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Abstract

To identify mechanical properties in heterogeneous materials, the local stress fields
have to be estimated. The recent developments in imaging techniques allow reaching
precise and spatially dense kinematic fields (e.g. displacement, strain ...). In this paper,
an iterative procedure is used to identify the distribution of elastoplastic material
parameters and the local stress fields. The formulation and the principle of the method
are briefly presented while attention is paid to check its reliability and efficiency on
finite element simulation data as reference full-field measurements. The method is also
applied to noisy measured displacement fields to assess its robustness.
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Introduction
Various identification techniques have been developed to identify mechanical behaviours
and stress fields using kinematic field variables such as displacements or strains obtained
by full-field measurement techniques (e.g. digital image correlation, interferometric tech-
niques, grid methods, etc.): the finite element model updating method (FEMU) [1–4], the
reciprocity gapmethod (RGM) [5,6], the constitutive equation gapmethod (CEGM) [7–9],
the virtual field method (VFM) [10–18] and the equilibrium gap method (EGM) [19,20].
An overview of these identification procedures and their applications on experimental
data can be found in [21]. More recently, some authors proposed to further integrate
the displacement measurements and the identification procedures leading to so-called
integrated-DIC (or I-DIC) formalism [22,23].
In this work, we extend and adapt the approach developed in [24] to identify the con-

stitutive laws and their mechanical parameters for heterogeneous materials. Since the
method proposed in [24] is based on Airy functions, the approach is limited to simple
geometries and regular meshes. This limitation is here removed and any geometry can be
addressed. Moreover, the initial work [24] was limited to elastoplastic behaviours with a
linear hardening. For sake of simplicity, the present paper also focuses on linear hardening
but it is now straightforward to deal with any kinematic hardening law. The last improve-
ment presented here concerns the identification of the yield stress and of the hardening
modulus. The formulation was modified in order to allow the simultaneous identification
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of the two plastic parameters: the initial requirement of a plastic zone whose size remains
constant on two successive load steps is no more needed.
The new formulation thus allows to deal with multilinear hardening behaviours on

complex geometries and several load steps. The simultaneous use of several load steps for
the identification significantly decreases the sensitivity to measurement noise.
The class of models that we have in mind belongs to J2 elastoplasticity with hardening.

The Constitutive Equation GapMethod (CEGM) originally used as an error estimator for
finite element simulations is here adopted in order to identify the stress fields and the con-
stitutive parameters of heterogeneousmaterials. The change from anAiry’s type approach
to a Finite-Element approach to the CEGM allows investigating enhanced boundary con-
ditions and more complex geometries.
In this application,we introduce the elastoplastic secant stiffness tensorBs. For aPrager’s

linear kinematic hardening model, the tensor Bs is directly expressed as a function of the
material properties (Young’s modulus E, Poisson’s ratio v for isotropic elasticity and shear
modulusG for cubic elasticity, yield stress σ0 and hardening coefficient h) and of the load-
ing history. In the following, we briefly present the identification procedure, we illustrate
its performance on various simulated data obtained under small perturbations and plane
stress assumptions. Finally, we check its robustness with respect to measurement noise.

Inverse method
Identification procedure

Since we have interest in the sequel for thin and flat samples observed via in-plane DIC
techniques, we focus on the identification of elastoplastic constitutive laws in a 2D frame-
work (plane stress). In this context, a maximum of three parameters can be locally iden-
tified because we have only access to three local in-plane strain measurements related to
three in-plane stress components.
The CEGM is based on the minimization of an energetic functional depending on two

sets of parameters: the stress field and themechanical material properties. This procedure
can be applied to any identification problem and can be used both with data extracted
from numerical simulations and with experimental measurements.
For a sequence of successive load steps (subscript 1 ≤ n ≤ N for each step), we denote

by−→umn the measured displacement field on a given region of interest� and we consider an
elastoplastic body governed by the set of Eqs. (1–4):

div σ c
n = 0 in� (1)

σ c
n = Bs

n : ε
(−→ucn

)
in� (2)

{ �Rj
n = ∫

∂�j
σ c
n · �n ds on ∂�j

σ c
n · �n = 0 on ∂�i

(3)

