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Abstract

When a mathematical or computational model is used to analyse some system, it is
usual that some parameters resp. functions or fields in the model are not known, and
hence uncertain. These parametric quantities are then identified by actual observations
of the response of the real system. In a probabilistic setting, Bayes’s theory is the proper
mathematical background for this identification process. The possibility of being able
to compute a conditional expectation turns out to be crucial for this purpose. We show
how this theoretical background can be used in an actual numerical procedure, and
shortly discuss various numerical approximations.
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Background
The fitting of parameters resp. functions or fields—these will all be for the sake of brevity
be referred to as parameters—in a mathematical computational model is usually denoted
as an inverse problem, in contrast to predicting the output or state resp. response of the
system given certain inputs, which is called the forward problem. In the inverse problem,
the response of the model is compared to the response of the system. The system may be
a real world system, or just another computational model—usually a more complex one.
One then tries in various ways to match the model response with the system response.
Typical deterministic procedures include suchmethods as minimising the mean square

error (MMSE), leading to optimisation problems in the search of optimal parameters.
As the inverse problem is typically ill-posed—the observations do not contain enough
information to uniquely determine the parameters—some additional information has to
be added to select a unique solution. In the deterministic setting one then typically invokes
additional ad-hoc procedures like Tikhonov-regularisation [3,4,28,29].
In a probabilistic setting (e.g. [10,27] and references therein) the ill-posed problem

becomes well-posed (e.g. [26]). This is achieved at a cost, though. The unknown parame-
ters are considered as uncertain, andmodelled as randomvariables (RVs).The information
added is hence the prior probability distribution. This means on one hand that the result
of the identification is a probability distribution, and not a single value, and on the other
hand the computational work may be increased substantially, as one has to deal with RVs.
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That the result is a probability distributionmay be seen as additional information though,
as it offers an assessment of the residual uncertainty after the identification procedure,
something which is not readily available in the deterministic setting. The probabilistic set-
ting thus can be seen as modelling our knowledge about a certain situation—the value of
the parameters—in the language of probability theory, and using the observation to update
our knowledge, (i.e. the probabilistic description) by conditioning on the observation.
The key probabilistic background for this is Bayes’s theorem in the formulation of

Laplace [10,27]. It is well known that the Bayesian update is theoretically based on the
notion of conditional expectation (CE) [1]. Here we take an approach which takes CE not
only as a theoretical basis, but also as a basic computational tool. This may be seen as
somewhat related to the “Bayes linear” approach [6,13], which has a linear approximation
of CE as its basis, as will be explained later.
In many cases, for example when tracking a dynamical system, the updates are per-

formed sequentially step-by-step, and for the next step one needs not only a probability
distribution in order to perform the next step, but a random variable which may be
evolved through the state equation. Methods on how to transform the prior RV into the
one which is conditioned on the observation will be discussed as well [18]. This approach
is very different to the very frequently used one which refers to Bayes’s theorem in terms
of densities and likelihood functions, and typically employs Markov-chain Monte Carlo
(MCMC) methods to sample from the posterior (see e.g. [9,16,24]).

Mathematical set-up
Let us start with an example to have a concrete idea of what the whole procedure is about.
Imagine a system described by a diffusion equation, e.g. the diffusion of heat through a
solid medium, or even the seepage of groundwater through porous rocks and soil:

∂υ̃

∂t
(x, t) = ˙̃υ(x, t) = ∇ · (κ(x, υ̃)∇υ̃(x, t)) + η(x, t), (1)

υ̃(x, 0) = υ̃0(x) plus b.c. (2)

Here x ∈ G is a spatial coordinate in the domain G ⊂ R
n, t ∈ [0, T ] is the time, υ̃ a scalar

function describing the diffusing quantity, κ the (possibly non-linear) diffusion tensor,
η external sources or sinks, and ∇ the Nabla operator. Additionally assume appropriate
boundary conditions so that Eq. (1) is well-posed.Now, as often in such situations, imagine
that we do not know the initial conditions υ̃0 in Eq. (2) precisely, nor the diffusion tensor
κ , and maybe not even the driving source η, i.e. there is some uncertainty attached as to
what their precise values are.

