As the contact segments are
linear, the tangent vectors x,ξ , x,η (and consequently the normal vector n(1)) are constant
in a segment, and discontinuous between adjacent segments. This fact can produce a loss
of convergence in the search of the contact active set, especially for coarse discretizations
of the solids.

Surface definition using NURBS and FE displacements

In the cgFEM framework it is possible to eliminate the geometry discretization error
thanks to the independence between the approximation mesh and the analysis domain.
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Fig. 5 Surface segments of a regular torus in cgFEM using the same approximation mesh. a Linear facets, b
NURBS surface segments

The surface and volume subdomains can be created considering the exact geometry of
the domain (Fig. 5), provided that it is defined by NURBS surfaces, which is nowadays
a standard among the CAD industry. NURBS surfaces are rational functions defined in
their own parametric space of coordinates (ξ , η) as

Q (ξ , η) =
n∑

i=1

m∑
j=1

N (p)
i (ξ )M(q)

j (η)wi,j
∑n

i=1
∑m

j=1N
(p)
i (ξ )M(q)

j (η)wi,j
Pi,j (12)

where N (p)
i and M(q)

j are one-dimensional basis functions of order p and q respectively,
each one defined along two knot vectors with n andm control points. Pi,j are the coordi-
nates of the n×m control points of the surface. Equation (12) can be simplified for further
developments as:

Q (ξ , η) =
n∑

i=1

m∑
j=1

Si,j (ξ , η)Pi,j (13)

where the term Si,j (ξ , η) is the NURBS basis function associated to the control point (i, j):

Si,j (ξ , η) = N (p)
i (ξ )M(q)

j (η)wi,j
∑n

i=1
∑m

j=1N
(p)
i (ξ )M(q)

j (η)wi,j
(14)

We can carefully rearrange the indexation of the control points from (i, j) to the unique
index k , hence, we can rewrite the NURBS surface as a vector-matrix multiplication:

Q (ξ , η) =
n×m∑
k=1

Sk (ξ , η)Pk = S (ξ , η) · P (15)

where S (ξ , η) is a row vector containing the n × m NURBS basis functions, and P is a
(n×m)×3matrix with the coordinates of all the control points of the surface. If we use the
NURBS to define the reference configuration of �

(i)
c (1) and its derivatives are rewritten

as
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Fig. 6 Example of NURBS fitting to the FE solution. a NURBS definition of �c . b FE solution uh . c NURBS
fitting to uh

x = Q (ξ , η) + N (ζe)u, x ∈ �c

x,u = N (ζe)

x,ξ = Q,ξ (ξ , η) + N,ζe (ζe)
∂ζe

∂ξ
u

x,u,ξ = N,ζe (ζe)
∂ζe

∂ξ

x,ξ ,ξ = Q,ξ ,ξ (ξ , η) + N,ζe,ζe (ζe)
∂ζe

∂ξ

∂ζe

∂ξ
u + N,ζe (ζe)

∂2ζe

∂ξ2
u (16)

Differentiating (12) we can obtain the NURBS derivatives:

Q,ξ = ∂S (ξ , η)
∂ξ

P; Q,η = ∂S (ξ , η)
∂η

P (17)

Displacement of the NURBS surface matching the FE solution

The last alternative is a step further in the use of NURBS surfaces to define the position
of a point laying on �c. Let u be the FE displacements obtained for the current iteration
during the solution process. Then the following least squares problem is proposed to fit
the contact surface (Eq. (15)) to the solution uh:

min
[
1
2

∫

�
(i)
c
(S (ξ , η)V − N(ζe)u)2 dξdη

]
(18)

where V are the displacements of control points P such as the NURBS surface matches
the displacement field given by the FE solution. Figure 6 illustrates this idea with a simple
example. The boundary �c is represented in Fig. 6a, with the control points net depicted
in red. Assuming the solution uh evaluated over this surface is as in Fig. 6b the NURBS
is fitted to that solution (Fig. 6c). It is straightforward that the quality of this fitting will
strongly depend on the “flexibility” of the surface, this is, the degree and number of knots
of the NURBS. To overcome this issue there exist degree elevation and knot insertion
algorithms which increase the degrees of freedom without changing the original surface.
The least squares problem in (18) can be solved using numerical integration over �c :

V = M−1Gu (19)

where

M =
∑
i
S (ξ , η)Ti S (ξ , η)i |J|i Hi ; G =

∑
i
S (ξ , η)Ti N(ζei ) |J|i Hi (20)
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If the contact surface is modified such that the FE solution is implicitly included, the
position of a given point of�c can be expressed using only themodifiedNURBS definition:

x = S (ξ , η) (P + V) = S (ξ , η) (P + Cu) , x ∈ �c (21)

with C = M−1G. Note that C is a constant matrix which is defined for each different
NURBS surface in �

