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Abstract

A new monolithic solution scheme for thermo-elasto-plasticity and
thermo-elasto-plastic frictional contact with finite deformations and finite strains is
presented. A key feature is the reformulation of all involved inequality constraints,
namely those of Hill’s orthotropic yield criterion as well as the normal and tangential
contact constraints, in terms of non-smooth nonlinear complementarity functions.
Using a consistent linearization, this system of equations can be solved with a
non-smooth variant of Newton’s method. A quadrature point-wise decoupled plastic
constraint enforcement and the use of so-called dual basis functions in the mortar
contact formulation allow for a condensation of all additionally introduced variables,
thus resulting in an efficient formulation that contains discrete displacement and
temperature degrees of freedom only, while, at the same time, an exact constraint
enforcement is assured. Numerical examples from thermo-plasticity, thermo-elastic
frictional contact and thermo-elasto-plastic frictional contact demonstrate the wide
range of applications covered by the presented method.

Keywords: Contact mechanics, Heat transfer, Frictional heating, Thermo-plasticity,
Thermo-structure-interaction, Dual mortar methods

Introduction
In many engineering applications frictional contact and elasto-plastic material behavior
come hand in hand. Just one class of typical well-known examples are metal forming and
impact/crash analysis, where, at high strain rates, thermal effects need to be taken into
account. The thermo-mechanical coupling appears in several forms: firstly andmost obvi-
ously, there is heat conduction across the contact interface. Secondly, the dissipation of
frictional work leads to an additional heating at the contact interface. Thirdly, also plastic
work within the structure is transformed to heat. Vice versa, the current temperature
may influence the elastic and especially the plastic material response. All this necessitates
robust and efficient solution algorithms for fully coupled thermo-elasto-plastic contact
problems, which has been an active research topic over the past 25 years. Most contribu-
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tions, however, focus either on thermo-plasticity or on thermo-mechanical contact, while
resorting to relatively simple standard methods for the remaining problem parts.
Early implementations of thermo-elastic contact based onnode-to-segment contact for-

mulations in combination with a penalty constraint enforcement can be found in [1–7].
Within the last decade,more sophisticated variationally consistent contact discretizations
based on the mortar method have been developed and applied to thermo-mechanical
contact in [8–12]. In addition, those algorithms satisfy the contact constraints exactly (at
least in a weak sense) by using either Lagrange multipliers or an augmented Lagrangian
functional instead of a simple penalty approach. Due to an easier implementation and
other benefits like symmetric operators, most of the cited works above employ some sort
of partitioned solution scheme for solving the structural problem (at constant tempera-
ture) and thermal problem (at constant displacement) sequentially. In thermo-plasticity,
those partitioned schemes based on an isothermal split are only conditionally stable [13].
Only [4,6,11,12] employmonolithic solution schemes, which solve for displacements and
temperatures simultaneously. Most developments of advanced computational methods
in thermo-mechanical contact are restricted to thermo-elastic effects; coupled thermo-
elasto-plastic contact can only be found in [5–7].
Numerical algorithms for finite deformation thermo-plasticity go back to the seminal

work by Simo and Miehe [13], which is based on the isothermal radial return mapping
algorithm presented in [14,15]. Both partitioned and monolithic solution approaches
are discussed in [13]. Several extensions to this algorithm have been presented later,
e.g. a monolithic formulation in principle axes [16] and a variant including temperature-
dependent elastic material properties [17]. In a different line of work, a variational for-
mulation of thermo-plasticity has been developed in [18], where the rate of plastic work
converted to heat follows from a variational principle instead of being a (constant) mate-
rial parameter as in [13]. A comparison to experimental results is presented in [19] to
support this variational form.We point out that both approaches to determine the plastic
dissipation, i.e. [13] and [18], are applicable within the algorithm for thermo-plasticity
that will be derived in this manuscript. Besides the mentioned radial return mapping and
variational formulations, a different numerical algorithm to isothermal plasticity at finite
strains has been developed in [20]. Based on fundamental ideas from [21], the plastic
deformation at every quadrature point is introduced as an additional primary variable
and the plastic inequality constraints are reformulated as nonlinear complementarity
functions. This allows for a constraint violation during the nonlinear solution procedure,
i.e. in the pre-asymptotic range of Newton’s method, while ensuring their satisfaction at
convergence. As usual in computational plasticity, thematerial constraints are enforced at
each material point independently, such that the additional unknowns can be condensed
directly at quadrature point level. It could be shown in [20] that due to this less restrictive
formulation, a higher robustness can be achieved, which allows for larger time or load
steps.
The present paper now aims at developing amonolithic solution scheme for the thermo-

elasto-plastic frictional contact problem based on a new approach. Mortar finite element
methods with dual Lagrange multipliers are applied for the contact treatment using non-
linear complementarity functions to deal with both the inequality constraints arising from
frictional contact as well as plasticity in a unified manner. This bears novelty both for the
numerical formulation of anisotropic thermo-plasticity within the bulk material as well as
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for the fully nonlinear thermo-mechanical contact formulation at the interface. Further-
more, full compatibility of the algorithms for thermo-plasticity and thermo-mechanical
contact is demonstrated. Concerning plasticity, an extension of [20] to coupled thermo-
plasticity within a monolithic solution framework is presented. Similar to the isothermal
case, the use of Gauss-point-wise decoupled plastic deformation allows for a condensa-
tion of the additionally introduced plastic unknowns, where now also thermo-mechanical
coupling terms have to be accounted for. The novel thermo-mechanical contact formu-
lation represents a fully nonlinear extension of [12] including a consistent linearization
with respect to both the displacement and temperature unknowns. Moreover, the use of
dual Lagrangemultipliers within amortar contact formulation enables the trivial conden-
sation of the discrete contact Lagrange multipliers such that the final linearized system
to be solved consists of displacement and temperature degrees of freedom only. Our
new thermo-mechanical contact formulation is applicable for both classical finite ele-
ments based on Lagrange polynomial basis functions as well as isogeometric analysis
using NURBS basis functions, for which an appropriate dual basis has recently been pro-
posed in [22].Owing to the variational basis of themortarmethod, the thermo-mechanical
contact patch test on non-matching discretizations is satisfied exactly and optimal con-
vergence rates are achieved. Since this paper touches on various topics, and not every
reader may be familiar with every single topic, we try to give a self-contained and rather
detailed description of the different sub-problems and solution approaches. Even though
this requires to some extent the repetition of methods developed elsewhere, we hope to
thereby make the article and its novelties amenable to a broader audience.
The remainder of this paper is outlined as follows: “Thermo-plasticity in the bulk contin-

uum” section contains the treatment of thermo-plasticity within the bulk structure from
the underlying continuum mechanics to the final discrete system. “Thermo-mechanical
contact” section then incorporates thermo-mechanical contact, again starting from a
continuum description and closing with the linearized system that needs to be solved in
each Newton iteration step. Finally, several challenging numerical examples in “Numer-
ical results” section demonstrate the high accuracy and robustness that can be achieved
for benchmark tests and more complex applications in thermo-elasto-plasticity, thermo-
elastic contact and thermo-elasto-plastic contact.

Thermo-plasticity in the bulk continuum
Before introducing the new algorithmic treatment of thermo-plasticity in “Solution algo-
rithm using nonlinear complementarity functions” section, we summarize the well-
known constitutive relations of thermo-mechanics in “Continuum thermo-mechanics
and thermo-plasticity” and “Yield criterion and evolution of internal variables” sections,
for which more details can be found in the literature, see e.g. [13,23,24]. Only for the sim-
plicity of presentation and not due to any particular restrictions of the developed frame-
work, a few assumptions commonly used in e.g. [13,17] are adopted here and outlined in
“Assumptions on the used free energy” section. In “Weak form of the thermo-mechanical
problem” and “Spatial discretization of the thermo-mechanical continuum” sections and,
the finite element discretization of the problem (see e.g. [24,25] and many others) is
derived, whereas “Time discretization” section outlines a time discretization based on
[26,27]. Finally, in “Solution algorithm using nonlinear complementarity functions” sec-
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tion, those developments are used to construct a novel nonlinear solution procedure
for thermo-plasticity using nonlinear complementarity functions. This can be seen as an
extension of the authors’ previouswork [20], where increased robustness in the isothermal
case as compared to classical return mapping algorithms had been demonstrated in the
isothermal case.

Continuum thermo-mechanics and thermo-plasticity

Let the closed set � ∈ �3 be the reference configuration of a body and x the current posi-
tion of a material point X ∈ � at time t defined by a bijective and orientation preserving
mapping ϕt (X) = x. Analogously, we define the current configuration �t = ϕt (�). The
surface ∂� is divided into the Dirichlet and Neumann boundary �D

m and �N
m, m ∈ {u, T }

for the displacementsu and the temperatureT , respectively. In the time interval of interest
t ∈ [0, tE], the following initial boundary value problem (IBVP) must hold:

• Balance of mass:

ρ̇0 = 0 in � × (0, tE], (1)

• Balance of linear momentum:

DivP + b̂0 = ρ0ü in � × (0, tE], (2)

• Balance of angular momentum:

PFT = FPT in � × (0, tE], (3)

• Balance of energy:

Ė − P : Ḟ + DivQ − R = 0 in � × (0, tE], (4)

• Clausius–Duhem inequality:

P : Ḟ − Ė + T η̇ − 1
T
Q · GradT ≥ 0 in � × (0, tE], (5)

• Displacement Dirichlet boundary condition:

u = û on �D
u × (0, tE], (6)

• Displacement Neumann boundary condition:

PN = t̂0 on �N
u × (0, tE], (7)

• Temperature Dirichlet boundary condition:

T = T̂ on �D
T × (0, tE], (8)

• Temperature Neumann boundary condition:

−QN = Q̂0 on �N
T × (0, tE], (9)
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• Initial displacement:

u = u0 in � × 0, (10)

• Initial velocity:

u̇ = u̇0 in � × 0, (11)

• Initial temperature:

T = T0 in � × 0. (12)

