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Abstract

We consider a cut isogeometric method, where the boundary of the domain is allowed
to cut through the background mesh in an arbitrary fashion for a second order elliptic
model problem. In order to stabilize the method on the cut boundary we remove basis
functions which have small intersection with the computational domain. We determine
criteria on the intersection which guarantee that the order of convergence in the
energy norm is not affected by the removal. The higher order regularity of the B-spline
basis functions leads to improved bounds compared to standard Lagrange elements.

Introduction

Background and earlier work

CutFEM and CutIGA, are methods where the geometry of the domain is allowed to cut
through the background mesh in an arbitrary fashion, which manufactures so called cut
elements at the boundary. This approach typically leads to some loss of stability and ill
conditioning of the resulting stiffness matrix that must be handled in some way. Several
approaches have been proposed:

• Gradient jump penalties or some related stabilization term, see [3] and [4].
• Adding a small amount of extra stiffness to each active element as is done in the finite

cell method, see [7] and [12].
• Element merging where small elements are associated with a neighbor which has a

large intersection. For DG methods see [11] and for CG methods see [1].
• Basis function removal where basis functions with support that has a small intersec-

tion with the domain are removed. For the case of isogeometric spline spaces see
[8].

For a general introduction to CutFEM we refer to the overview paper [4] and for an
introduction to isogeometric analysis we refer to [6].

New contributions

We investigate the basis function removal approach based on simply eliminating basis
functions that has a small intersection with the domain in the context of isogeometric
analysis, more precisely we employ B-spline spaces of order p with maximal regularity
Cp−1. To this end we need to make the meaning of small intersection precise and our
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guideline will be that we should not lose order in a given norm. In particular, we consider
the error in the energynormand show thatwemay removebasis functionswith sufficiently
small energy norm and still retain optimal order convergence.
We also quantify the meaning of a basis function with sufficiently small energy norm

in terms of the size of the intersection between the support of the basis function and the
domain. In order to measure the size of the intersection we consider a corner inside the
domain and we let δi, i = 1, . . . , d with d the dimension, be the distance from the corner
to the intersection of edge Ei with the boundary. If there is no intersection δi = h. We
then identify a condition on δi in terms of the mesh parameter h which guarantees that
we have optimal order convergence in the energy norm. The energy norm of the basis
functions may be approximated by the diagonal element of the stiffness matrix and we
propose a convenient selection procedure based on the diagonal elements in the stiffness
matrix which is easy to implement.
We also derive the condition on δi corresponding to theW 1∞ norm, which will be tighter

since thenorm is stronger andherewe alsoneed the continuity of the derivative of the basis
functions. We discuss the approach in the context of standard Lagrange basis function
where we note that we get much a tighter condition on δi in the energy norm and in the
W 1∞ norm we find that it is not possible to remove basis functions.
We impose Dirichlet conditions weakly using nonsymmetric Nitsche, which is coercive

by definition. Since the energy norm used in the nonsymmetric Nitsche method does
not control the normal gradient on the Dirichlet boundary we do however need to add a
standard least squares stabilization term on the elements in the vicinity of the boundary.
Note that this term is element wise in contrast to the stabilization terms usually used in
CutFEM.
When symmetric Nitsche is used to enforce Dirichlet boundary conditions stabilization

appears to be necessary to guarantee that a certain inverse estimate holds. This bound
is not improved by the higher regularity of the splines and will not be enforced in a
satisfactory manner by basis function removal.

Outline

In “The model problem and method” section we introduce the model problem and the
method, in Chapter 3 we derive properties of the bilinear form, define the interpolation
operator, define the criteria for basis function removal, derive error bounds, and quantify
δ in terms of h for various norms, and finally in “Numerical results” section we present
some illustrating numerical examples.

Themodel problem andmethod
Model problem

Let � be a domain in R
d with smooth boundary ∂� and consider the problem: find

u : � → R such that

−�u = f in� (1)

u = gD on ∂�D (2)

n · ∇u = gN on ∂�N (3)
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For sufficiently regular data there exists a unique solution to this problem and we will be
interested in higher order methods and therefore we will always assume that the solution
satisfies the regularity estimate

‖u‖Hs(�) � 1 (4)

for s ≥ 2. Here and below a � b means that there is a positive constant C such that
a ≤ Cb.