(i)
c . These matrices can be calculated once previously and then used

during the solving algorithm saving computational cost. For this case the derivatives of
the position vector are expressed as:

x,u = S (ξ , η)C
x,ξ = S,ξ (ξ , η) (P + Cu)
x,u,ξ = S,ξ (ξ , η)C
x,ξ ,ξ = S,ξ ,ξ (ξ , η) (P + Cu) (22)

The evaluations of the position vector and all its derivatives becomes considerably easier
thanks to the use of a unique NURBS in comparison with a mixed definition using the
NURBS and the FE solution. The intersection procedure is also faster, since only surface
evaluations must be computed. However, matrix C couples all the elements in the mesh
that contain the same surface, making this method non-viable in terms of computational
cost for refined meshes.
Note that in both proposed alternatives the NURBS surface is implicitly considered

through the numerical integration, and in the last one the nodes of the Cartesian grid
are coupled with the control points of the contact NURBS through the gap definition.
However, no additional degrees of freedomare includedover theboundary and, in contrast
with NURBS-enriched contact formulations as [24], the standard FE interpolation is kept
inside the domain.

Stabilized Lagrangian contact formulation
This study is focused on the solution of frictionless 3D contact problems using the cgFEM,
sowe recall the stabilized Lagrange functional presented in [7]. The solution of the contact
problem is the displacement field u and the Lagrange multipliers field λN that optimizes
the following stabilized Lagrangian:

opt
{
	(u) + 1

2κ1

∫

�
(1)
c

([
λN + κ1gN

]2
− − |λN |2

)
d� − 1

2κ2

∫

�
(1)
c
(λN − pN )2 d�

}

(23)

with 	(u) containing all the terms related to the finite strain elasticity, κ1, κ2 are penalty
constants, and we use the negative part operator which is defined as:

[x]− =

⎧⎪⎨
⎪⎩

−x if x ≤ 0

0 if x > 0
(24)

We introduce the normal stabilizing stress pN = n(1) · σ∗ · n(1), where σ∗ is a smooth
field evaluated using the Zienkiewicz and Zhu Superconvergent Patch Recovery (SPR)
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technique [12,13]. This term is considered independent of the solution, and an external
loop is introduced to re-evaluate it.We experienced that the number of iterations is usually
only between 2-4. Taking variations in Eq. (23) we can assume that σ∗ is constant and we
obtain the following system:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δ	(u, δu) −
∫

�
(1)
c

[
λN + κ1gN

]
− δgN d� = 0, ∀δu

− 1
κ1

∫

�
(1)
c

([
λN + κ1gN

]
− + λN

)
δλN d� − 1

κ2

∫

�
(1)
c
(λN − pN ) δλN d� = 0, ∀δλN

(25)

The Lagrangemultipliers in the second Equation in (25) can be condensed element-wise
[7] when considering the numerical integration, obtaining the following result:

λN g =

⎧⎪⎪⎨
⎪⎪⎩

κ2gN g + pN g if
(
λN g + κ1gN g

)
≤ 0

0 if
(
λN g + κ1gN g

)
> 0

(26)

This is defined for each quadrature point depicted by sub-index g . The substitution of λN
in the numerical integration of (25) yields the following equation:

δ	(u, δu) − ∑
g

(
pN g + κE

h gN g

)
δgN g |J |g Hg = 0, if

(
pN g + κE

h gN g

)
≤ 0

δ	(u, δu) = 0, if
(
pN g + κE

h gN g

)
> 0

(27)

where κE
h = (κ1 + κ2) is the penalty term, E is the elastic modulus, h is the mesh size, Hg

is the quadrature weight and, |J |g is the Jacobian of the transformation.

Linearization of kinematic variables

The formulation used above is solved using the Newton-Raphson method, therefore, the
linearizations of the kinematic variables in Eq. (27), i.e., �gN and �δgN are needed. The
same process performed in (5) can be used to obtain �gN . For the linearization �δgN we
start from (4) and obtain the following expression:

�δx(2) (ξ , η) = �δgNn(1) + δgN�n(1) + �gN δn(1) + gN�δn(1) + �δx(1) (28)

which, after multiplying by n(1), results in:

�δgN =
(
�δx(2) (ξ , η) − �δx(1)

)
· n(1) − gN�δn(1) · n(1) (29)

We can now obtain the linearizations �δx(1), �δx(2) from Eq. (8):

�δx(2) = δu
[
x(2),ξ ,ξ�ξδξ + x(2),η,η�ηδη + x(2),ξ ,η (�ξδη + δξ�η) + x(2),u,ξ δξ+