In the IBVP above, ρ0 denotes the mass density in reference configuration, F = Gradϕt
the deformation gradient, P the first Piola–Kirchhoff stress tensor, E the internal energy
per unit undeformed volume, R an energy source term per unit undeformed volume, η the
entropy per unit undeformed volume,Q the material heat flux, û the prescribed displace-
ments, t̂0 the prescribed Piola–Kirchhoff tractions, T̂ the prescribed temperatures, and
Q̂0 the prescribed surface heat flux per area in reference configuration. If this heat flux
also depends on the temperature at the boundary (as in natural convection boundaries),
Eq. (9) becomes a Robin-type boundary condition. Finally, u0, u̇0 and T0 define the initial
displacements, velocities and temperature at time t = 0, respectively. First, we take a
closer look at the last term in (5). From the fact that the absolute temperature T is always
positive, one can deduce that

Q · GradT ≤ 0. (13)

In spatial form, this can be assured by Duhamel’s law of heat conduction q = −κgradT
for any symmetric positive definite conductivity tensor κ. Assuming isotropy, one obtains
Fourier’s law of heat conduction q = − k0

J gradT with the scalar heat conductivity k0 > 0
and the Jacobian determinant J = detF. The equivalent formulation in reference config-
uration gives

Q = − k0C−1GradT, (14)

where C = FTF denotes the right Cauchy–Green tensor. With (13) being assured, the
Clausius–Duhem inequality (5) reduces to the Clausius–Planck inequality

Dint := P : Ḟ − Ė + T η̇ ≥ 0. (15)

Next, we turn our attention to the formulation of elasto-plastic kinematics at finite defor-
mations. As basic concept, we use a multiplicative split of the deformation gradient into
an elastic part Fe and a plastic part Fp as initially proposed in [28]:

F = FeFp. (16)

Additionally, the entropy is decomposed additively into an elastic and aplastic part, i.e.η =
ηe + ηp. The plastic part ηp is associated with the entropy of the plastic configuration
(e.g. movement of dislocations) and the elastic part follows from lattice distortion. The
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interested reader is referred to [13] for amore detailed discussion of this aspect.Moreover,
we introduce an additional strain-like scalar internal variable αi associated with isotropic
hardening. Kinematic hardening may as well be included via an additional tensor valued
internal variable, but for the sake of brevity it is not considered in this work; for an
application of the plasticity algorithm presented later with kinematic hardening we refer
to [20] and for a derivation of the associated continuum thermodynamics we refer to [18].
The internal energy E is defined as a function of the elastic state only, i.e. E = E(Fe, ηe).
Introducing the Helmholtz free energy 	 = E − T (η − ηp) one can reformulate the
Clausius–Planck inequality and obtains

P : Ḟ − 	̇ − (η − ηp)Ṫ + T η̇p ≥ 0. (17)

As usual in finite strain thermo-plasticity, the free energy 	 is assumed to be decom-
posed additively into an elastic energy contribution, an energy contribution due to work
hardening and a thermal energy contribution:

	 = ρ0
(
ψe(Fe, T ) + ψp(αi, T ) + ψθ (T )

)
. (18)

With the assumptions (16) and (18), the Clausius–Planck inequality (17) becomes

Dint =
(
P − ρ0

∂ψe

∂Fe
∂Fe

∂F

)
: Ḟ +

(
−(η − ηp) + ρ0

∂ψ

∂T

)
Ṫ

+ ρ0
∂ψe

∂Fe
∂Fe

∂Fp
: Ḟp + ρ0

∂ψp

∂αi α̇i + T η̇p ≥ 0.
(19)

Since F, Ḟ, T and Ṫ may take arbitrary values, we obtain the constitutive relations for the
first and second Piola–Kirchhoff stress P and S, respectively

P = ρ0
ψe

∂Fe
∂Fe

∂F
= ρ0

ψe

∂Fe
Fp−T, S = 2ρ0Fp−1 ∂ψe

∂Ce F
p−T, (20)

as well as the elastic entropy

η − ηp = −ρ0
∂ψ

∂T
= −ρ0

∂(ψe + ψp + ψθ )
∂T

. (21)

The remaining terms in the dissipation inequality (19) read

Dint = ρ0
∂ψe

∂Fe
∂Fe

∂Fp
: Ḟp + ρ0

∂ψp

∂αi α̇i + T η̇p = � : Dp + ρ0
∂ψp

∂αi α̇i

︸ ︷︷ ︸
Dmech

+T η̇p︸︷︷︸
Dther

≥ 0, (22)

with the Mandel stress tensor � = 2Ce∂ψe/∂Ce and the plastic velocity gradient Lp =
ḞpFp−1. In case of elastic isotropy considered in the remainder of this paper, the Mandel
stress tensor � becomes symmetric and the plastic velocity gradient Lp in (22) can be
replaced by its symmetric part Dp = sym(ḞpFp−1). Since the first two summands do not
depend on the temperature directly, they are referred to as mechanical dissipation and
the remaining part as thermal dissipation. Finally, the temperature evolution equation is
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obtained by inserting (15), (21) and (22) into the energy balance (4). After some algebraic
manipulations (see [13]), one obtains

CvṪ = −DivQ + R + Dmech + T
∂

∂T
(P : Ḟ − Dmech)

︸ ︷︷ ︸
Hep

, (23)

where we have introduced the elasto-plastic heating Hep and the specific heat capacity
per unit undeformed volume

Cv = −ρ0T
∂2ψ

∂T∂T
. (24)

In many computational methods for finite deformation thermo-plasticity (e.g. [13,17,
29]), a simplified form of plastic heat generation is used based on a dissipation factor β ,
sometimes also referred to asTaylor–Quinney factor. This simplification can also be taken
here, i.e. the heat sources due to plasticity [(i.e. Dmech − T ∂

∂TDmech in (23)] are replaced
by a fraction of the total plastic power Ppl = � : Dp. Consequently, (23) becomes

CvṪ = −DivQ + R + T
∂(P : Ḟ)

∂T
+ βPpl . (25)

In metal plasticity, the dissipation factor is usually assumed to be in the range of
β ∈ [0.85, 1]. Within the later presented framework for finite deformation thermo-
plasticity, both variants of the energy balance (23) and (25) can be implemented with
similar computational effort.

Yield criterion and evolution of internal variables

In the previous section, we have developed the elastic and thermal constitutive relations of
thermo-elasto-plasticity.We have, however, not yet decided on a specific plasticity model
and flow rule to determine the evolution of the internal variables Fp and αi, with the only
restriction being that the evolution equations must obey the dissipation inequality (22).
In rate-independent elasto-plasticity, a yield function defines the set of admissible stress
states. We will use an orthotropic yield function originally proposed by Hill [30]

f pl(�,αi, T ) = √
� : H : � −

√
2
3

(
y0(T ) + ∂ψp(αi, T )

∂αi

)
= ‖�‖H − Y pl , (26)

which includes the well-known von Mises criterion as a special case of setting H to the
deviatoric projection tensor Pdev. For general orthotropic materials with the orthogonal
axes ni, i ∈ {1, 2, 3}, the orthotropic tensor H is defined via the second order structural
tensors Ni = ni ⊗ ni as

H = α1N1 ⊗ N1 + α2N2 ⊗ N2 + α3N3 ⊗ N3

+ 1/2(α3 − α1 − α2)(N1 ⊗ N2 + N2 ⊗ N1)

+ 1/2(α1 − α2 − α3)(N2 ⊗ N3 + N3 ⊗ N2)

+ 1/2(α2 − α3 − α1)(N1 ⊗ N3 + N3 ⊗ N1)

+ α7(N1 	 N2 + N2 	 N1)

+ α8(N2 	 N3 + N3 	 N2)

+ α9(N1 	 N3 + N3 	 N1). (27)
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Therein, the tensor products of two symmetric second order tensors are defined as (A ⊗
B)ijkl = AijBkl and (A 	 B)ijkl = 1/2(AikBjl + AjkBil). The coefficients are determined by
the relations of the normal yield stress yii in direction of ni, and the shear yield stress
yij , i 
= j in the ni − nj-plane, respectively, with a reference yield stress y0:

α1 = 2
3
y20
y211

, α2 = 2
3
y20
y222

, α3 = 2
3
y20
y233

,

α7 = 1
3
y20
y212

, α8 = 1
3
y20
y223

, α9 = 1
3
y20
y213

.
(28)

Since the tensor H includes a deviatoric projection, i.e. H = H : P
dev = P

dev : H,
we may as well replace the Mandel stress in (26) by its deviatoric part and hence
f pl(�,αi, T ) = f pl(dev�,αi, T ). Finally, the principle of maximum plastic dissipation
provides the evolution equations

ḞpFp−1 = γ
H : �
‖�‖H , (29)

α̇i = γ

√
2
3
, (30)

subjected to the Karush–Kuhn–Tucker (KKT) type inequality constraints on the plastic
multiplier γ

f pl ≤ 0, γ ≥ 0, f plγ = 0, (31)

and the consistency condition

ḟ plγ = 0. (32)

Assumptions on the used free energy

We want to briefly comment on some simplifying assumptions posed on the used free
energy potential (18). Those simplifications are neither more nor less restrictive on the
solution approach presented later than they are for classical radial return mapping algo-
rithms for thermo-plasticity. Hence, they can often be found in the literature in a very
similar way, for example in [13,17]. First, it is assumed that the elastic free energy can be
decoupled into the following three summands:

ψe(Fe, T ) = M(J e, T ) + U(J e) + W(C̄e). (33)

As far as the isothermal response is concerned, this split implies a decoupled volumetric
and isochoric elastic response, since U only depends on the elastic change of volume
determined by the elastic Jacobian determinant J e = detFe and W only depends on
the volume preserving part of the elastic right Cauchy–Green tensor C̄e = J e−2/3Ce.
For the modeling of metallic materials, this is a widely used assumption that appears
in the exact same way in almost every numerical algorithm for finite strain plasticity,
see e.g. [14,15,24,31,32] and many more. The thermo-mechanical coupling is therefore
restricted toM(J e, T ). Following [13], we use

M(J e, T ) = −3αT (T − T0)
∂U(J e)

∂J e
, (34)
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which appears to be the logical extension of a linear small strain thermal expansion
model to finite deformations. Therein, αT is the linear coefficient of thermal expansion
and T0 a given reference temperature. In summary, the elastic potential (33) accounts
for thermal expansion, whereas the elastic material properties such as shear and bulk
modulus do not depend on the temperature. A temperature dependent bulk modulus
may easily be introduced combining U and M without any changes in the subsequent
methods; the isochoric strain energy functionW, however, is assumed to be temperature
independent.To this end, thedeviatoric part of theMandel stress dev�doesnotdependon
the temperature, such that the only dependency on the temperature in the yield function
(26) is through Y pl = Y pl(αi, T ). The elastic heating term ∂P:Ḟ

∂T in (23) reduces to

∂P : Ḟ
∂T

= ∂2M

∂T∂J e
J̇ e, (35)

which is responsible for the so-called Gough–Joule effect.
Finally, we choose the thermal energy potential as

ψθ (T ) = Cv

(
(T − T0) − T log

(
T
T0

))
, (36)

and assume all other potentials in (18) to only depend (piece-wise) linearly on the temper-
ature. As a consequence, the specific heat capacityCv defined in (23) and further specified
in (24) reduces to a constant material parameter.