The finite element method

The B-spline spaces

• Let ˜Th, h ∈ (0, h0], be a family of uniform tensor product meshes in R
d with mesh

parameter h.
• Let ˜Vh = Cp−1Qp(Rd) be the space of Cp−1 tensor product B-splines of order p

defined on ˜Th. Let˜B = {ϕi}i∈˜I be the standard basis in ˜Vh, where˜I is an index set.
• Let B = {ϕ ∈ ˜B : supp(ϕ) ∩ � �= ∅} be the set of basis functions with support that

intersects �. Let I be an index set for B. Let Vh = span{B} and let Th = {T ∈ ˜Th :
T ⊂ ∪ϕ∈B supp(ϕ)}. An illustration of the basis functions in 1D is given in Fig. 1.

• Let B = Ba ∪ Br be a partition into a set Ba of active basis functions which we keep
and a set Br of basis functions which we remove. Let I = Ia ∪ Ir be the corresponding
partition of the index set. Let Vh,a = span{Ba} be the active finite element space.

Remark 1 To construct the basis functions in ˜Vh we start with the one dimensional lineR
and define a uniform partition, with nodes xi = ih, i ∈ Z, where h is the mesh parameter,
and elements Ii = [xi−1, xi). We define

ϕi,0(x) =
⎧

⎨

⎩

1 x ∈ Ii
0 x ∈ R \ Ii

(5)

a

b

Fig. 1 B-spline basis functions in one dimension. The set B of basis functions with non-empty support in �

are indicated in deep purple. Note that basis functions crossing the boundary of � are defined analogously to
interior basis functions. a C1Q2(R). b C2Q3(R)
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The basis functions ϕi,p are then defined by the Cox-de Boor recursion formula

ϕi,p = x − xi
xi+p − xi

ϕi,p−1(x) + xi+p+1 − x
xi+p+1 − xi+1

ϕi+1,p−1(x) (6)

we note that these basis functions are Cp−1 and supported on [xi, xi+p+1] which corre-
sponds to p+ 1 elements, see Fig. 1. We then define tensor product basis functions in R

d

of the form

ϕi1 ,...,id (x) =
d

∏

k=1
ϕik (xk ) (7)

The nonsymmetric method

Find uh,a ∈ Vh,a such that

Ah(uh,a, v) = Lh(v) v ∈ Vh,a (8)

The forms are defined by

Ah(v, w) = ah(v, w) + τh2(�v,�w)Th,D∩� (9)

Lh(v) = lh(v) + τh2(f,�v)Th,D∩� (10)

where

ah(v, w) = (∇v,∇w)� − (n · ∇v, w)∂�D + (v, n · ∇w)∂�D + βh−1(v, w)∂�D (11)

lh(v) = (f, v)� + (gN , v)∂�N + (gD, n · ∇v)∂�D + βh−1(gD, v)∂�D (12)

with positive parameters β and τ . Furthermore, we used the notation

(v, w)Th,D∩� =
∑

T∈Th,D
(v, w)T∩� (13)

where Th,D ⊂ Th is defined by

Th,D = Th (Uδ(∂�D)) = {T ∈ Th : T ∩ Uδ(∂�D) �= ∅} (14)

and

Uδ(∂�D) =
⎛

⎝

⋃

x∈∂�D

Bδ(x)

⎞

⎠ ∩ � (15)

with δ ∼ h and Bδ(x) the open ball with center x and radius δ. We note that it follows
from (14) that Uδ(∂�D) ⊂ Th,D.
Galerkin orthogonality It holds

Ah(u − uh, v) = 0 ∀v ∈ Vh (16)

Remark 2 In practice, Th,D may be taken as the set of all elements that intersect the
Dirichlet boundary ∂�D and their neighbors, i.e. Th,D = Nh(Th(∂�D)).
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Remark 3 (The Symmetric Method) The symmetric version of (8) takes the form: find
uh,a ∈ Vh,a such that

ah,sym(uh,a, v) + sh,sym(uh,a, v) = lh,sym(v) v ∈ Vh,a (17)