+x(2),u,ξ�ξ + x(2),u,ηδη + x(2),u,η�η + x(2),ξ �δξ + x(2),η �δη
]
�u

�δx(1) = 0 (30)

Finally, multiplying (28) by x(1),ξ and x(1),η a system of equations similar to (9) is obtained
to compute the variables �δξ and �δη.
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Fig. 7 Example 1. Contact between plane surfaces. Sketch of problem

Numerical examples
Contact between plane surfaces

In this example, similar to [29,30], a simple analysis of contact between plane surfaces
is solved to test the convergence of the FE solution using the different surface definitions
described in this paper. The 2D sketch of the solids in contact is depicted in Fig. 7, where
x is the out-of-plane direction. Both solids have common elastic material properties,
E = 115GPa and ν = 0.3. At the initial configuration, the contact surfaces are overlapping
and vertical displacement d = −1.6 × 10−6 m is applied on the upper face of the upper
body. Displacements along y direction are constrained on the upper face of body 2 and on
the lower face of body 1.We use a 2D plane strain overkill solution from [30] as a reference
for the discretization error evaluation, so symmetry conditions are applied to the faces
parallel to the yz plane.The lateral faces of body 1 are loadedwithpy = 4·1011(0.01−z)z Pa
and pz = 10 · 1011(0.01 − z)z Pa.
Non-conforming Cartesian grids are used on both bodies. Figure 8 shows some of the

uniformly refinedmeshes used for the analysis. Starting with the first discretization in Fig.
8 each element is subdivided into 8 new elements to build the following mesh.
The convergence of the relative error in energy norm is shown in Fig. 9 for a sequence of

4 meshes using linear elements,H8. The results show that, for all the surface definitions,
optimal convergence rate of the error in energy norm (represented by the triangle) is
achieved. Only two meshes were solved with the fitting NURBS definition due to the high
amounts of nodes coupled in the following meshes.
The original surface definitions consist in linear NURBS for both solids. The degree

of the contact surfaces was modified in order to increase the flexibility of the surfaces
when performing the NURBS fitting. Figure 10 shows the vertical displacements uhy along
a line located on the top surface of the lower solid for the cases of linear facets and fitting
NURBS definitions, which are very similar. The line in red represents the NURBS surface
resulting from the fitting problem Eq. (18).
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Fig. 8 Example 1. Refinement process for the study of the convergence of the solution. Meshes 1 to 3 are
shown from left to right
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Fig. 9 Example 1: Evolution of the error in energy norm with the element size of the lower body.
Convergence of the FE solution

When the contact occurs between planar surfaces there is practically no difference in the
definition of the surfaces using the three presented methods, and the gap measurement is
trivial. Therefore, as expected, all methods have results with a similar precision.

Contact between curved surfaces, finite deformations

The second example considers the contact interaction between elastic solids with a
toroidal shape with major radius R = 2 cm and minor radius r = 0.5 cm. Figure 11 shows
the initial position of the bodies in contact. A positive displacement is imposed along the
y direction over the purple surfaces in 5 incremental steps of 0.1cm. All the DOFs are
constrained over the blue surfaces. A Neo-Hookean material is used with E = 116GPa
and ν = 0.3.
Three different discretizations have been considered in this case, using the sameuniform

refinementprocess described in theprevious example. Figure12 shows the analysismeshes
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Fig. 10 Example 1: FE displacements uh over the top surface of the lower solid considering linear facets and
NURBS fitting definitions. The curve in red depicts the solution of the NURBS fitting problem

Fig. 11 Example 2. Contact simulation between curved surfaces. A positive displacement along the y
direction is imposed over the purple surfaces. All the DOFs are constrained over the blue surfaces

for one of the solids. No results were obtained when using linear facets with the first of the
meshes due to loss of convergence caused by the surface discretization being extremely
coarse. However, the same coarse mesh had no convergence problems using the other
two surface definitions, thanks to the consideration of the exact geometry. The last mesh
was not solved using the NURBS displacement method due to the high amount of nodes
coupled by each surface, which results in non-viable computational cost.
Figure 13 shows the evolution of the reaction forces over the constrained surfaces during

the load for each analysis. Note that although all analyses have similar results, the reaction
forces when solving mesh 2 with linear facets is clearly lower than the rest of the analyses,
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Fig. 12 Example 2. Refinement process for the analysis of contact between curved surfaces. Meshes 1 to 3
are shown from left to right. Both solids are meshed with a similar discretization. a 216 nodes. b 1052 nodes. c
5268 nodes
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Fig. 13 Example 2. Reaction forces on the Dirichlet constrained surfaces during the load

including the results obtained with NURBS+FE and NURBS fitting for the coarse mesh.
This is mainly due to the lower precision in the gap measurement with linear facets.
The values of σy at the final load step for all the performed analyses is shown in Fig.