−→ucn = −→umn on ∂�u (4)
where σ c

n represents a statically admissible stress field associated with the displacement
−→ucn via the fourth order secant elastoplastic tensor Bs

n (corresponding to the Hooke tensor
Be for an elastic step) for each load step n. It is worth noticing that for a heterogeneous
material, all these quantities depend on the position.
The overall forces �Rj

n are known for each time step n on the boundary ∂�j of �. The
free boundaries ∂�i satisfy the relations: ∂�j ∪ ∂�i ∪ ∂�u = ∂� and ∂�j ∩ ∂�i = ∅,
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∂�j ∩ ∂�u = ∅ and ∂�i ∩ ∂�u = ∅. On some boundaries ∂�u, we also impose that the
average displacement−→ucn is equal to the average displacement−→umn which not only allows to
eliminate the rigid body motion but also to further constrain the identification problem
and to reduce the influence of measurement noise.
The energetic functional can be expressed in its simplest form (small strain hypothesis,

equilibrium):

Erc
((−→ucn

)
n∈[1,N ]

,
(
Bs
n

)
n∈[1,N ]

)

=
N∑
n=1

∫

�

Bs
n :

[
ε
(−→ucn

)
− ε

(−→umn
)]

:
[
ε
(−→ucn

)
− ε

(−→umn
)]

d� (5)

Here N is the overall number of time steps used for the identification and −→ucn a displace-
ment field compatible with the equilibrium of the studied domain � at load step n.
The identification procedure consists in minimizing Erc with respect to its two argu-

ments −→ucn and Bs
n. The method can be applied to any behaviour for which an expression

of the secant tensor Bs
n is available. Consequently, it can be used on reversible behaviours

(linear and non-linear elasticity) or irreversible behaviours (viscoelasticity, elastoplasticity
...). When dealing with irreversible behaviours, it is necessary to take the loading history
into account. In the case of elastoplasticity, this amounts to separate elastic loading steps
from plastic ones. The method was numerically implemented to deal with elastoplastic
behaviours and monotonic loadings. The consistency between the numerical implemen-
tation and the main hypotheses underlying the description of plastic flow (e.g. existence
of a yield stress, isochoric plastic strain, normality rule) is ensured from the formulation,
thus minimizing the set of parameters to identify.
In the caseof cubicmaterial, theHooke tensorBe dependsonlyon three elastic constants:

E, v and G. According to [25], the fourth order secant elastoplastic tensor can be written
at load step n as:

Bs
n =

[
Be−1 + �γn

1 + 2
3k�γn

P
]−1

(6)

where P is the constant mapping matrix:

P = 1
3

⎡
⎢⎣
2 −1 0
−1 2 0
0 0 6

⎤
⎥⎦ (7)

and �γn is the plastic multiplier that depends, for linear kinematic hardening, on the
material parameters:

�γn (σ0, k) = 3
2k

〈√
3
2

αn
σ0

− 1
〉+

(8)

with 〈α〉+ the positive part of a, αn the second invariant of the effective stress, Xn the
backstress tensor reached at the current load step:

α2
n =

(
σ c
n − Xn

)T
.P.

(
σ c
n − Xn

)
(9)

The expression of the secantmodulusBs
n plays a central role in the proposedmethod since

it governs the definition of the plastic parameter Kn which involves the plastic parameters
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to be identified. The secant tensor at time step n can also be expressed with respect to
material parameters:

Bs
n =

⎡
⎢⎢⎢⎣

E(1+2KnE)
3K 2

n E2−2KnE(ν−2)+1−ν2
E(ν+KnE)

3K 2
n E2−2KnE(ν−2)+1−ν2

0
E(ν+KnE)

3K 2
n E2−2KnE(ν−2)+1−ν2

E(1+2KnE)
3K 2

n E2−2KnE(ν−2)+1−ν2
0

0 0 2G
1+12KnG

⎤
⎥⎥⎥⎦ (10)

Finally, since the plastic deformation at load step n is equal to ε
p
n = ε − Be−1 : σ c

n , the
plastic parameter Kn, can be expressed as a function of two material parameters a and b:

Kn = a
∥∥ε

p
n
∥∥

b + ∥∥ε
p
n
∥∥ (11)

with a = 1
2h and b = σ0

h in the case of a linear kinematic hardening. Note that when the
load step n is purely elastic, the plastic strain is vanishing and the plastic parameter Kn is
equal to zero: the plastic secant tensor Bs

n is thus equal to the elastic tensor Be.
Furthermore, the Eqs. (10) and (11) show that the plastic secant tensor depends on set

of the elastoplastic parameters p = [E, v, G, σ0, h] and also on the norm of the plastic
deformation