The forms are defined by

ah,sym(v, w) = (∇v,∇w)� − (n · ∇v, w)∂�D − (v, n · ∇w)∂�D + βh−1(v, w)∂�D (18)

sh,sym(v, w) = γ h2p−1 (

[Dp
nF v], [D

p
nF w]

)

FD,h
(19)

lh,sym(v) = (f, v)� + (gN , v)∂�N − (gD, n · ∇v)∂�D + βh−1(gD, v)∂�D (20)

where β and γ are positive parameters,Fh,D is the set of interior faces which belong to an
element in Th(∂�D), and DnF = nF · ∇ is the directional derivative normal to the face F .
The stabilization term sh,sym provides the control

‖∇v‖2Th(∂�D) � ‖∇v‖2� + ‖v‖2sh,sym v ∈ Vh (21)

where we note that we indeed obtain control on the full elements T ∈ Th(∂�D). The
control (21) is employed in the proof of the coercivity of Ah in the symmetric case. More
precisely, (21) is used as follows

h‖n · ∇v‖2∂�D � ‖∇v‖2Th(∂�D) � ‖∇v‖2� + ‖v‖2sh,sym (22)

where we used an inverse inequality in the first estimate
In the symmetric formulation we stabilize to ensure that coercivity holds and this sta-

bilization also implies that the resulting linear system of equations is well conditioned.
Therefore, in the symmetric case, we do not employ basis function removal on the Dirich-
let boundary.

Error estimates
Basic properties ofAh
Energy norm Define the norms

|||v|||2h = ‖∇v‖2� + h−1‖v‖2∂�D + τh2‖�v‖2Th,D∩� (23)

|||v|||2h,� = ‖∇v‖2� + h−1‖v‖2∂�D + τh2‖�v‖2Th,D∩� + h‖n · ∇v‖2∂�D (24)

Coercivity For β > 0 the form Ah is coercive

|||v|||2h � Ah(v, v) v ∈ V + Vh (25)

where V = H2(�). This result follows directly from the definition and the fact that the
parameters τ ≥ 0 and β > 0.
Continuity The form Ah is continuous

Ah(v, w) � |||v|||h|||w|||h,� v, w ∈ V + Vh (26)



Elfverson et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:6 Page 6 of 19

Proof First we note that

Ah(v, w) = (∇v,∇w)� − (n · ∇v, w)∂�D

+ (v, n · ∇w)∂�D + βh−1(v, w)∂�D + τh2(�v,�w)Th,D∩� (27)

� |(∇v,∇w)� − (n · ∇v, w)∂�D | + |||v|||h|||w|||h,� (28)

We proceed with an estimate of the first term on the right hand side. To that end let
χ : � → [0, 1] be a smooth function such that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

χ = 1 on ∂�D

supp(χ ) ⊂ Uδ(∂�D)

‖∇χ‖L∞(Uδ (∂�D)) � δ−1

(29)

whereUδ(∂�δ) is defined in (15). Splitting the term (∇v,∇w)� using χ and then applying
Green’s formula for the term in the vicinity of ∂�D followed by some obvious bounds give

(∇v,∇w)� − (n · ∇v, w)∂�D

= (∇v, (1 − χ )∇w)� + (∇v,χ∇w)� − (n · ∇v,χw)∂�D (30)

= (∇v, (1 − χ )∇w)� − (∇ · (χ∇v), w)� (31)

= (∇v, (1 − χ )∇w)� − (∇χ · ∇v, w)� − (χ�v, w)� (32)

� ‖∇v‖�‖∇w‖� + δ−1‖∇v‖Uδ (∂�D)‖w‖Uδ (∂�D) + ‖�v‖Uδ (∂�D)‖w‖Uδ (∂�D)
(33)

where we in (31) assume v ∈ H2(�) which holds if Vh is a space of Cp−1 tensor product
B-splines of order p ≥ 2.
Next using the bound

‖w‖2Uδ (∂�D) � δ‖w‖2∂�D + δ2‖∇w‖2Uδ (∂�D) (34)

see [5], we conclude that

(∇v,∇w)� − (n · ∇v, w)∂�D (35)

� ‖∇v‖�‖∇w‖� + δ−1‖∇v‖Uδ (∂�D)(δ‖w‖2∂�D + δ2‖∇w‖2Uδ (∂�D))
1/2 (36)