Weak form of the thermo-mechanical problem

To set the scene for the subsequent finite element discretization, we introduce the weak
form of the thermo-mechanical problem. Therefore, appropriate solution and testing
spaces U and V for the displacement field u and temperature field T are defined:

Uu = {
uj ∈ H1 (�) , j = 1 . . . 3 | uj = ûj on �D(i)

u
}
, (37)

UT = {
T ∈ H1 (�)

∣∣ T = T̂ on �T (i)
u

}
, (38)

Vu = {
δuj ∈ H1 (�) , j = 1 . . . 3

∣∣ δuj = 0 on �D(i)
u

}
, (39)

VT = {
δT ∈ H1 (�)

∣∣ δT = 0 on �
D(i)
T

}
. (40)

The weak form of the coupled thermo-mechanical problem then consists of the balance
of linear momentum (2) and heat conduction (23): Find u ∈ Uu and T ∈ UT , such that:

Gu =
∫

�

δuρ0ü d� +
∫

�

∇δu : (FS) d�

−
∫

�

δu · b̂0 d� −
∫

�
N (i)
u

δu · t̂0 d� = 0 ∀ δu ∈ Vu, (41)

GT =
∫

�

δTρ0CvṪ d� −
∫

�

∇δTQ d�

−
∫

�

δT (R + Dmech + Hep) d� −
∫

�
N (i)
T

δTQ̂0 d� = 0 ∀ δT ∈ VT . (42)

Additionally, the thermo-plastic constraints (29), (30) and (31) have to be satisfied locally,
such that the thermo-mechanical coupling enters the structural equilibriumvia the second
Piola–Kirchhoff-stress S = S(u, T,Fp,αi). Vice versa, the thermal constitutive relation in
(14) as well as the source terms Dmech in (22) and Hep in (23) introduce the coupling of
temperature and displacement field as well as the plastic deformation in (42).
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Spatial discretization of the thermo-mechanical continuum

The position, displacement and temperature field (as well as their variations) are approxi-
mated in space using discrete nodal values (or control point values in case of isogeometric
analysis (IGA)) Xj , dj and Tj and ansatz functions Nj , viz.

Xh =
n∑

j=1
NjXj , uh =

n∑
j=1

Njdj , Th =
n∑

j=1
NjTj . (43)

The ansatz functions Nj of node j may be either Lagrange polynomials for classical finite
elements or NURBS in the case of isogeometric analysis. The vectors d and T contain all
displacement and temperature degrees of freedom in the approximation, respectively. As
usual in finite elementmethods for plasticity, the plastic constraints (29), (30) and (31) are
enforced locally at the quadrature points. The internal variables Fp and αi are therefore
assumed to be discontinuous and independent at every quadrature point q, denoted as Fpq
and αi

q in the following. Again, the vectors Fp and αi represent the union of all discrete
values at the quadrature points.

Remark 1 All algorithms presented later are directly applicable to both finite elements
and isogeometric analysis, such that no further distinction will be made in the following.
For the sake of brevity, no introduction to isogeometric analysis will be given here, since
there has been an overwhelming amount of publications on IGA in the past decade,
including the monograph [25]. For details on the application of the dual mortar method
to isothermal isogeometric contact mechanics, we refer to our recent work [22].

The spatial discretization (43) can now be inserted into the weak form of the balance
of linear momentum in (41), while still neglecting the contact contribution for now. The
discrete algebraic force equilibrium becomes:

δda

⎡
⎢⎢⎢⎢⎣

∫

�h
Naρ0Nb d� d̈b

︸ ︷︷ ︸
f inertu =Mud̈

+
∫

�h
∇Na : (FS) d�

︸ ︷︷ ︸
f intu (d,T,Fp,αi)

−
(∫

�h
Nab̂0 d� +

∫

�Nh
u

Nat̂0 d�

)

︸ ︷︷ ︸
fextu

⎤
⎥⎥⎥⎥⎦

= 0, (44)

or in short

Mud̈ + f intu (d, T, Fp,αi) − f extu = 0, (45)

whereMu is the (constant) mass matrix. Still, the constraints of elasto-plasticity (29), (30)
and (31) have to be applied. Theway they are introduced to the discrete system is discussed
inmore detail in “Solution algorithmusing nonlinear complementarity functions” section.
It is also due to plasticity (and thermal expansion) that a dependency on the discrete
temperatures T and the internal variables Fp and αi is introduced into the internal force
vector via the second Piola–Kirchhoff stress Sq = Sq(Cq,Tq, F

p
q,αi

q).
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The samediscretization canbeapplied to theweak formof theheat conductionequation,
which gives

δTa

⎡
⎢⎢⎢⎢⎣

∫

�h
Naρ0CvNb d� Ṫb

︸ ︷︷ ︸
f inertT =MT Ṫ

+
∫

�h
∇Na(k0C−1)∇Nb d�Tb

︸ ︷︷ ︸
f intT (d,T)

−
(∫

�h
NaR d� +

∫

�Nh
T

NaQ̂0 d�

)

︸ ︷︷ ︸
fextT

−
∫

�h
Na(Dmech + Hep) d�

︸ ︷︷ ︸
fdissT (d,T,Fp,αi)

⎤
⎥⎥⎥⎥⎥⎦

= 0, (46)

or in short

MT Ṫ + f intT (d, T) − f extT − fdissT (d, T, Fp,αi) = 0. (47)

Similar to the structural equilibrium above, the mass matrix MT determining the heat
capacity is constant and the internal load vector f intT depends linearly on the temperature
and nonlinearly on the displacement via Fourier’s law of heat conduction in the finite
deformation realm, see (14). The discrete mechanical dissipation vector fdissT depends
nonlinearly on the displacement and the plastic deformation at every quadrature point
according to (22) and (23). Finally, for both the structural and the thermal problem,
the external load vectors f ext{u,T } are assumed to be independent of the displacement and
temperature field for the sake of simplicity.

Time discretization

To discretize the semi-discrete equilibrium (45) and (47) in time, we apply generalized-α
schemes, which are of second-order accuracy, and can be formulated with the spectral
radius in the high frequency limit ρ∞ as sole parameter. For structural problems, this
method has been presented in [26]. The approximation of discrete velocities v and accel-
erations a is based on the Newmark-scheme, viz.

n+1v = γu
βu�t

(n+1d − nd) − γu − βu
βu

nv − γu − 2βu
2βu

�t na,

n+1a = γu
βu�t2

(n+1d − nd) − 1
βu�t

nv − 1 − 2βu
2βu

na,
(48)

where �t denotes the time step size of the interval [nt, n+1t]. The left superscript signifies
the approximation at the discrete time nt and n+1t, respectively. The discrete equilibrium
(45) is then evaluated at a generalized mid-point by introducing the parameters αu,f and
αu,m:

ru = Mu
n+1−αu,ma + n+1−αu,f f intu − n+1−αu,f f extu = 0. (49)

The discrete forces (and accelerations) at themid-points are eventually interpolated by the
forces (and accelerations) at the endof each time step, e.g. n+1−αu,f f intu = (1−αu,f ) n+1f intu +
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αu,f
nf intu . In [26], an optimal set of parameters is derived in terms of the spectral radius in

the high frequency limit ρu,∞ as

αu,m = 2ρu,∞ − 1
ρu,∞ + 1

, αu,f = ρu,∞
ρu,∞ + 1

, (50)

βu = 1
4
(1 − αu,m + αu,f )2, γu = 1

2
− αu,m + αu,f . (51)

The generalized-α method has been extended to systems of first order in time in [27],
which will be used for the temporal discretization of the thermal evolution (47). Similar
to (48), the temperature rate is approximated by

n+1
Ṫ = 1

γT�t
(n+1T − nT) − 1 − γT

γT

n
Ṫ. (52)

Again, the discrete equilibrium (47) is evaluated at a generalized mid-point defined by
αT,m and αT,f :

rT = M n+αT,m Ṫ + n+αT,f f intT − n+αT,f f extT − n+αT,f fdissT = 0, (53)

where the values at themid-points are againobtainedbyanappropriate linear combination
of the end-point values. An optimal choice of the parameters has been derived in [27] in
terms of the spectral radius in the high frequency limit ρT,∞ as

αT,f = 1
ρT,∞ + 1

, αT,m = 1
2
3 − ρT,∞
ρT,∞ + 1

, γT = 1
2

+ αT,m − αT,f . (54)

Finally, we need a discrete time integration of the evolution equations for the internal
plastic variables in (29) and (30). Here, we follow standard techniques in finite strain plas-
ticity, see e.g. [24], namely an exponentialmap time integration for the plastic deformation
gradient and a backward-Euler scheme for the other internal variables, viz.

n+1
Fpq = exp

[
�γq

H : n+1�q

‖ n+1�q‖H

]
n
Fpq,

n+1
αi
q =

√
2
3
�γq + n

αi
q, (55)

where the plastic multiplier increment �γq must be determined such that the Karush–
Kuhn–Tucker conditions (31) are fulfilled at time n+1t. The advantage of the exponential
map here is that it preserves the plastic incompressibility in the time-discrete setting. This
means that if the plastic constitutive equations are such that plastic deformation does not
result in a change of volume (i.e. det[Fp] ≡ 1 ∀t), the argument of the exponential function
is traceless, and hence, we also get det[nFp] ≡ 1 ∀n in the time-discrete setting.