∥∥ε
p
n
∥∥ so:

Bs
n = Bs

n
(
qp,

∥∥ε
p
n
∥∥)

where q are the phases (material domains) of the specimen and qp

the material parameters of phase q.
To compute theERC functional, several fields are tobedefined: (1) thephasedistribution

(related to the material heterogeneity), (2) the stress fields (related to the development
of structural effects in the specimen), and finally (3) the experimental displacement fields
obtained by DIC.
These three fields are discretized using different meshes with adapted mesh size and

shape functions. The meshes are “nested”, the coarser being the material mesh, the finer
being the DIC mesh, and the intermediate being the stress mesh. These three meshes
are described with different shape functions. The stresses are determined through a FE
computation using bilinear displacement elements and bilinear shape functions are used
to perform the local DIC computation. The continuity of themeasured displacement field
is enforced by averaging the displacement vector on themesh vertices and themechanical
properties are constant on each material domain. Moreover, it is possible to use different
stress meshes in both elastic and plastic identification.
The ‘plastic’ mesh was a subdivision of the ‘elastic’ mesh in order to reduce the influence

of the noise on the identification while maintaining a convenient description of the stress
gradients. As conform meshes, these nested meshes simplify the transfers of fields from
one mesh to another.
Finally, the direct simulations are performedby imposing constant vertical displacement

on the upper boundary and blocking vertical displacement on the lower boundary. The
left and right boundaries are stress free. Moreover we set the displacement of one point of
the lower boundary to zero in order to suppress the possible horizontal rigid bodymotion.

Numerical method

Due to the convexity of the Erc functional, the minimization is performed in two steps,
leading to the relaxation algorithm presented in Fig. 1a: the function is minimized with
respect to the displacement field−→ucn associated with a statically admissible stress field, and
then with respect to the secant tensor Bs

n.
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Fig. 1 a Example of Erc minimization algorithm used for the step (i) and step (iii), b global identification
algorithm

As already mentioned, we focus on a J2 elastoplastic model with kinematic hardening
and no more than three material constants can be locally identified at each load step. The
identification algorithm involves three steps (see Fig. 1b): (i) an elastic identification, (ii)
a plasticity detection and (iii) a plastic identification.
The elastic and plastic parameters are thus identified separately and are based on the

minimization of the Erc cost function. Nevertheless, in either situation, the first minimiza-
tion is identical: it consists in a classical direct finite element computation for a known
heterogeneous material under given boundary conditions. This minimization will thus
not be discussed in the following. The elastic constants (i) are identified by minimizing
the functional Erc with respect to the elastic tensor Be. The iterative minimization process

starts with an initial set of parameters
(
B0

)
chosen by the user at n = 0 and taken equal

to the elastic parameters identified on the previous load step when n > 1. The proce-
dure is stopped using a convergence criterion defined on the norm of the correction in
secant tensor. The plastic identification problem consists in determining the elastoplastic
parameters involved in the secant stiffness tensor Bs

n.
The plastic identification (step (iii)) is less direct since the secant tensor expression

requires knowledge of the stress state. For all the plastic load steps, the secant tensor is
initialized using the results of an elastic estimation Bs

0,n, and gives a statically admissible
stress state.
The plastic identification consists in minimizing Erc with respect to the plastic param-

eters (a and b for a linear kinematic hardening). Once the procedure has converged, we
get the stress field σ c

n and the optimal values (aopt , bopt ) that are directly related to the
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material parameters σ0 and h. In this case, the minimization is performed numerically,
due to the lack of analytical solution.
For a given behaviour (elasticity or plasticity), and a given load step n, the identification

algorithm presented in Fig. 1a is performed until convergence. In both cases, the con-
vergence criterion is computed on the secant tensor

(
Bs
n

)
i
identified at iteration i and

on the one identified at the previous (i − 1) iteration:
(
Bs
n

)
i−1

, with typical values of the
convergence criterion εa of 0.001:∥∥∥∥

(
Bs
n

)
i
−

(
Bs
n

)
i−1

∥∥∥∥
2

< εa

∥∥∥∥
(
Bs
n

)
i

∥∥∥∥
2

(12)