+ ‖�v‖Uδ (∂�D)(δ‖w‖∂�D + δ2‖∇w‖2Uδ (∂�D))
1/2 (37)

� ‖∇v‖�‖∇w‖� + ‖∇v‖Uδ (∂�D)(δ
−1‖w‖2∂�D + ‖∇w‖2Uδ (∂�D))

1/2 (38)

+ δ‖�v‖Uδ (∂�D)(δ
−1‖w‖∂�D + ‖∇w‖2Uδ (∂�D))

1/2 (39)

� (‖∇v‖2� + ‖∇v‖2Uδ (∂�D) + δ2‖�v‖2Uδ (∂�D))
1/2 (40)

× (‖∇w‖2� + δ−1‖w‖2∂�D + ‖∇w‖2Uδ (∂�D))
1/2 (41)

� (‖∇v‖2� + δ2‖�v‖2Uδ (∂�D))
1/2 (42)

× (‖∇w‖2� + δ−1‖w‖2∂�D )
1/2 (43)

Finally, choosing δ ∼ h and using the fact that Uδ(∂�D) ⊂ Th,D we obtain

(∇v,∇w)� − (n · ∇v, w)∂�D � |||v|||h|||w|||h,� (44)

which in combination with (28) concludes the proof. ��
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Interpolation error estimates

Definition of the interpolant There is an extension operator E : Wk
q (�) → Wk

q (Rd), k ≥ 0
and q ≥ 1, such that

‖Ev‖Wk
q (Rd ) � ‖v‖Wk

q (�) (45)

see [9]. Define the interpolant by

πh : Hs(�) � u �→ πCl,h(Eu) ∈ Vh (46)

where πCl,h is a Clement type interpolation operator onto the spline space. We have the
expansion

πh(Ev) =
∑

ϕi∈I
(πh(Ev))iϕi (47)

where (πh(Ev))i is the coefficient corresponding to basis function ϕi. We define the inter-
polant on the active and removed finite element spaces by

πh,av =
∑

ϕi∈Ia
(πh(Ev))iϕi (48)

and

πh,rv =
∑

ϕi∈Ir
(πh(Ev))iϕi (49)

We then have

πh(Ev) = πh,a(Ev) + πh,r(Ev) (50)

Below we simplify the notation and write v = Ev and πh(Ev) = πhv.
Basis function removal condition Let Br , with corresponding index set Ir , be such that

∑

i∈Ir
|||ϕi|||2h,� � tol2 (51)

Selection procedure To determine Br we may thus compute |||ϕi|||h,�, i ∈ I , sort the basis
functions in increasing order and then simply add functions to Ir as long as (51) is satisfied.
If we wish to avoid computing |||ϕi|||h,� we may use the directly available diagonal values
Ah(ϕi,ϕi) of the stiffness matrix as approximations.

Lemma 1 (Interpolation error estimate) Let πh,a be defined by (48) with B = Ba ∪Br such
that Br satisfies (51), then

|||v − πh,av|||h,� � (hp + tol)‖v‖Hp+1(�) (52)
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Proof Using the identity πhv = πh,av + πh,rv and the triangle inequality

|||v − πh,av|||2h,� � |||v − πhv|||2h,� + |||πh,rv|||2h,� (53)

� h2p‖v‖2Hp+1(�) + |||πh,rv|||2h,� (54)

by standard spline interpolation results [2]. To estimate the second term on the right hand
side we introduce the scalar product

〈v, w〉h,� = (∇v,∇w)� + h(n · ∇v, n · ∇w)∂�D + h−1(v, w)∂�D + h2(�v,�w)Th,D∩�

(55)

associated with the norm ||| · |||h,�. Expanding πh,rv in the basis Br we get

|||πh,rv|||2h,� =
∑

i,j∈Ir
(πhv)i(πhv)j〈ϕi,ϕj〉h,� (56)

≤
∑

i∈Ir

∑

j∈Ir
δij|(πhv)i| |(πhv)j| |||ϕi|||h,�|||ϕj|||h,� (57)

≤
∑

i∈Ir

∑

j∈Ir

δij

2
|(πhv)i|2|||ϕi|||h,� + δij

2
|(πhv)j|2|||ϕj|||h,� (58)