Remark 2 While being relatively easy to implement and fairly robust, the presented
generalized-α time integration schemes are not algorithmically energy conserving. As an
alternative, so-called structure preserving time integration schemes based on the (general-
ized) energy momentummethod have been proposed in [33–36] for isothermal nonlinear
elasticity. Later, those methods have been extended to isothermal contact [37], elasto-
plasticity [38], thermo-elasticity [39–41] and thermo-elastic contact [11]. The combi-
nation of the cited works to a structure preserving time integration for a fully coupled
thermo-elasto-plastic contact problem is beyond the scope of this paper, but might be a
worthwhile topic of future research.
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Solution algorithm using nonlinear complementarity functions

A similar approach to the one described in the following has been developed for small
strain von Mises plasticity in [21] and extended to finite deformation anisotropic Hill-
type plasticity in [20]. We therefore introduce the incremental plastic flow �Dp

q =
�γq

H:n+1�q
‖ n+1�q‖H at each quadrature point q as an additional primary variable and can express

the evolution equations (55) solely in terms of this incremental plastic deformation, viz.

n+1
Fpq = exp

[
�Dp

q
] n

Fpq, (56)

n+1αi
q = nαi

q + max
(
0,
√
2
3

∥∥�q
∥∥
H

�Dp
q : H : �q∥∥H :

(
�q

)∥∥2
)
. (57)

Then, we introduce a trial value for the Mandel stress

�tr
q = dev� + cplH+ : �Dp

q, cpl > 0, (58)

where the pseudo-inverseH+ ofH has been used. The plastic inequality constraint is then
equivalent to finding the root of the complementarity function

Cpl
q (d, T,�Dp

q) =
(
dev�q − min

(
1,

Y pl
q

‖�tr
q ‖H

)
�tr
q

)
max

(
Y pl
q , ‖�tr

q ‖H
)
, (59)

at each quadrature point q. Here, the temperature only enters via the temperature depen-
dent yield stressY pl

q ; the (deviatoric part of the)Mandel stress is temperature independent
due to the assumed restrictions on the used free energy (33). Temperature dependent elas-
tic material properties (and hence a temperature dependency of dev�) may be included,
but would further complicate the derivative ∂Cpl

q /∂T needed later and are therefore omitted
here for the time being for the sake of simplicity.
The set of nonlinear equations that needs to be solved in every time step of a thermo-

elasto-plastic problem without contact consists of the balance of linear momentum (49)
and the heat conduction (53) complemented with the NCP function (59) at every quadra-
ture point. Since this system is semi-smooth, variants of Newton’s method can be applied
resulting in the linearized system

∂ru
∂d

�d + ∂ru
∂T

�T + ∂ru
∂�Dp�(�Dp) = −ru, (60)

∂rT
∂d

�d + ∂rT
∂T

�T + ∂rT
∂�Dp�(�Dp) = −rT , (61)

∂Cpl
q

∂d
�d + ∂Cpl

q
∂T

�T + ∂Cpl
q

∂�Dp
q
�(�Dp

q) = −Cpl
q , ∀q ∈ G, (62)

where the set G contains all potentially plastifying quadrature points. For brevity, the
detailed structure of the involved linearizations are omitted here, since they have either
already been presented for the isothermal case in [20] or follow from similar calculations as
given therein.The system (60)–(62), however, is of significantly increased size compared to
the original number of displacement and temperature degrees of freedom, since at every
quadrature point, assuming a symmetric and traceless incremental plastic flow �Dp

q ,
additional five unknowns are introduced. The key to eliminating the plastic increment
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�Dpl
q from (60)–(62) is the fact that (62) only contains the discrete plastic increment of

one quadrature point as well as the displacement and temperature degrees of freedom
belonging to the element containing this quadrature point. Hence, the linearized plastic
NCP function (62) can be solved directly for the increments �(�Dpl

q ) at the level of
quadrature points, yielding

�(�Dpl
q ) = −

(
∂Cpl

q

∂�Dp
q

)−1 (
Cpl
q + ∂Cpl

q
∂d

�d + ∂Cpl
q

∂T
�T

)
. (63)

This condensation can in turn be inserted into (60) and (61) and results in modified
linearizations with respect to the displacements and temperatures in those equations,
which will be indicated by a tilde (̃·). Specifically, one obtains

K̃{u,T }u = ∂r{u,T }
∂d

−
∑
q∈G

⎡
⎣
(

∂r{u,T }
∂�Dp

q

)(
∂Cpl

q

∂�Dp
q

)−1
∂Cpl

q
∂d

⎤
⎦ , (64)

K̃{u,T }T = ∂r{u,T }
∂T

−
∑
q∈G

⎡
⎣
(

∂r{u,T }
∂�Dp

q

)(
∂Cpl

q

∂�Dp
q

)−1
∂Cpl

q
∂T

⎤
⎦ , (65)

r̃{u,T } = r{u,T } −
∑
q∈G

⎡
⎣
(

∂r{u,T }
∂�Dp

q

)(
∂Cpl

q

∂�Dp
q

)−1

Cpl
q

⎤
⎦ . (66)

After having solved for the displacement and temperature increments �d and �T in the
current Newton iteration, the condensation equation in (63) can be used to recover the
increments of the plastic deformation �(�Dp

q) at each quadrature point q. The matrices
containing the linearizations with respect to the plastic deformation hence do not have to
be assembled at a global level but the condensation (64)–(66) can be performed locally at
every quadrature point. The numerical effort is therefore similar to classical radial return
mapping algorithms, for which, when applied to general hyperelastic material, a local sys-
tem of nonlinear equations needs to be solved at every quadrature point, see e.g. [24]. The
involved terms are very similar and basically consist of material models (i.e. derivatives
of elastic energies) and kinematic evolution equations of which especially (56) is com-
putationally expensive, since it involves matrix exponentials and (for the linearization)
their derivatives. For certain hyperelastic materials, the return mapping schemes can be
reduced to solving a scalar nonlinear equation only. Similar modifications might be possi-
ble for the presented method, but have not yet been explored. In summary, the treatment
of (thermo-) plasticity based on NCP functions does not result in higher computational
costs compared to classical return mapping algorithms, while allowing for larger load
steps as demonstrated in [20].
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Thermo-mechanical contact
Having dealt with the thermo-mechanical coupling within the bulk structure, we turn
our focus to thermo-mechanical contact problems. First, the continuum mechanical
description is recalled in “Problem setup” section, which, in more detail, can also be
found e.g. in [42,43]. Next, a weak form extending the small strain formulation presented
in [12] is derived in “Weak form of the thermo-mechanical contact problem” section.
Finally, we present the new mortar finite element formulation for finite deformation
thermo-mechanical contact problems in “Mortar finite element discretization of thermo-
mechanical contact” section.

Problem setup

We consider a two body finite deformation thermo-mechanical contact problem in three
spatial dimensions. Let the closed sets�(i) ⊂ �3, i = 1, 2 be the reference configuration of
the two bodies. Both bodies are governed by the IBVP described in “Thermo-plasticity in
the bulk continuum”, enhanced with the constraints of frictional contact at the potential
contact boundary �C(i). The boundary ∂�(i) is hence decomposed into three subsets such
that ∂�(i) = �

D(i)
u ∪ �

N (i)
u ∪ �C(i) = �

D(i)
T ∪ �

N (i)
T ∪ �C(i) and ∅ = �

D(i)
u ∩ �

N (i)
u =

�
D(i)
u ∩ �C(i) = �

N (i)
u ∩ �C(i) = �

D(i)
T ∩ �

N (i)
T = �

D(i)
T ∩ �C(i) = �

N (i)
T ∩ �C(i). Since

the focus is on finite deformations, the geometrical contact constraints such as the non-
penetration condition have to be satisfied in the current configuration, i.e. they have to
be enforced between the current potential contact surfaces γ C(i) = ϕt (�C(i)). Applying
standardnomenclature in contactmechanics,wewill refer toγ C(1) as the slave surface, and
toγ C(2) as themaster surface. For a pointx(1) on the slave surface (in spatial configuration),
one can find an associated point x̂(2) on the master surface by projecting x(1) along its
current outward normal vector n. With those points at hand, the normal gap gn and the
relative tangential velocity are defined by

gn = −n
[
x(1) − x̂(2)

]
, (67)

vτ = (1 − n ⊗ n)
[
ẋ(1) − ˙̂x(2)

]
, (68)

where ẋ(1) and ˙̂x(2) denote thematerial velocities of x(1) and x̂(2), respectively. The contact
traction tc at the interface is decomposed in the same way to obtain the normal contact
pressure pn and the tangential contact traction tτ , viz.

pn = n t(1)c , tτ = (1 − n ⊗ n) t(1)c . (69)

The mechanical contact constraints can then be formulated in normal direction via the
Hertz–Signorini–Moreau condition and in tangential direction by Coulomb’s law of fric-
tion on the slave contact surface:

gn ≥ 0, pn ≤ 0, pngn = 0 on γ (1)
c , (70)

f fr := ‖tτ‖ − μ(θc)|pn| ≤ 0, vτ + βtτ = 0, β ≥ 0, f frβ = 0 on γ (1)
c , (71)

together with the consistency conditions in normal and tangential direction

ġnpn = 0, ḟ frβ = 0. (72)
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The master side contact traction follows directly from the balance of linear momentum
t(2)c = −t(1)c . Since we are interested in a fully coupled thermo-mechanical contact prob-
lem, we allow for a temperature dependent friction coefficient μ(θc) depending on the
maximal temperature of the contact surfaces θc = max[T (1)(x(1)), T (2)(x̂(2))]. Following
[42], an exemplary temperature dependency of the friction coefficient is introduced as

μ(θc) = μ0
(θc − Td)2

(Td − T0)2
(73)

via a reference coefficient of friction μ0 at the reference temperature T0 and a damage
temperature Td > T0. The apparent coefficient of friction decreases monotonically from
μ0 at T0 to zero at Td . The damage temperature Td is usually chosen to be the lower
melting temperature of the two contacting materials, since at this point, friction is no
longer dominated by solid shearing but rather by viscous effects in a thin film of molten
material.
Next, the local energy balance at the contact interface is investigated. For simplicity, we

assume that the interface has no heat capacity by itself, i.e. the specific internal energy ec
is zero at all times. Written in rate form one obtains

0 = ėc = tτvτ + q(1)c + q(2)c , (74)

where q(i)c = q(i)n(i) denotes the spatial (Cauchy) heat flux at the two contact surfaces. A
possible choice of the heat fluxes at the contact interface is given in [2,42] as

q(i)c = γ (i)(T (i) − Tc), γ (i) = γ̄ (i)pn. (75)

Here, the heat transfer parameter γ (i) has been chosen as a simple linear function of the
normal contact pressure. Yet, any nonlinear relation may be employed as long as a zero
contact pressure (i.e. no contact) relates to a zero heat flux over the contact interface.
Using (74) and (75) and eliminating the contact surface temperature Tc from the system,
the spatial heat fluxes can be stated as

q(1)c = βcpn[T ] − δctτvτ , (76)

q(2)c = −q(1)c − tτvτ , (77)

with the temperature jump over the contact interface [T ] = (T (1) − T (2)) as well as the
coefficients βc = γ̄ (1)γ̄ (2)

γ̄ (1)+γ̄ (2) and δc = γ̄ (1)

γ̄ (1)+γ̄ (2) defined according to [2,12].