The plasticity detection (step (ii)) consists in comparing the secant tensor Bs
N identified

at the current load step N and the one identified at the previous (N − 1) load step Bs
N−1:

∥∥∥∥Bs
N − Bs

N−1

∥∥∥∥
2

> εb

∥∥∥Bs
N

∥∥∥
2

(13)

with εb about 0.05. If this criterion is validated, we assume that the plasticity has started
developing during the current load stepN . The last elastic load step is denoted byNe. The
plastic identification (step (iii)) is performed only for the load steps greater than Ne (the
overall loading is supposed to be monotonous).
Once the procedure has been completed, we get the statically admissible stress field for

all the load steps and the set of identified material properties.

Validations
In this section, the efficiency of the proposed procedure is examined using reference
simulated measurements obtained with the finite element code Comsol Multiphysics.
Only simulated measurements are considered in this paper in order to focus only on the
identification procedure performance and on the enhanced features of the formulation.
The in-plane components of the displacement field are extracted at the nodes of the

finite element mesh and the global load levels are extracted on the outer boundaries.
We have used different meshes for the direct computation and for the definition of the
“measurement grid”.
The errors on the identified parameters can have different origins. They can be related

to errors on the measured displacement (i.e. DIC errors), on the geometry description
(domain and boundaries), on the behavior law (description of the secant tensorBs

n), on the
phase description (material mesh), or on the stress description (stress mesh and boundary
conditions used for the stress computation). In this paper we address the influence of DIC
errors, of phase description errors and, in a lesser extent of stress description errors. Since
conform meshes are used, phase description errors are related both to stress description
errors and to measured displacement errors.
The influence of the measured displacement field characteristics (mesh size and noise

level) on the identification results is illustrated on numerical examples corresponding to
homogeneous and heterogeneous materials subjected to a tensile test. It is well known
that several error regimes can be encountered using DIC, noticeably the shape function
mismatch regime and the ultimate error regime [26]. The shape function error is prepon-
derant when the shape function used in the DIC formulation does not match the actual
displacement field. It is governed by the first neglected term in the shape function and
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it tends to increase when the subset size is increased. The ultimate error is encountered
when the shape function is rich enough to describe the real displacement field. It is gov-
erned by the image noise σn, the average image gradient and the subset size d and it
tends to decrease when the subset size increases [27]. These two aspects were separately
investigated. The influence of the shape functionmismatch error is examined using differ-
ent displacement meshes leading to different mismatch error levels. The influence of the
ultimate error is investigated solely by randomly perturbing the measured displacement
field.

Results

Elastic identification

The first test (specimen 1) is performed on an elastic bi-material sample: a soft circular
isotropic inclusion (Young’s modulus 100 GPa, Poisson ratio 0.15) is embedded in a stiff
isotropicmatrix (Young’smodulus 210GPa, Poisson ratio 0.3). Two types of identification
mesh are used (Fig. 2):

• An identification mesh perfectly consistent with the material domains (two iden-
tification domains D1 and D2 corresponding respectively to the inclusion and the
matrix);

• An identification mesh that does not match the material heterogeneity by splitting it
into 400 domains Dj with j = 1–400.

Only one load level is used in the identification procedure. The typical computing time
on aZ820workstation (Intel Xeon 2.40GHz) computer is about 5mins for ameasurement
mesh involving 1448 linear elements. For the first identification, Fig. 3a shows a good
prediction of the parameter sets with a relative error of about 1% on the Young’s modulus.
In this case, the shape functionmismatch error is small since themeshes used for the direct
computation (considered as the “ground truth”) and for the identification are identical.

Fig. 2 Geometry for the identification: a two identification domains respecting the material heterogeneity
and b 400 identification domains that do not respect the material heterogeneity
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Fig. 3 Identified Young modulus distributions: a 2 “consistent” identification domains and b 400
non-consistent identification domains