=
∑

i∈Ir

⎛

⎝

∑

j∈Ir
δij

⎞

⎠ |(πhv)i|2|||ϕi|||2h,� (59)

� ‖πhv‖2L∞(Nh(�))

⎛

⎝

∑

i∈Ir
|||ϕi|||2h,�

⎞

⎠ (60)

� ‖v‖2Hp+1(�)tol
2 (61)

Here

• We defined

δij =
⎧

⎨

⎩

1 if supp(ϕi) ∩ supp(ϕj) �= ∅
0 if supp(ϕi) ∩ supp(ϕj) = ∅

(62)

and we have the bound

∑

j∈Ir
δij ≤ (2p + 1)d (63)

• We used the L∞(Nh(�)) stability of the interpolant πh and then the L∞ stability of
the extension operator and finally the Sobolev embedding theorem

‖πhv‖L∞(Nh(�)) � ‖v‖L∞(Nh(�)) � ‖v‖L∞(�) � ‖v‖Hp+1(�) (64)

��
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Error estimate

We have the following error estimate.

Theorem 1 Let uh,a be the solution to (8) with Vh,a = span{Ba} the active spline space,
Vh = span{B} the full spline space, and B = Ba ∪ Br, where Br satisfies (51) with tol ∼ hp,
then

|||u − uh,a|||h � hp‖u‖Hp+1(�) (65)

Proof Using coercivity (25), Galerkin orthogonality (16), and continuity (26), we obtain

|||u − uh,a|||2h � Ah(u − uh,a, u − uh,a) (66)

= Ah(u − uh,a, u − πh,au) (67)

� |||u − uh,a|||h|||u − πh,au|||h,� (68)

Thus we arrive at

|||u − uh,a|||h � |||u − πh,au|||h,� (69)

which together with the interpolation error estimate (52) completes the proof of (65). ��

Remark 4 Note that if we take τ = 0, i.e. we use the method without least squares
stabilization in the vicinity of theDirichlet boundary.Wemay still derive an error estimate
as follows

‖∇(u − uh,a)‖2� + ‖u − uh‖2∂�D � Ah(u − uh,a, u − uh,a) (70)

= Ah(u − uh,a, u − πh,au) (71)

� |||u − uh,a|||h|||u − πh,au|||h,� (72)

Now we note that

|||u − uh,a|||2h = ‖∇(u − uh,a)‖2� + ‖u − uh‖2∂�D + h2‖�(u − uh,a)‖2Th,D∩� (73)

= ‖∇(u − uh,a)‖2� + ‖u − uh‖2∂�D + h2‖f − �uh,a‖2Th,D∩� (74)

and thus we obtain the bound

‖∇(u − uh,a)‖2� + ‖u − uh‖2∂�D � h2p‖u‖2Hp+1(�) + h2‖f − �uh,a‖2Th,D∩� (75)

where the second term on the right hand side is a residual term involving the computed
solution uh. The resulting bound is thus of a priori - a posteriori type. One may estimate
the residual term on elements in the interior of � but for elements which are cut we do
not have access to the required inverse estimate.
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Bounds in terms of the geometry of the cut elements

In this section we derive a criterion in terms of the geometry of the cut support of the
basis function which implies (51). This criterion will in general not be used in practice but
it provides insight into the effect of the higher order regularity of the B-splines.
Assuming that there are h−(d−1) such elements we have the estimate

∑

i∈Ir
|||ϕi|||2h,� � h−(d−1) max

i∈Ir
|||ϕi|||2h,� (76)

and setting tol ∼ hp we get

max
i∈Ir

|||ϕi|||2h,� � hd−1tol � h2p+d−1 (77)

and we may define Br as all basis functions ϕ ∈ B such that

|||ϕ|||2h,� � hd−1tol � h2p+d−1 (78)

Let us for simplicity consider a basis function ϕ such that supp(ϕ) ⊂ ∂�D = ∅, i.e. a
basis function that reside on the Neumann part of the boundary. In this case |||ϕ|||h,� =
‖∇ϕ‖supp(ϕ)∩� and thus ϕ ∈ Br if

‖∇ϕ‖2supp(ϕ)∩� � h2p+d−1 (79)