Remark 3 The presented thermal conditions at the contact interface are actually ther-
modynamically consistent, meaning that they obey the first and second law of thermody-
namics. To prove this, the conditions above can be reformulated in terms of a dissipation
potential at the interface and a subsequent analysis similar to the one given above for
the bulk continuum can be conducted, see e.g. [2,42] for a detailed derivation. Since
this derivation would lead to no further insight with regard to the following numerical
algorithms, it is skipped here and the reader is referred to the respective literature instead.



Seitz et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:5 Page 17 of 37

Remark 4 The parameters βc and δc also have a direct physical interpretation: The prod-
uct βcpn in (76) and (77) determines the heat flux across the contact interface due to
the temperature jump, i.e. it describes the contact heat conductance. In the presented
description, which follows [2,42], the heat flux is a linear function of the contact pressure.
However, more involved nonlinear relations can be found in the literature. For instance,
[43] distinguishes three sources of heat conduction across rough surfaces: conduction
through contacting asperities, heat conduction in enclosed gas and radiation. In the for-
mulation presented later, nonlinearmodels for heat conduction could be employed simply
by replacing the product βcpn with a nonlinear relation β̄c(pn) or, when formulated using
the later defined Lagrange multipliers (representing the negative contact traction), by
replacing βcλcn with −β̄c(−λcn) in (95).
The parameter δc determines how frictional heat is distributed to the two bodies. In the

limit cases δc = 0 or δc = 1 the entire frictional heat is added to the master or slave side,
respectively.

Weak form of the thermo-mechanical contact problem

To prepare the subsequentmortar finite element discretization of the thermo-mechanical
contact problem, the weak form of the thermo-structure-interaction problem in (41) and
(42) is extended to account for the effects of frictional contact. Therefore, two Lagrange
multiplier fields are introduced at the contact interface; a vector-valued Lagrange multi-
plier to enforce the mechanical contact constraints (70) and (71), which can be identified
as the negative slave side contact traction λc = −t(1)c , and a scalar Lagrange multiplier to
enforce the heat flux constraints over the contact interface in (76) and (77), which will be
chosen as the slave side heat flux λθ = q(1)c . The contact Lagrange multiplier is taken from
the convex set

M(λ) :=
{
μ ∈ M ∣∣ 〈μ, v〉γ C(1) ≤ 〈μλcn, ‖vτ‖〉γ C(1) , v ∈ W with vn ≤ 0

}
, (78)

whereW denotes the trace space ofUu on γ C(1),M its dual space, and 〈·, ·〉γ C(1) denotes
the scalar or vector-valued duality pairing between W and M on γ C(1). The contact
Lagrange multiplier is decomposed into a normal part λcn and a tangential part λc

τ analo-
gously to the contact traction in (69). The thermal Lagrange multiplier is chosen from the
(scalar valued) dual space M on γ C(1). The complete weak form of the coupled thermo-
mechanical contact problem then reads : Find u(i) ∈ U (i)

u , T (i) ∈ U (i)
T , λc ∈ M(λc),

λθ ∈ M, such that:
2∑

i=1
G(i)
u +

∫

γ C(1)

(
δu(1) −

(
δu(2) ◦ Pt

))
· λc dγ

︸ ︷︷ ︸
Gc
u

= 0 ∀ δu(i) ∈ V (i)
u , (79)

2∑
i=1

G(i)
T −

∫

γ C(1)

(
δT (1) −

(
δT (2) ◦ Pt

))
λθ dγ +

∫

γ C(1)

(
δT (2) ◦ Pt

)
λc · vτ dγ

︸ ︷︷ ︸
Gc
T

= 0

∀ δT (i) ∈ V (i)
T , (80)

Hu =
∫

γ C(1)

(
δλcn − λcn

)
gn dγ −

∫

γ C(1)

(
δλc

τ − λc
τ

)
vτ dγ ≥ 0 ∀δλc ∈ M(λ), (81)
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HT =
∫

γ C(1)
δλθλθ dγ +

∫

γ C(1)
δλθβcλ

c
n

(
T (1) −

(
T (2) ◦ Pt

))
dγ

+
∫

γ C(1)
δλθ δcλ

cvτ dγ = 0 ∀ δλθ ∈ M. (82)

Therein, all integrals over the contact surfaces of the two bodies have been transformed
into pure slave side integrals by using a suitable mapping Pt : γ C(1) �→ γ C(2) at time t.

Mortar finite element discretization of thermo-mechanical contact

The discrete interpolation of displacements and temperatures at the contact interface
follows directly from (43) by restricting the ansatz functions to the element boundary.
In the present notation, we will not explicitly distinguish between the ansatz functions
in the continuum and at the boundary. Instead, the context will provide the necessary
information, i.e. if the quantities are integrated over a volume, the ansatz functions refer to
(43) and if integration is performed on the contact surface only the trace space restriction
of the ansatz functions are evaluated.
Both the contact Lagrange multiplier λc and the thermal Lagrange multiplier λθ are

interpolated by dual basis functions �j and discrete nodal values λc
j and λθ

j , respectively:

λc,h =
∑
j∈S

�jλ
c
j , λθ ,h =

∑
j∈S

�jλ
θ
j , (83)

where the set S contains all nodes on the slave contact surface. The dual basis functions
are constructed such that they fulfill a biorthogonality condition [44]

∫

γ C(1)h
�iNj dγ = δij

∫

γ C(1)h
Nj dγ , (84)

where δij denotes the Kronecker symbol, i.e. δij = 1 if i = j and δij = 0 otherwise. In
practice, the easiest way to define those dual basis functions is via an element-wise linear
combination of the standard ansatz functions Ni, see e.g. [44], which at least ensures a
partition of unity property. For details on their construction, linearization and application
to contact mechanics with small and large deformations including friction, the reader
is referred, for instance, to [45–50], and for a first application to thermo-elastic contact
to [12]. With the discretization of the displacement and temperature field (43) and the
discrete Lagrange multipliers (83), we can now approach the contact related parts in
(79)–(82) and discretize them adequately in space and time.
First, we consider the contact contributionGc

u in the weak balance of linear momentum
in (79). Inserting the discretization yields

Ghc
u =

∑
j∈S

∑
k∈S

δd(1)k

∫

γ C(1)h
�jN (1)

k dγλc
j −

∑
j∈S

∑
l∈M

δd(2)l

∫

γ C(1)h
�j(N (2)

l ◦ Ph
t ) dγλc

j ,

(85)

where the setM contains all nodes of themaster contact surface and Ph
t denotes a discrete

version of the projection Pt introduced in (79). The first integral in (85) constitutes a
square coupling matrix Du, which obviously becomes diagonal when using the dual basis
from (84). The second integral constitutes the rectangular coupling matrix Mu. With
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those matrix blocks and by re-arranging the vector of displacement degrees of freedom
d = [dN ,dM,dS ]T, where dS and dM contains all degrees of freedom on the slave and
master contact surface, respectively, and dN all other nodal displacements, the discrete
contact force is obtained as

f cu = [0,−Mu(d),Du(d)]T λc. (86)

The displacement dependency of the couplingmatrices is a consequence of the projection
Ph
t and the integration, which has to be performed on the current configuration of the

contact surface γ C(1)h. Next, this contact force has to be incorporated in the time-discrete
balance of linear momentum (49). This is done in a fully implicit way, so that the space
and time discrete equilibrium (49) is complemented with a contact contribution

rcu = Mu
n+1−αu,ma + n+1−αu,f f intu − n+1−αu,f f extu + n+1f cu = 0. (87)

Remark 5 By choosing a fully implicit time discretization of the contact forces instead of
some linear combination of n+1f cu and nf cu, we guarantee that the contact work in one time
step Wc = (n+1d − nd)T n+1f cu becomes negative (i.e. dissipative) for nodes that come
into contact and zero for nodes leaving the active contact set. Following an idea in [51] the
dissipated energy can be re-introduced into the system via a velocity update procedure.
If, however, the contact force were discretized by a linear combination of two time steps,
nodes leaving the active contact set would introduce energy to the discrete system, which
one might not be able to compensate via the velocity update procedure.

The next contact contribution to be discretized is the contribution to the heat conduc-
tion equation (80). A strict application of the discretization (43) and (83) would give

Ghc
T =

∑
j∈S

∑
k∈S

δT(1)k

∫

γ C(1)h
�jN (1)

k dγλθ
j

−
∑
j∈S

∑
l∈M

δT(2)l

∫

γ C(1)h
�j(N (2)

l ◦ Ph
t ) dγλθ

j

+
∑
j∈S

∑
l∈M

λc
τ j

∫

γ C(1)h
�j(1 − n ⊗ n)

×
(∑
k∈S

N (1)
k v(1)k −

( ∑
m∈M

N (2)
m v̂(2)m

)
◦ Ph

t

)
(N (2)

l ◦ Ph
t ) dγ δT(2)l . (88)

The first and second part therein stem from the heat conduction over the contact interface
and result in the similar coupling matrices DT andMT already used in the structural cou-
pling above (the only difference being the size of the matrices: one entry per node for the
thermal part and three entries per node—one for eachdisplacement degree of freedom—in
the structural coupling). The last integral is the result of frictional dissipation at the con-
tact interface and, in the stated form gives rise to some complications. First, the employed
discrete tangential velocity is not frame indifferent, see e.g. [52,53]. Moreover, it involves
a triple integral at the contact interface, which poses high demands on the quadrature
accuracy at the contact interface, especially when going to higher order approximations
using Lagrange polynomials or NURBS. Following the work of [12], we seek to reduce
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the computational cost by appropriate lumping techniques in the discrete representation
of (80) and (82). Therefore, we introduce a frame indifferent weighted nodal tangential
velocity ṽτ j derived from a (discrete) time derivative of the mortar matrices Du andMu as