Fig. 4 Distribution of transversal stress fields: a “measured” stress field σm
yy (from FE simulation), b identified

stress field σ c
yy using 2 “consistent” identification domains and c identified stress field σ c

yy using 400
non-consistent identification domains

Figure 4b shows that the identified stress fields are very close to the reference values.
The maximum error is about 4% of the maximum stress (295 MPa) and is located in the
zones of maximum stress gradient.
For the second identification (involving 400 non-consistentmaterial domains), the posi-

tion of the inclusion is very well identified (see Fig. 3b).
This result shows the ability of the method to identify heterogeneous elastic properties

without any a priori knowledge of the phase distribution. The error increases with the
stress and strain gradientswhere the shape functionmismatch error is themost significant.
Furthermore, it can be observed that the error on the identified Young’s modulus is
concentrated above and under the inclusion where the deformation energy is minimal.
This error is also important on the material domains intersecting the actual boundary
between the inclusion and the matrix where the method tends to average the elastic
constants of the twophases. The computational timedepends on the number of unknowns
which increases here from4 in the previous case up to 800 in the case of 400non-consistent
material domains. It goes up to 8mins on the same computer for the elastic identification.
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a b

Fig. 5 a Geometry and identification domains and b the 5 load steps

Elastoplastic identification

The second test (specimen 2) concerns a standard tensile test performed at constant
velocity on an isotropic elastoplastic material (Young’s modulus 210 GPa, Poisson ratio
0.3, yield stress 300 MPa and hardening modulus 1 GPa) (Fig. 5a).
The material parameters are identified using data associated with 5 load steps (2 steps

in the elastic domain, and 3 in the plastic domain) (Fig. 5b). Although the material is
homogeneous, the identification is made on 4 material domains (Fig. 5a) in order to
demonstrate the ability of the procedure to identify the elastoplastic properties in several
domains.
Identified parameters obtained from each zone are collected in Table 1. As can be

noticed, the identified parameter values are very close to the reference values and are very
similar from one identification domain to another.
The reference (“measured”) stress fields presented in Fig. 6a are obtained by solving

the direct problem whereas the stress fields presented in Fig. 6b are obtained by the
inverse method. We notice a close similarity between the distributions and the orders
of magnitude for this stress component. The procedure converges in few iterations. The
identification of the parameters and of the given stress fields is very accurate.
In this case, differentmesheswereused for thedirect computation and the identification:

the former is triangular and the latter is quadrangular (see Fig. 6a, b). The mesh used to
describe the “measured” displacement field (not represented here) is quadrangular but
similar in size to the one used for the direct simulation thus limiting the bias introduced in
the description of the “measured” displacement. Themesh used to compute the stress field
is coarser than the one used for the direct simulation thus introducing a shape function
mismatch.Here, the fact that the identification results are very close to the reference values
show that the shape functionmismatches is too small to generate significant discrepancies
in the identification. The typical computing time on the same computer is about 6 mins
for a measurement mesh involving 1448 linear elements. This computing time depends
on the number of the load step used for the elasto-plastic identification.
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Table 1 Identified parameters: specimen 2

Parameters Reference values Z1 Z2 Z3 Z4

E (GPa) 210 209.80 210.05 210.12 209.86

Relative difference (%) 0.09 0.02 0.05 0.06

v 0.3 0.2998 0.3002 0.3001 0.2998

Relative difference (%) 0.06 0.06 0.03 0.06

k (GPa) 1 1.032 0.998 1.015 0.997

Relative difference (%) 3.20 0.20 1.5 0.30

σ0 (MPa) 300 298.49 299.51 299.38 299.60

Relative difference (%) 0.50 0.16 0.20 0.13

Sensitivity to the initial set of parameters

To assess the sensitivity of the identification results to initial values, different starting
values of the parameters are selected for the procedure. The identification is performed
on specimen 2 and we check the number of iterations required for the procedure to
converge.
Table 2 shows that the identified parameters are very stable with respect to the chosen

initial values. As mentioned earlier, the initial set of parameters is only used for the elastic
identification of the first load step. No ad hoc initiation is required for the identification
of plastic parameters.