The 1D case: energy norm Let � = [0, 1] and consider a basis function ϕ with support
[X0, X1] such that X0 ∈ [0, 1] and supp(ϕ)∩ [0, 1] = [X0, 1] is an interval of length δ. Then
for δ small enough we have

ϕ(x) =
(x
h

)p
, |Dϕ(x)|2 = p2

h2
(x
h

)2(p−1)
(80)

up to constants and in local coordinates with origo X0, and

‖Dϕ‖2 =
∫ δ

0

p2

h2
(x
h

)2(p−1) = p
h

p
2p − 1

(

δ

h

)2p−1
(81)

Condition (79) thus takes the form

p
h

p
2p − 1

(

δ

h

)2p−1
� h2p+d−1 =⇒ δ

h
� h

2p+1
2p−1 (82)

For Lagrange basis functions we instead have |Dϕ(x)| ∼ h−1 and we therefore obtain the
condition

δh−2 � h2p+d−1 =⇒ x
δ

� h2p+1 (83)

An illustration of both B-spline and Lagrange basis functions in this setting is given in
Fig. 2. Comparing (82) and (83) we note that the condition is much stronger for the
Lagrange functions and higher order p.
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a b c d

e f g h

Fig. 2 B-spline (top row) and Lagrange (bottom row) basis functions of order p = 2, 3 in a 1D element
intersecting �. Note that gradient of the blue B-spline basis functions is O(h−1( δ

h )
p−1) within � while the

gradient of Lagrange basis functions is O(h−1) regardless of p. a C1Q2 basis. b C1Q2 gradient. c C2Q3 basis. d
C2Q3 gradient. e Q2 basis. f Q2 gradient. g Q3 basis. h Q3 gradient

The 1D case:max normThe difference between the B-splines and Lagrange basis functions
is evenmore drastic if we consider instead evaluating themax normof the derivative. Then
for B-splines we have

‖Dϕ‖L∞(supp(ϕ)∩�) � h−1
(

δ

h

)p−1
(84)

while for Lagrange basis functions

‖Dϕ‖L∞(supp(ϕ)∩�) � h−1 (85)

which in the latter case can not be controlled by decreasing δ, see Fig. 2. Thus for Lagrange
basis functions we get a pointwise error of order h−1 if we remove a basis function while
for quadratic and higher order B-splines we may retain optimal order local accuracy by
choosing

δ

h
� h

p+1
p−1 (86)

The 2D case: energy norm We now extend our calculation to the 2D case. The higher
dimensional case can be handled using a similar approach. Let X0 be a vertex of supp(ϕ)
which reside in the interior of�. Let {ei}di=1 be an orthonormal coordinate systemcentered
atX0 andwith basis vectors ei, and coordinates xi, alignedwith the edges {Ei}di=1 of supp(ϕ)
which originates at X0, see Fig. 3. Using the local coordinates in the vicinity of X0 we have
the expansions

ϕ(x1, x2) =
(x1
h

)p (x2
h

)p
(87)

|∇ϕ(x1, x2)|2 = 1
h2

(x1
h

)2p−2 (x2
h

)2p + 1
h2

(x1
h

)2p (x2
h

)2p−2
(88)
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Fig. 3 Illustration of the geometric quantities used in intersection conditions (51) in energy norm and (96) in
max norm

Let δi = ‖Xi − X0‖Rd be the distance from the vertex X0 to the intersection Xi of edge Ei
with the boundary ∂�. Assume that

supp(ϕ) ∩ � ⊂ [0, δ1] × [0, δ2] (89)

Integrating over [0, δ1] × [0, δ2] we obtain

∫ δ1

0

∫ δ2

0
|∇ϕ|2 �

(

δ1
h

)2p−1 (

δ2
h

)2p+1
+

(

δ1
h

)2p+1 (

δ2
h

)2p−1
(90)

Condition (79) thus takes the form

(

δ1
h

)2p−1 (

δ2
h

)2p+1
+

(

δ1
h

)2p+1 (

δ2
h

)2p−1
� h2p+d−1 (91)

which implies

δ1
h

� h
(

δ2
h

)− 2p−1
2p+1

and
δ2
h

� h
(

δ1
h

)− 2p−1
2p+1

(92)