14. The results are similar for the different methods, with the maximum stress value
increasing with the refinement of the mesh.
The same problem was solved using a Neo-Hookean material with E = 7MPa, ν =

0.45, and 15 displacement increments of 0.1cm along the y direction. Two methods are
compared in this test, first the linear facets definition with mesh number 2 (Fig. 12b) and
the NURBS + FE method with the coarse mesh (Fig. 12a). The deformed configuration
of the solids for the last load step is shown in Fig. 15. It can be seen that despite the use
of a coarser discretization, the results with the NURBS + FE method are similar to those
obtained with linear facets and a finer mesh.
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Fig. 14 Example 2. Values of σy (Pa) at final load step for all the analyses. *The image in a shows the coarse
surface discretization which led to loss of convergence. a Linear, mesh 1*. b Linear, mesh 2. c Linear, mesh 3. d
NURBS + FE, 1. e NURBS + FE, 2. f NURBS + FE, 3. g NURBS disp., 1. h NURBS disp., 1
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Fig. 15 Example 2. Finite deformations with Neo-Hookean material. Deformed shape using a Linear facets, b
NURBS + FE solution. The color map represents values of ‖uh‖. c Surface integration points with active
contact

Fig. 16 Example 3. Small deformations contact between curved surfaces. A positive displacement along the
y direction is imposed over the purple surfaces. All the DOFs are constrained over the blue surfaces

Contact between curved surfaces, small deformations

The last example consists in a small deformations contact simulation between three torus.
The geometric parameters are the same as in the previous example. For this problem a
linear elastic material has been considered, with E = 115GPa and ν = 0.3, and only one
increment of 0.05cm has been applied in the y direction over the purple surfaces, shown
in Fig. 16. The problem was solved using linear facets and NURBS + FE definition, with
the meshes in Fig. 12a, b respectively.
Figure 17 shows the resulting Von Mises stress at the central solid for both cases.

A substantial difference between the maximum stress values can be appreciated in this
cases. As the deformations in this problem are small, the stress ismainly due to the contact
interaction, and the initial gap measure becomes crucial. With convex contact surfaces
the linear facets definition estimates less penetration than the actual geometries have,
thus producing lower values of stress, even with a higher number of degrees of freedom
than in the case of NURBS contact surfaces.
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Fig. 17 Example 3. Small deformations contact between three torus. Von Mises stress for the central torus
(Pa) with exact geometry consideration and linear facets. a Facets, 216 nodes. b Facets, 1052 nodes

Conclusions
Three different alternatives have been presented to define the contact surfaces within
the Cartesian grid finite element method: a linear facet representation, a combination
of NURBS surface and FE displacements and the fitting of a NURBS surface to the FE
displacements. The first option, is the most simple and fastest of all three in terms of
procedure and implementation. The surface integration quadratures are based on linear
triangles whose rules are well known. The ray-tracing algorithm becomes a linear equa-
tion, thus having an analytical solution. Therefore the gap is easily computed. In terms
of implementation, the normal vector is constant along a surface subdomain (triangle)
reducing the number of terms in the calculation of the kinematic variables. On the other
hand, this method has lower precision in the gapmeasure, which can affect the robustness
of the method, specially with coarse discretizations.
The use of NURBS surfaces combined with FE solution provides with better results

compared with linear facets, as the actual CAD geometry is considered regardless of the
used discretization. In all the tests analysed the precision of the solution computed in
terms of energy error or stresses is always greater or equal than that obtained with linear
facets. This is specially true for coarse discretizations, due to the enhanced gap measure.
Some drawbacks of this method are related to the computational cost of the quadrature
rules creation [5] and the solution of the ray-tracing algorithm (non-linear equation). In
terms of implementation, more terms are involved in the evaluation of the kinematic
variables and its variations. However, the total computational cost is not compromised,
as the results obtained with NURBS surfaces and coarse meshes have a similar quality as
those obtained with finer meshes and linear facets.
From an analytical point of view, the NURBS fitting definition has interesting features

with respect to themixed NURBS and FE definition. The evaluation of the kinematic vari-
ables and the ray-tracing solution are simpler as there is only aNURBS involved. However,
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the high coupling of degrees of freedom for fine discretizations should be addressed, as the
computational cost grows exponentially. For these reasons, the combination of NURBS
and FE solution seems to be the most versatile and robust option to define the contact
surfaces in the framework of the cgFEM.
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