ṽτ j = −(1 − n ⊗ n)
[∑
k∈S

Ḋjkx
(1)
k −

∑
l∈M

Ṁjlx
(2)
l

]
, (89)

see [50,52,53] for details. The last summand in (88) is then replaced by

∑
j∈S

∑
l∈M

δT(2)l

∫

γ C(1)h
�k (N

(2)
l ◦ Ph

t ) dγ
ṽτk · λc

τk∫
γ C(1)h �k dγ

. (90)

From a physical point of view, this means that we do not interpolate the velocities and
the contact Lagrange multiplier but only the scalar product

ṽτ j ·λc
τ j∫

γC(1)h �j dγ
= Dc

mech,j , which

represents the frictional dissipation power at the slave node. Numerically, (90) implies a
lumping of the triple integrals in (88), thus resulting in an integral over the product of two
ansatz functions only. The contact contribution to the discrete thermal equilibrium (53)
is again interpolated at the mid-point n+αT,f f cT = αT,f

n+1f cT + (1 − αT,f ) nf cT , such that

rcT = M n+αT,m Ṫ + n+αT,f f intT − n+αT,f f extT − n+αT,f fdissT + n+αT,f f cT = 0, (91)

with

nf cT = [
0,−MT (nd),DT (nd)

]T nλθ + [
0,MT (nd), 0

]T nDc
mech, (92)

where the vectorDc
mech contains all entries of the contact dissipation power at all nodes

Dc
mech,j .
Still, the interface constraintsHu andHT in (81) and (82) need to be discretized. Owing

to the biorthogonality of the dual basis functions for the Lagrange multiplier (84), it
is well-known that the discretization of the variational inequality (81) yields decoupled
constraints for the nodes [45,48]. The discrete normal contact constraint becomes

g̃j :=
∫

γ C(1)h
�jgn,hdγ ≥ 0, λnj ≥ 0, λnjg̃j = 0, (93)

where g̃j is called weighted gap at node j. Analogously, the frictional constraint becomes

f frj := ‖λτ j‖ − μ(θcj)|λnj| ≤ 0, ṽτ j + βλτ j = 0, βj ≥ 0, f frj βj = 0. (94)

In the fully coupled thermo-mechanical contact problem, the coefficient of friction
depends on the temperatures at the two sides of the contact interface, e.g. via (73).
In the discrete setting we determine the maximal contact interface temperature θcj =
max[T (1)

j , T (2)(x(1)j ◦ Ph
t

−1)]. The algorithmic treatment of those inequality constraints
will be the topic of the following “Solution algorithm using nonlinear complementarity
functions” section.
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Finally, a discrete representation of the thermal interface condition (82) is required. At
this point, we again deviate from a strict application of the discretization, as we already
did in (90), and end up with the following discrete representation of (82):

δλθ · Dθ = Hh
T =

∑
j∈S

δλθ
j

∫

γC(1)h
Nj dγλθ

j

+
∑
j∈S

δλθ
j βcλ

c
nj

(∑
k∈S

∫

γC(1)h
�jN (1)

k dγ Tk

−
∑
l∈M

∫

γC(1)h
�j(N (2)

l ◦ Ph
t ) dγ Tl

)

+
∑
j∈S

∑
l∈M

δλθ
j (ṽτ j · λτ j)

∫

γC(1)h
δc�j(N (2)

l ◦ Ph
t ) dγ = 0 ∀ δλθ

j .

(95)

Thanks to the lumping procedure, especially for the first integral, the thermal interface
condition decouples for the contact nodes j, i.e. we can set λθ to zero for all inactive
contact nodes. For the contact interface constraints, this decoupling can be achieved in a
consistent manner using dual shape functions, such that only local, decoupled constraints
have to be solved instead of an inequality constraint coupling all interface nodes. To keep
up this advantage in the coupled thermo-mechanical contact problem, the presented
lumping is required, see [12] for a more detailed discussion. We want to emphasize that
for standard thermo-mechanicalmortarmethods, e.g. [11], a similar simplification ismade
implicitly by using a node-wise decoupled active set strategy, although strictly speaking
the variational inequality does not not allow for such a decoupled treatment in that case
[54,55].

Solution algorithm using nonlinear complementarity functions

The discrete system derived in the previous section still includes discrete inequality con-
straints for normal contact (93) and Coulomb friction (94) at all slave nodes S . As com-
monly used in isothermal dual mortar methods, the contact constraints are reformulated
as nonlinear complementarity (NCP) functions, which then pose non-smooth equality
constraints to the system, see e.g. [45,47,54]. A first application to small-strain thermo-
elastic contact problems was presented in [12]. However, a fixed-point solution approach
for the thermal interface conditions was used, thus sacrificing a quadratic rate of con-
vergence. In this work, the concept of NCP functions will only be briefly reviewed by
highlighting the additional complexity resulting from thermo-mechanical coupling. At
each slave node, we define the trial values

λc,trnj = λcnj − cng̃j , cn > 0, (96)

λc,tr
τ j = λc

τ j + ct�tṽj , ct > 0. (97)

Enforcing the contact constraints (93) and (94) is then equivalent to finding the root of
the non-smooth, nonlinear complementarity functions
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Cnj(d,λj) = λcnj − max(0, λc,trnj ), (98)

Cτ j(d, T,λj) =
(

λc
τ j − min

(
1,

μλc,trnj

‖λc,tr
τ j ‖

)
λc,tr

τ j

)
max

(
μλc,trnj , ‖λc,tr

τ j ‖
)
, (99)

where the temperature dependency entersCτ j via a temperature dependent friction coef-
ficient μ = μ(θcj).
The fully coupled nonlinear system to be solved for each time step comprises the struc-

tural and thermal equilibrium (87) and (92), respectively, the plastic NCP function (59),
the contact NCP functions (98) and (99), and, finally, thermal contact interface condition
(95). All in all, we obtain

rcu(d, T,λc,�Dp) = 0, (100)

rcT (d, T,λ
c,λθ ,�Dp) = 0, (101)

Cpl
q (d, T,�Dp

q) = 0, ∀j ∈ G, (102)

Cnj(d,λc) = 0, ∀j ∈ S , (103)

Cτ j(d, T,λc) = 0, ∀j ∈ S , (104)

Dθ
j (d, T,λ

c,λθ ) = 0, ∀j ∈ S . (105)

This coupled system of equations is now solved monolithically using (a non-smooth ver-
sion of) Newton’s method. Therefore, the system is linearized with respect to the dis-
crete displacements, temperatures, Lagrange multipliers and plastic flow variables, which
results in

∂rcu
∂d

�d + ∂rcu
∂T

�T + ∂rcu
∂�Dp �(�Dp) + ∂rcu

∂λc �λc = −rcu,

(106)
∂rcT
∂d

�d + ∂rcT
∂T

�T + ∂rcT
∂�Dp �(�Dp) + ∂rcT

∂λc �λc + ∂rcT
∂λθ

�λθ = −rcT ,

(107)

∂Cpl
q

∂d
�d + ∂Cpl

q
∂T

�T + ∂Cpl
q

∂�Dp
q
�(�Dp

q) = −Cpl
q , ∀q ∈ G,

(108)

∂Cnj

∂d
�d + ∂Cnj

∂λc
j

�λc
j = −Cnj, ∀j ∈ S ,

(109)

∂Cτ j

∂d
�d + ∂Cτ j

∂T
�T + ∂Cτ j

∂λc
j

�λc
j = −Cτ j , ∀j ∈ S ,

(110)
∂Dθ

j

∂d
�d + ∂Dθ

j

∂T
�T + ∂Dθ

j

∂λc
j
�λc

j + ∂Dθ
j

∂λθ
j

�λθ
j = −Dθ

j , ∀j ∈ S .

(111)

Again, we do not elaborate on the linearizations of the involved contact terms, since
many of those have already been presented elsewhere; see e.g. [48,49] for the linearization
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of the contact forces and the normal contact constraints and [50] for the isothermal fric-
tional contact. The remaining linearizations, especially those with respect to the discrete
temperatures, follow in a rather straightforward manner.
As already presented in “Solution algorithm using nonlinear complementarity func-

tions” section, the discrete plastic flow at each quadrature point can be condensed at a
Gauss point level, which also applies to the extended system (106)–(111). Finally, we also
seek to eliminate the Lagrangemultipliers that were introduced at the contact interface to
enforce the normal and frictional constraints as well as the heat production and conduc-
tion. Beingwell-established for isothermal contact in themeantime, the general procedure
will only be outlined briefly here. As discussed above, the displacement and temperature
degrees of freedom will be split into different sets, where S and M contain the degrees
of freedom on the slave and master side, respectively, and N all other nodes. Then, we
can split the rows of the linearized system (106)–(111) into those sets and obtain a system
that can be written in the following matrix form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K̃N∪I
uu K̃N∪I

uT 0 0

K̃M
uu K̃M

uT −MT
u 0

K̃A
uu K̃A

uT DT
u 0

K̃N∪I
Tu K̃N∪I

TT 0 0

K̃M
Tu K̃M

TT S −αT,fM
T
T

K̃A
Tu K̃A

TT 0 αT,f D
T
T

T U V 0

W X Y Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

�d

�T

�λc

�λθ

⎤
⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r̃N∪I
u

r̃Mu
r̃Au

r̃N∪I
T

r̃MT
r̃AT

Cn ⊕ Cτ

Dθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (112)

By splitting the slave setS further into an active partA, with nodes jwhere λcnj−cng̃nj > 0,
and an inactive part I , we can omit the constraints for the inactive nodes, since they only
yield λ{c,θ} = 0 for those nodes. The effective stiffness blocks K̃ therein contain the mass
matrices M{u,T } as well as the condensed plastic constraints (64)–(66). The remaining
blocks S–Z can be identified by comparing (112) with the linearized system (106)–(111)
and are not specified in detail here. What is crucial for the condensation of the Lagrange
multipliers is the fact that the coupling matrices D{u,T } are of square and diagonal shape
due to the biorthogonality property of the dual shape functions. Hence, the Lagrange
multiplier increments can be trivially condensed one after another: the third and sixth row
of (112) can be solved for the increments �λc and �λθ easily, since D{u,T } are diagonal.
After inserting those values for the Lagrange multiplier increments in the other lines, the
remaining linear system to be solved consists of displacement and temperature degrees
of freedom only:

[Kuu KuT

KTu KTT

][
�d

�T

]
= −

[
ru
rT

]
. (113)

Having solved this reduced system, the thermal and contact Lagrange multipliers can be
recovered using the third and sixth row of (112), respectively, and the plastic deformation
increment at every quadrature point can be computed via (63).
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Numerical results
In the following, several numerical examples are presented to demonstrate the wide range
of applications covered with the methods presented above. First, an anisotropic thermo-
elasto-plastic necking problem without contact is analyzed. Next, two examples validate
the ability of the thermo-mechanical contact algorithm to correctly model heat conduc-
tance and frictional dissipation at the interface by comparing the results to analytical and
numerical reference solutions. After that, energy conservation is investigated in a dynamic
thermo-mechanical contact setting. Whenever material and geometrical parameters do
notmodel a real-world example, but only a numerical test-case, units ofmeasurement will
be omitted. Finally, a fully coupled thermo-elasto-plastic contact simulation concludes
this section. All presented algorithms have been implemented in our parallel in-house
multiphysics research code BACI [56].