Fig. 6 Distribution of transversal stress fields: a σm
yy from a FE simulation, b σ c

yy the identified and c von Mises
norm of the absolute error on stress
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Table2 Sensitivity to initial set of parameters: specimen 2

Parameters E (GPa) v k (GPa) σ0 (MPa)

Initial value 1 1.00E−09 1.00E−09 1.00E−09 1.00E−09

Identified values 209.74 0.3002 1.032 300.10

Number of iterations 7 7 8 8

Initial value 2 155.00 0.15 0.50 150.00

Identified values 209.77 0.3003 1.031 300.10

Number of iterations 7 7 6 6

Initial value 3 420.00 0.60 2.00 600.00

Identified values 209.84 0.3003 1.033 300.09

Number of iterations 8 8 6 6

Table 3 Sensitivity to noise: specimen 2

Parameters Reference values Random noise
amplitude 0.1 ∗ γ

Random noise
amplitude γ

Random noise
amplitude 2 ∗ γ

E (GPa) 210 209.79 206.96 189.56

Relative difference (%) 0.11 1.45 9.73

v 0.3 0.3000 0.3001 0.2324

Relative difference (%) 0 0.03 23.53

k (GPa) 1 0.998 0.998 0.963

Relative difference (%) 0.20 0.20 3.70

σ0 (MPa) 300 300.17 299.84 300.46

Relative difference (%) 0.06 0.05 0.15

Sensitivity to experimental noise

The robustness of the CEGM approach with respect to noise is evaluated using a set
of simulated displacement fields disturbed by a white noise at different levels. For this
purpose, we perform an identification on a homogeneous isotropic material submitted
to a tensile test. The reference FE-displacement fields are corrupted by a white Gaussian
noisewith the amplitudeγ . Thenoise level is chosen toγ = 0.01pixelwhile themaximum
displacement is 1.5 pixels. This value was chosen to be consistent with our classical test
configurations: image noise σn ≈ 0.54 grey levels (obtained using a HR16070MFLGEC
camera, and a 16-bits acquisitionmode), coarse speckle (speckle dots with 3-pixels radius,
corresponding to an average image gradient∇I2 ≈ 90), and 20-pixels subset size (d). This
value is consistent with the value σn/

(
d
√

∇I2
)

≈ 0.003 given in [27].

It can be seen that identification of all parameters is stable in presence of noise. As
expected, the elastic constants are more corrupted by the noise level as, for a fixed noise
level, the signal to noise ratio is smaller for the elastic identification than for the plastic
one. Furthermore, the Poisson ratio is more sensitive to measurement noise.
The results presented in Table 3 are obtained using a stress identification mesh equal to

the mesh used to obtain the direct problem and also without filtering the noise. But in our
minimization algorithm we have several types of meshes that can have equal or different
sizes. In order to reduce the problem of measurement noise in the identification while
maintaining a good description of the stress gradients, these meshes are not identical but
they are imbricated i.e. the mesh of the plastic identification is a subdivision of the elastic
meshes.
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Conclusions
In the present work, we use full-field measurements and the constitutive equation gap
method to identify the spatial distribution of a set of material parameters associated with
a J2 elastoplastic behaviour. The identification approach is based on the minimization of
the CEG energy norm and allows the identification of a set of unknown parameters in any
chosen zonewithout any prior knowledge of the distribution of the spatial heterogeneities.
We validate this approach on different materials in different situations (heterogeneous

elastic materials, homogeneous plastic material involving heterogeneous stress fields).
These different numerical tests give results which are in good agreement with the imposed
value obtained using the direct problem. The identification accuracy strongly depends on
the accuracy of the input data (measured load and displacement) and of the representa-
tiveness of the model (geometry, boundary conditions, material heterogeneity, behaviour
law, stress distribution ...). Direct numerical simulations are performed in order to get
the data required for the identification in a “perfectly controlled” situation. The results
of these simulations are considered as a “ground truth” (thus neglecting the simulation
error). The sensitivity of the identification results with respect to different parameters are
investigated by perturbing the numerical solution. To restrict the scope of the study, we
have focused here on three contributions: the measured displacement error, the shape
function mismatch in the stress distribution and the description of the material hetero-
geneity.We have verified that typical error levels associatedwith the ultimate error regime
of the displacement measurement led to relative errors smaller than 5% on the identifica-
tion results (the elastic parameters being more sensitive to noise due to smaller signal to
noise ratio). As expected, the shape function mismatch error is larger in stress concentra-
tion areas, and the identification error is more important in stress concentration zones.
Special attention should be taken to choose a material mesh consistent with the phase
distribution and to define a stress mesh fine enough to catch the stress concentrations.
Finally, we have verified that the identification results are not affected by the choice of the
initial guess on the elastic parameters required to start the procedure.
Future works will focus on the use of experimental data and the improvement of the

method to deal with respect to multi-linear problems.
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