See Fig. 4 for an illustration of this condition.
The 2D case: max norm Starting from the expansion (88) and observing that for small
enough δ parameters |∇ϕ|2 is increasing when we move out from the vertex. Using
assumption (89) we thus conclude that

‖∇ϕ‖L∞(supp(ϕ)∩� � |∇ϕ(δ1, δ2)| (93)

We have

∇ϕ(x1, x2) =
[

p
h

(x1
h

)p−1 (x2
h

)p
,
p
h

(x1
h

)p (x2
h

)p−1
]

(94)
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a b

dc

Fig. 4 Illustrations of the basis function intersection condition (51) in energy norm and (96) in max norm for
splines of polynomial order p = 1, 2, . . . , 5. a Energy norm, h = 0.1. b Energy norm, h = 0.05. cMax norm,
h = 0.1. dMax norm, h = 0.05

Setting x1 = δ1 and x2 = δ2 we get the conditions

p
h

(

δ1
h

)p−1 (

δ2
h

)p
� hp and

p
h

(

δ1
h

)p (

δ2
h

)p−1
� hp (95)

which we may write in the form

δ1
h

� 1
p
h

p+1
p

(

δ2
h

)− p−1
p

and
δ2
h

� 1
p
h

p+1
p

(

δ1
h

)− p−1
p

(96)

See Fig. 4 for an illustration of this condition.
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Numerical results
Linear elasticity

While we for simplicity use the Poisson model problem in the above analysis the same
analysis holds also for other second order elliptic problemswhichmay be ofmore practical
interest. We therefore in the numerical results apply our findings to the linear elasticity
problem: find the displacement u : � → R

d such that

−σ (u) · ∇ = f in� (97)

σ (u) · n = gN on ∂�N (98)

u = gD on ∂�D (99)

where the stress and strain tensors are defined by

σ (u) = 2με(u) + λtr(ε(u)), ε(u) = 1
2

(

u ⊗ ∇ + ∇ ⊗ u
)

(100)

with Lamé parameters λ and μ; f , gN , gD are given data; a ⊗ b is the tensor product of
vectors a and b with elements (a ⊗ b)ij = aibj .

The nonsymmetric method for linear elasticty

Find uh,a ∈ [Vh,a]d such that

Ah(uh,a, v) = Lh(v) v ∈ [Vh,a]d (101)

The forms are defined by

Ah(v, w) = ah(v, w) + τh2(ε(v) · ∇ , ε(w) · ∇)Th,D∩� (102)

Lh(v) = lh(v) + τh2(f, ε(v) · ∇)Th,D∩� (103)

where

ah(v, w) = (σ (v), ε(w))� − (σ (v) · n, w)∂�D + (v, σ (w) · n)∂�D + βh−1(v, w)∂�D

(104)

lh(v) = (f, v)� + (gN , v)∂�N + (gD, σ (v) · n)∂�D + βh−1(gD, v)∂�D (105)

with positive parameters β and τ . Furthermore, the energy norm is defined

|||v|||2h = (σ (v), ε(v))� + h−1‖v‖2∂�D + τh2‖ε(v) · ∇‖2Th(∂�D)∩� (106)

ANeumann problemTo illustrate the selection of spline basis functions to remove we first
consider a pure Neumann problem with the geometry presented in Fig. 5a. The domain is
symmetrically pulled from the left and the right using a unitary traction load. We assume
a linear isotropic material with an E-modulus of E = 100 and a Poisson ratio of ν = 0.3.
To ensure the discretized problem is well posed we seek solutions orthogonal to the rigid
body modes by using Lagrange multipliers.
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a b

Fig. 5 Geometries in the two model problems. Boundaries with non-homogeneous Neumann conditions
are indicated in blue and Dirichlet boundaries are indicated in red. a Neumann problem. bManufactured
problem

Amanufactured problemTo numerically estimate convergence rates we use the following
manufactured problem from [10]. The geometry and the solution is given by

� = [0, 1]2, ∂�D = {x ∈ [0, 1], y = 0}, ∂�N = ∂�\∂�D (107)

u(x, y) = [− cos(πx) sin(πy), sin(πx/7) sin(πy/3)]/10 (108)

see Fig. 5b. Assuming a linear isotropic material with the material parameters of steel we
deduce expressions for the input data f , gN and gD. Note that while this problem does
include a Dirichlet boundary ∂�D we in our current implementation neglect the least
squares term in the vicinity of ∂�D, i.e. we choose τ = 0.