Data model

A more abstract setting which subsumes Eq. (1) is to view υ̃(t) := υ̃(·, t) as an element of
a Hilbert-space (for the sake of simplicity) V . In the particular case of Eq. (1) one could
take V = H1

E(G), a closed subspace of the Sobolev space H1(G) incorporating the essential
boundary conditions. Hence we may view Eqs. (1) and (2) as an example of

dυ̃

dt
(t) = ˙̃υ(t) = AV (q; υ̃(t)) + η(q; t), υ̃(0) = υ̃0(q) ∈ V , t ∈ [0, T ]. (3)

Here AV : Q × V → V is a possibly non-linear operator in υ̃ ∈ V , and q ∈ Q are the
parameters (like κ , υ̃0, or η, which more accurately would be described as functions of q),
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where we assume for simplicity again that Q is some Hilbert space. Both AV , υ̃0, and
η could involve some noise, so that one may view Eq. (3) as an instance of a stochastic
evolution equation. This is our model of the system generating the observed data, which
we assume to be well-posed.
Hence assume further that wemay observe a function Ŷ (q; υ̃(t)) of the state υ̃(t) and the

parameters q, i.e. Ŷ : Q × V → Y , where we assume that Y is a Hilbert space. To make
things simple, assume additionally that we observe Ŷ (q; υ̃(t)) at regular time intervals
tn = n · 1t, i.e. we observe yn = Ŷ (q; υ̃n), where υ̃n := υ̃(tn). Denote the solution operator
ϒ of Eq. (3) as

υ̃n+1 = ϒ(tn+1, q, υ̃n, tn, η), (4)

advancing the solution from tn to tn+1. Hence we are observing

ŷn+1 = ĥ(Ŷ (q;ϒ(tn+1, q, υ̃n, tn, η)), vn), (5)

where some noise vn—inaccuracy of the observation—has been included, and ĥ is an
appropriate observation operator. A simple example is the often assumed additive noise

ĥ(y, v) := y + SV (υ̃)v,

where v is a random vector, and for each υ̃ , SV (υ̃) is a bounded linear map to Y .

Identification model

Now that the model generating the data has been described, it is the appropriate point to
introduce the identification model. Similarly as before in Eq. (3), we have a model

du
dt

(t) = u̇(t) = A(q;u(t)) + η(q; t), u(0) = u0(q) ∈ U , t ∈ [0, T ], (6)

which depends on the same parameters q as in Eq. (3), to be used for the identification,
which we shall only write in its abstract from. Hence we assume that we can actually
integrate Eq. (6) from tn to tn+1 with its solution operator U

un+1 = U (tn+1, q, un, tn, η). (7)

Observe that the two spaces V in Eq. (3) and U in Eq. (6) are not the same, as in general
we do not know υ̃ ∈ V , we only have observations y ∈ Y .
As later not only the state u ∈ U in Eq. (6) has to be identified, but also the parameters

q, and the identification may happen sequentially, i.e. our estimate of q will change from
step n to step n+1, we shall introduce an “extended” state vector x = (u, q) ∈ X := Q×U
and describe the change from n to n + 1 by

xn+1 = (un+1, qn+1) = f̂ (xn) := (U (tn+1, qn, un, tn, η), qn). (8)

Let us explicitly introduce a noisew ∈ W to cover the stochastic contribution ormodelling
errors between Eqs. (6) and (3), so that we set

xn+1 = f (xn, wn), (9)

for example

f (x, w) = f̂ (x) + SW (x)w,

where w ∈ W is the random vector, and SW (x) ∈ L (W ,X ) is for each x ∈ X a bounded
linear map fromW to X .
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To deal with the extended state, we shall define the identification or predicted observa-
tion operator as

yn+1 = h(xn, vn) = H (xn+1, vn) = H (f (xn, wn), vn), (10)

where thenoise vn—the sameas inEq. (5), ourmodel of the inaccuracyof theobservation—
has been included. A simple example with additive noise is

h(xn, vn) := Y (q;U (tn+1, qn, un, tn, η)) + SV (xn)vn,

where v ∈ V is the random vector, and SV (x) ∈ L (V ,X ) is for each x ∈ X a bounded
linearmap fromV toX . ThemappingY : Q×U → Y is similar to themap Ŷ : Q×V → Y
in the “Data model” section, it predicts the “true” observation without noise vn. Eq. (9)
for the time evolution of the extended state and Eq. (10) for the observation are the basic
building blocks for the identification.

Synopsis of Bayesian estimation
There aremany accounts of this, and this synopsis is just for the convenience of the reader
and to introduce notation. Otherwise we refer to e.g. [6,10,13,27], and in particular for
the rôle of conditional expectation (CE) to our work [18,24].
The idea is that the observation ŷ from Eq. (5) depends on the unknown parameters

q, which ideally should equal yn from Eq. (10), which in turn both directly and through
the state x = (u(q), q) in Eq. (9) depends also on the parameters q, should be equal,
and any difference should give an indication on what the “true” value of q should be.
The problem in general is—apart from the distracting errors w and v—that the mapping
q �→ y = Y (q;u(q)) is in general not invertible, i.e. y does not contain information to
uniquely determine q, or there are many q which give a good fit for ŷ. Therefore the
inverse problem of determining q from observing ŷ is termed an ill-posed problem.
The situation is a bit comparable to Plato’s allegory of the cave, where Socrates compares