Thermally triggered necking of an anisotropic circular bar

Necking problems are commonly analyzed with numerical methods for finite strain plas-
ticity both in the isothermal case, see e.g. [24,31], and in the thermo-mechanical case,
see e.g. [13,16,17,29]. In this contribution we want to go one step further and extend
the necking problem to anisotropic thermo-plasticity. A tensile specimen with a radius
of 6.413mm and a length of 53.334mm is stretched by 26.25%. In the isothermal setting,
this leads to a bifurcation problem, which is commonly avoided by introducing a geo-
metric imperfection in form of an initial radius decreasing linearly towards the middle of
the specimen. In the fully coupled thermomechanical setting, necking can be triggered
by an inhomogeneous temperature distribution caused by convective heat transfer on
the entire boundary of the specimen. The normal spatial heat flux is thereby defined as
q · n = −hc(T − T∞), where hc denotes the coefficient of convection, T the temperature
at the surface, and T∞ the temperature of the surrounding medium. Plastic anisotropy is
introduced by reducing the normal yield stress in one transversal direction (direction of
point A in Fig. 1a) by 17.5% (see α1 in Table 1). The employed elastic free energies in (33)
and plastic potential in (18) are given as

U(J e) = κ

4
(J e2 − 1 − 2lnJ e), (114)

W(C̄e) = G
2
(trC̄e − 3), (115)

ψp(αi, T ) = 1
2
Hi(T )αi2 + (y∞(T ) − y0(T ))

(
αi + 1 − exp[−δαi]

δ

)
. (116)

All material parameters are summarized in Table 1. Exploiting the symmetries of the
specimen, only one eighth of the model is discretized with 2250 first order hexahe-
dral elements, see Fig. 1a, with appropriate symmetry conditions on the displace-
ments and temperatures as well as a gradual mesh refinement towards the expected
necking zone. Volumetric locking due to the volume-preserving plastic deformation
is avoided by employing enhanced assumed strain (EAS) elements with nine addi-
tional strain modes, see e.g. [57]. When the monolithic solution algorithm presented
above is combined with enhanced strain elements, coupling effects of the additional
strain modes with all other fields have to be considered carefully. The modes appear
as additional (element-wise discontinuous) unknowns in the system (60)–(62), having
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Fig. 1 Thermally triggered necking of an anisotropic circular bar—initial mesh and final deformed
configuration colored by the accumulated plastic strain αi . a Initial mesh. b Final configuration, isotropic
plasticity. c Final configuration, anisotropic plasticity

Table1 Thermally triggered necking of an anisotropic circular bar—material parameters

Shear modulus G 80.2 GPa

Bulk modulus κ 164.2 GPa

Initial yield stress y0(T ) (1 − ω0(T − T0)) 450 MPa

Anisotropy parameters y11 y11 = {0.825y0 , y0}
y22 , y33 , y12 , y13 , y23 y22 = y33 = y12 = y13 = y23 = y0

Linear hardening modulus Hi (T ) (1 − ωh(T − T0)) 129.24 MPa

Saturation yield stress y∞(T ) (1 − ωh(T − T0)) 715 MPa

Hardening exponent δ 16.93

Density ρ0 7.8 · 10−9 N s2

mm4

Heat capacity Cv 3.588 N
mm2 s2 K

Heat conductivity k0 45 N
s K

Expansion coefficient αT 10−5 1
K

Yield stress softening ω0 0.002 1
K

Hardening softening ωh 0.002 1
K

Dissipation factor β 0.9

Initial temperature T0 293 K

surrounding temperature T∞ 293 K

Convection coefficient hc 17.5 N
mms K

common coupling terms with the discrete displacements d, temperatures T and plas-
tic deformation increments �Dp. The local condensation procedure in (64)–(66) then
becomes a two-stage process: first, at Gauss-point level, the plastic deformation incre-
ment is eliminated, and secondly, the additional strain modes are condensed at element
level.
Figure 1b, c illustrate the final deformed stage and Fig. 2a the force-elongation curve

for the isotropic and anisotropic thermo-mechanical necking problem. The isotropic case
therein reproduces the results presented in [17]. In the first phase up to an elongation of
approximately 3.5mmthedeformation is dominatedbyhomogeneousplastic deformation
in longitudinal direction, such that the reaction force is dominated by plastic hardening,
and the influence of anisotropy is very low. Once the necking is initiated, the plastic
deformation is anisotropic in the transversal plane of the specimen, thus resulting in an
anisotropic deformation pattern, see Figs. 1c and 2b. The anisotropy in the temperature
distribution in Fig. 2c is less pronounced and the temperatures in points A and B follow
the temperature evolution in the isotropic case.
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Fig. 2 Thermally triggered necking of an anisotropic circular bar—evolution of reaction force, radial
displacements and temperatures in the necking zone. a Reaction force. b Radial displacement. c Temperature

Stationary heat conduction

In the next two short examples we demonstrate the accurate representation of thermal
effects at the contact interface. We start with the pressure dependent heat conductivity
over a non-matching contact interface, i.e. the first term in (76). This setting has already
been studied in [2,3] for node-to-segment contact formulations with amatching interface
discretization and a similar setting in [4]. Contact between two elastic blocks is analyzed,
where the lower surface of the lower block is supported and kept at a fixed temperature
of 20, while the upper surface of the upper block is subjected to an increasing Neumann
load and has a fixed temperature of 40, see Fig. 3a. Both blocks are modeled with a Saint-
Venant–Kirchhoffmaterial with Young’s modulus E = 4000, Poisson’s ratio ν = 0, a heat
conductance of 52 and no thermal expansion. For this setup, there exists an analytical
solution for the steady state [3]. Figure 3b shows the resulting linear temperature distri-
bution within each block. As can be expected formortarmethods, the contact patch test is
passed to machine precision, i.e. a spatially constant contact pressure can be transmitted
exactly. Moreover, Figure 3c compares the interface temperatures depending on the nor-
mal contact pressure with the analytical solution, which is recovered perfectly. Notably,
the results are independent of the choice of slave and master side and do not require a
matching interface discretization as used in previous studies [2,3].
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Fig. 3 Stationary heat conduction—temperature distribution at different contact pressures. a pn = 0. b
pn = 30. c Interface temperatures over pn

Frictionless contact with a rigid obstacle: convergence study

To further study the accuracy of the presented method, spatial convergence is inves-
tigated in this example. Since the consideration of (thermo-) plasticity does not
alter the discretization compared to well-studied return mapping algorithms, but
only the nonlinear solution procedure, we restrict ourselves to the case of thermo-
elasticity. We study the two-dimensional problem of a rectangular thermo-elastic
body X ∈ [−1, 1] × [0, 1] with a rigid circular obstacle with an (outer) radius of
1.25, see Fig. 4a. Temperatures are fixed at the lower boundary of the rectangu-
lar block at X ∈ [−1, 1] × 0 to T̂ = 0 and the obstacle has the fixed tempera-
ture T̂ = 1. The material is again modeled using the strain energy functions (114)
and (115) with parameters κ = 5/9 and G = 5/12 (corresponding to Young’s mod-
ulus E = 1 and Poisson’s ratio ν = 0.2) under plane strain condition. The coef-
ficient of thermal expansion is set to αT = 0.01 and heat conductivity to k0 =
1. Initially, both bodies are in stress-free contact; then the obstacle is moved ver-
tically by 0.3 quasi-statically, see Fig. 4b for the deformed configuration and the
resulting temperature distribution. We perform uniform mesh refinement by split-
ting one quadrilateral element into 4 new ones starting with 2 × 1 first order bi-
linear elements on the coarsest level and 256 × 128 elements on the finest level. Since
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Fig. 4 Thermal contact against rigid obstacle—problem setup and spatial convergence. a Initial mesh for
h = 1/8. b Deformed mesh and temperature distribution for h = 1/8. c Convergence of H1 semi-norms

no analytical solution exists for finite deformation thermo-mechanical contact prob-
lems, the errors in displacement and temperature approximation in H1(�) (semi-)
norms

ed = ‖Grad(uh − uref)‖L2(�), eT = ‖Grad(Th − T ref)‖L2(�), (117)

are calculated with regard to a numerical reference solution uref and T ref obtained by a
mesh of 1024×512 elements. In Fig. 4c, we can observe the expected optimal convergence
order ofO(h) for both displacement and temperature solution. Higher order approxima-
tions are not considered here, since the convergence orders are then no longer determined
by the discretization itself but rather by the regularity of the solution. This holds for both
contact problems [58] as well as problems of elasto-plasticity [59].