Illustration of the selection procedure

Weutilize the selection procedure based on the stiffnessmatrix proposed in “Interpolation
error estimates” section. Some realizations of this selection are visualized in Fig. 6 where
we note that the selection becomes more restrictive as the mesh size decreases. This is
a natural effect as the selection procedure is developed to ensure optimal approximation
properties of the active spline space Vh,a. We also note that when increasing spline order
morebasis functions are removedwhenusing the sameconstant in the tolerance tol = chp.
This can also be seen in Fig. 7 where we investigate how the choice of this constant effects
the number of removed basis functions. In Fig. 8 we note that the use of basis removal is
quite effective and also gives better quality stresses along the boundary.

Convergence

To estimate the convergence we use the manufactured problem described in “Linear
elasticity” section and the cut situations are induced by rotating the background grid
π/7 radians as illustrated by the mesh with removed basis functions in Fig. 9 together
with the corresponding numerical solution. In Fig. 10a we present convergence studies
in energy norm for various choices of the constant c in the tolerance tol = chp × √

E
used in the selection procedure. As can be seen, a larger constant naturally means a larger
error, but the convergence rates remain optimal. The stiffness matrix condition numbers
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a b

dc

Fig. 6 Four realizations of removed basis functions using on the stiffness matrix based selection procedure
described in “Interpolation error estimates” section; all using the same constant c = 0.01 for the tolerance
tol = chp × √

E in (51). Each cross marks a removed basis function and the domain of its support is visualized
in pink. In (a)–(c) we note that the selection becomes more restrictive with smaller mesh size h. Comparing
(b) and (d) we also note that more basis functions typically may be removed as the spline order increases. a
C1Q2, h = 0.4. b C1Q2, h = 0.2. c C1Q2, h = 0.1. d C2Q3, h = 0.2

a b

Fig. 7 Studies of how the choice of constant c for the tolerance tol = chp × √
E in (51) relates to the

number of removed basis functions. The set-up here is the same as in Fig. 6. a a h = 0.2. b h = 0.1
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Fig. 8 Displacements and von-Mises stresses from numerical solutions with and without basis removal in
the Neumann problem using C1Q2-splines and mesh size h = 0.1. In the detailed view we note poor quality
of the stresses on the boundary in the standard solution which is remedied when removing the problematic
basis function. a Standard solution. b Detail in standard solution. c Basis removal solution. d Detail in basis
removal solution

a b

Fig. 9 Example of numerical solution using C1Q2 splines and mesh size h = 0.1. The mesh is rotated π/7
radians to induce cut situations and the removed basis functions are selected using the tolerance
tol = 0.01h2 × √

E . aMesh and removed spline basis functions. b Numerical solution

corresponding to these convergence studies is presented in Fig. 10b. It can be noted that
while basis removal greatly reduce the size of the condition numbers, basis removal alone
does not yield an optimal scaling of O(h−2).
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a b

Fig. 10 Convergence in ||| · |||h norm and condition numbers for the manufactured problem using basis
removal with C1Q2-spline basis. The tolerances used in the selection procedure is tol = chp × √

E and we
note that the choices c = 10−1 and c = 10−2 give no visible difference in the error compared to using the
full approximation space (c = 0). a Energy norm convergence. b Condition number

Conclusion
We have shown that:

• Basis function removal can be done in a rigorous way which guarantees optimal order
of convergence and that the resulting linear system is not arbitrarily close to singular.
These results critically depend on the smoothness of the B-spline spaces.

• Basis function removal is easy to implement and efficient since there is no fill-in in
the stiffnessmatrix as is the case in for instance face based stabilization. Furthermore,
basis function removal is consistent in contrast to the finite cell method.

We note however that even though the stiffness matrix is not arbitrarily close to singular
the resulting condition number will in general be worse thanO(h−2), which is the optimal
scaling for standard finite element approximation of second order elliptic problems and
therefore a direct solver or preconditioning in combination with an iterative solver is
necessary in practice.
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