Frictional heating of a rotating ring

The second short validation example considers the effects of frictional heating. Therefore
we choose an example similar to the one in e.g. [42]. A block (dimensions 100× 25× 10)
is pushed on a rotating ring (outer radius Ra = 100, inner radius Ri = 75, thickness
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z = 10) via a constant vertical Neumann load Fn = 150 distributed over the top surface.
Moreover, this top surface is fixed in horizontal direction and kept planar at all time. The
ring is rotating at different angular velocities ω, which are applied as a Dirichlet boundary
condition at the inner surface. At the contact between the block and the ring, we take the
block as the slave side and set the temperature dependent friction coefficient μ according
to (73)with theparametersμ0 = 0.2,T0 = 293 andTd = 493.Additionally,we set theheat
transfer parameters γ̄ (1) = 0 and γ̄ (2) = 1, which gives βc = δc = 0, meaning that there
is no heat flux across the contact surface and the entire work of friction is converted to
heat in the master body (i.e. the ring). By doing so, and by assuming an instantaneous heat
conduction (k0 → ∞), or equivalently low rotational speedsω → 0, an analytical solution
for the temperature, or equivalently the thermal energy Ethr, of the ring can be derived:

EThr =
∫

�

CvT d� =
⎛
⎝Td − 1

1
Td−T0

+ μ0FnRa
Cvπz(R2a−R2i )(Td−T0)2

α(t)

⎞
⎠Cvπz

(
R2
a − R2

i
)
,

(118)

where α(t) is the rotation angle of the ring over time. To keep the focus on the thermo-
mechanical contact and avoid potential thermo-elastic dissipation effects, we do not
account for thermal expansion in this case, i.e. αT = 0 and assume the structural response
to be quasi-static. Both bodies are modeled with a Saint-Venant–Kirchhoff material with
Young’s moduli Eblock = 2 and Ering = 10 and Poisson’s ratios νblock = νring = 0.25. In
addition, we assume k0 = 6 and Cv = 10−3 for both bodies. Figure 5 displays the tem-
perature distribution in the ring for different angular frequencies. Clearly, the higher the
angular frequencies are, the more inhomogeneous the temperature distribution becomes;
for the lowest shown frequency of ω = 10−2 an almost constant temperature across the
entire ring is obtained. In that last case, the resulting change in thermal energy also agrees
with the analytical solution (118) denoted asμ(T ) in Fig. 6, whereas the higher frequencies
show a lower increase in thermal energy. At the onset of rotation, all curves start with the
same slope, which corresponds to the analytical solution for a constant coefficient of fric-
tion (denoted asμ = const). In the following, the apparent coefficient of friction drops due
to the increasing temperature, thus reducing the slope in the energy gain. Higher angular
velocities result in locally higher temperatures in the contact zone and therefore a lower
friction coefficient, consequently reducing the increase in thermal energy. Ultimately, all
energy curves in Fig. 6 saturate at the black dashed line, which corresponds to a homo-

Fig. 5 Frictional heating of a rotating ring. Temperature distribution after one full rotation (α = 2π ) at
different angular frequencies
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Fig. 6 Frictional heating of a rotating ring. Change of thermal energy over rotation angle at different angular
frequencies

geneous temperature Td in the entire ring. Approaching this temperature, the friction
coefficient tends to zero, thus precluding any further thermal energy being introduced via
work of friction at the interface.

Bouncing ball

The next example considers contact dynamics and especially matters of energy conser-
vation in the discrete system. We consider a bouncing hollow sphere (outer radius 4,
inner radius 1) between two rigid plates (dimensions 50 × 1 × 10, distance 14). The ball
is modeled with a Saint-Venant–Kirchhoff material with Young’s modulus E = 12.5 and
Poisson’s ratio ν = 0.2. The heat capacity and conductivity of the ball and the two plates
are set to Cv,ball = 0.1, Cv,plate = 1, k0,ball = 1 and k0,plate = 0.1, respectively. Initially,
the ball is given an velocity of

√
2 in a 45 degree angle towards the lower plate and a

superimposed spin around an inclined axis. Initial temperatures are 1 in the ball and 0
in the plates. We set the coefficient of thermal expansion αT = 0, such that no transfer
frommechanical to thermal energy is possible and vice-versa. The ball is discretized with
3456 second order NURBS elements and the plates with 459 elements each. As outlined
in Remark 1, no special treatment of isogeometric thermo-mechanical contact is neces-
sary compared to classical finite elements based on Lagrange polynomials, but the only
difference lies in the ansatz functions employed in (43).
Figure 7 shows the deformation and temperature distribution at different time steps.

During the five contact events, heat is transferred from the ball to the plates and the
ball cools down to a final temperature of approximately 0.25, meaning that 75% of the
thermal energy in the system is transmitted through the contact interface. Owing to
the relatively coarse discretization of the plates in combination with their low thermal
conductivity, slight oscillations in the temperature distribution occur in the surroundings
of the contact zone, see Fig. 7b. This is due to the inability of the coarse discretization to
correctly reproduce the steep gradients in the temperature field and the effect vanishes for
finer discretizations. Figure 8 shows the relative change inmechanical and thermal energy
over time for different spectral radii of the generalized-α time integration schemes. As
outlined in Remark 2, exact algorithmic energy conservation cannot be expected with the
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Fig. 7 Bouncing ball—temperature distribution and deformation state for ρu,∞ = ρT,∞ = 0.9 at different
time steps
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employed time integrator, which becomes obvious in the unstable behavior for ρ∞ = 1,
i.e. a gain of about 8% in mechanical energy after the five contact events (see Fig. 8a).
Smaller values of ρ∞ yield an energy dissipative, yet stable behavior. The thermal energy
in Fig. 8b, on the other hand, is conserved to a very high accuracy, especially considering
the fact that a significant amount is transmitted through the contact interface. We again
want to point out thatmore sophisticated time integrators for contactmechanics, thermo-
elasticity and elasto-plasticity are available in the literature (see references in Remark 2)
but go far beyond the scope of this contribution.
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Fig. 9 Squeezed elasto-plastic tube—initial configuration and employed mesh

Fig. 10 Squeezed elasto-plastic tube—deformed configurations at different times including accumulated
plastic strain and temperature distribution (results of an eighth model reflected for vizualization)

Squeezed elasto-plastic tube

Finally, we present a fully coupled thermo-elasto-plastic contact example to demonstrate
the robustness and efficiency of the developed algorithm. Similar to the example in [20]
and originally inspired by [21], a squeezed metal tube with an inner and outer radius of
4 and 5 cm, respectively, and a length of 40 cm is analyzed. In the middle of the tube
it is squeezed by two rigid cylindrical tools with an inner and outer of radius 4.5 and
5 cm, respectively, and a length of 16 cm, see Fig. 9. The material properties are again
the ones given in Table 1, with plastic isotropy, i.e. y11 = y0. Between the tools and the
tube, frictional contact with a temperature dependent friction coefficient according to
(73) is assumed with the initial coefficient of friction μ0 = 0.25, the reference temper-
ature T0 = 293K and the damage temperature Td = 1793K. The tools are initially in
stress free contact and perform a vertical displacement of u(t) = (1− cos( t

1 sπ )) · 1.75 cm
over time. Figure 10 illustrates the plastic strain and temperature distribution at differ-
ent times. Due to the symmetry of the problem, only one eighth of the entire model
is discretized with about 20.000 elements, and the results are reflected for visualization
purposes. First order hexahedral elements with an F-bar technology are used to avoid
volumetric locking, see [60] for the original isothermal formulation of this element. In
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the early deformation stages, plastic deformation and therefore heat generation is mainly
located directly beneath the contact zone (see Fig. 10a), whereas later the main plas-
tic deformation occurs at the side of the tube, where the highest peak temperatures are
reached (see Fig. 10b). After contact is released, thermal conduction tends to equilibrate
the temperature inhomogeneity, see Fig. 10c. To illustrate the efficient nonlinear solution
procedure using Newton’s method with a consistent linearization, Fig. 11 displays the
convergence behavior of different residual contributions in the time step of maximal tool
velocity (t = 0.5 s). All residuals clearly exhibit a quadratic rate of convergence asymp-
totically, until they are at some point limited by machine precision. The residual of the
NCP function for plasticity (102), for instance, has been reduced by ten orders of mag-
nitude within the first seven iterations and is then limited by numerical accuracy. In the
final iteration steps, also the other residual contributions converge rapidly as expected.
Finally, we compare the coupled thermo-elasto-plastic results with an isothermal struc-
tural simulation. Figure 12 displays the total contact forces for the two cases: initially, the
temperature changes are low and the contact forces for both cases practically coincide. As
the temperature increases, the coupled thermo-mechanical analysis softens and terminally
yields contact forces about 4% lower than in the isothermal case, with a peak tempera-
ture change of 36K. The presented monolithic scheme for thermo-elasto-plastic contact
solves this problem within only 100 time steps with a constant step size of �t = 0.02 s, of
which the first 55 steps involve contact. Each of those time steps is solved with a standard
Newton–Raphson scheme, which required an average of 9.9 iterations to converge to
machine precision. The linearized system (113) is thereby solved using a preconditioned
GMRES solver with a block Gauss–Seidel iteration to decouple the structural and ther-
mal problem. Both subproblems then use incomplete factorization preconditioners [61].
However, more efficient linear solvers using algebraic multigrid (AMG) methods may
be constructed based on [62] in combination with specialized AMG preconditioners for
contact problems [63]. Such solvers are beyond the scope of this work, but will be a topic
of future research.
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Conclusions
In this article, a fully coupled monolithic formulation for thermo-elasto-plasticity and
thermo-elasto-plastic frictional contact problems has been derived. Following one com-
mon theme, the newly developed algorithm deals with all arising inequality constraints of
contact, friction and plasticity by using nonlinear complementarity functions. The algo-
rithm for solving the thermo-elasto-plastic problem in the bulk structure is based on our
previous developments in [20], where the plastic constraints are treated via nonlinear
complementarity functions at every quadrature point.
In the presented extension to thermo-plasticity, the emerging thermo-mechanical cou-

pling terms within a monolithic solution framework are consistently linearized. By con-
densation of the plastic variables at quadrature level, the method has the same computa-
tional efficiency as the radial return mapping, while, at the same time, being potentially
more robust, since the plastic inequality constraints only need to be satisfied at con-
vergence of the global Newton-Raphson method, but not at every step as in the return
mapping. Moreover, this general concept can be used to develop other types of comple-
mentarity functions, which may result in even more robust and efficient computational
schemes.
Concerning thermo-mechanical frictional contact at finite deformations, a new dis-

cretization approach based on dual mortar finite element methods has been derived. The
model includes a pressure dependent heat conduction across the contact interface as well
as frictional work, which is consistently converted to heat. The use of dual basis func-
tions allows for an easy condensation of the additional Lagrange multiplier degrees of
freedom, such that the resulting system is no longer of saddle-point-type as many other
contact formula are. Since the final global system to be solved only involves displace-
ment and temperature degrees of freedom, this renders the algorithm very efficient with
a quadratic rate of convergence in Newton’s method, yet at the same time very accu-
rate as the obtained spatial convergence results underline. Finally, robust compatibility
of the presented methods has been demonstrated in a fully coupled thermo-elasto-plastic
frictional contact setup.
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