the process of gaining knowledge with looking at the shadows of the real things. The
observations ŷ are the “shadows” of the “real” things q and υ̃, and from observing the
“shadows” ŷ we want to infer what “reality” is, in a way turning our heads towards it.
We hence want to “free” ourselves from just observing the “shadows” and gain some
understanding of “reality”.
One way to deal with this difficulty is to measure the difference between observed ŷn

and predicted system output yn and try to find parameters qn such that this difference
is minimised. Frequently it may happen that the parameters which realise the minimum
are not unique. In case one wants a unique parameter, a choice has to be made, usually
by demanding additionally that some norm or similar functional of the parameters is
small as well, i.e. some regularity is enforced. This optimisation approach hence leads to
regularisation procedures [3,4,28,29].
Here we take the view that our lack of knowledge or uncertainty of the actual value

of the parameters can be described in a Bayesian way through a probabilistic model
[10,27]. The unknown parameter q is then modelled as a random variable (RV)—also
called the prior model—and additional information on the system through measurement
or observation changes the probabilistic description to the so-called posterior model. The
second approach is thus a method to update the probabilistic description in such a way
as to take account of the additional information, and the updated probabilistic descrip-
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tion is the parameter estimate, including a probabilistic description of the remaining
uncertainty.
It is well-known that such a Bayesian update is in fact closely related to conditional

expectation [1,6,10,18,24], and this will be the basis of the method presented. For these
and other probabilistic notions see for example [22] and the references therein. As the
Bayesian updatemay be numerically very demanding, we show computational procedures
to accelerate this update through methods based on functional approximation or spectral
representation of stochastic problems [17,18]. These approximations are in the simplest
case known as Wiener’s so-called homogeneous or polynomial chaos expansion, which
are polynomials in independent Gaussian RVs—the “chaos”—and which can also be used
numerically in a Galerkin procedure [17,18].
Although the Gauss-Markov theorem and its extensions [15] are well-known, as well as

its connections to the Kalman filter [7,11]—see also the recent Monte Carlo or ensemble
version [5]—the connection to Bayes’s theorem is not often appreciated, and is sketched
here. This turns out to be a linearised version of conditional expectation.
Since the parameters of themodel to be estimated are uncertain, all relevant information

may be obtained via their stochastic description. In order to extract information from
the posterior, most estimates take the form of expectations w.r.t. the posterior, i.e. a
conditional expectation (CE). These expectations—mathematically integrals, numerically
to be evaluated by some quadrature rule—may be computed via asymptotic, deterministic,
or sampling methods by typically computing first the posterior density. As we will see,
the posterior density does not always exist [23]. Here we follow our recent publications
[18,21,24] and introduce a novel approach, namely computing the CE directly and not via
the posterior density [18]. This way all relevant information from the conditioning may
be computed directly. In addition, we want to change the prior, represented by a random
variable (RV), into a new random variable which has the correct posterior distribution.
We will discuss how this may be achieved, and what approximations one may employ in
the computation.
To be a bit more formal, assume that the uncertain parameters are given by

x : Ω → X as a RV on a probability space (Ω ,A,P), (11)

where the set of elementary events is Ω , A a σ -algebra of measurable events, and P a
probability measure. The expectation corresponding to P will be denoted by E (), e.g.

Ψ̄ := E (Ψ ) :=
∫

Ω

Ψ (x(ω))P(dω),

for any measurable function Ψ of x.
Modelling our lack-of-knowledge about q in a Bayesian way [6,10,27] by replacing them

with random variables (RVs), the problem becomes well-posed [26]. But of course one is
looking now at the problem of finding a probability distribution that best fits the data; and
one also obtains a probability distribution, not just one value q. Here we focus on the use
of procedures similar to a linear Bayesian approach [6] in the framework of “white noise”
analysis.
As formally q is a RV, so is the state xn of Eq. (9), reflecting the uncertainty about the

parameters and state of Eq. (3). From this follows that also the prediction of the measure-
ment yn Eq. (10) is a RV; i.e. we have a probabilistic description of the measurement.
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The theorem of Bayes and Laplace

Bayes original statement of the theorem which today bears his name was only for a very
special case. The form which we know today is due to Laplace, and it is a statement about
conditional probabilities. A good account of the history may be found in [19].
Bayes’s theorem is commonly accepted as a consistent way to incorporate new knowl-

edge into a probabilistic description [10,27]. The elementary textbook statement of the
theorem is about conditional probabilities

P(Ix|My) = P(My|Ix)
P(My)

P(Ix), if P(My) > 0, (12)

where Ix ⊂ X is some subset of possible x’s on which we would like to gain some
information, and My ⊂ Y is the information provided by the measurement. The term
P(Ix) is the so-called prior, it is what we know before the observation My. The quantity
P(My|Ix) is the so-called likelihood, the conditional probability of My assuming that
Ix is given. The term P(My) is the so called evidence, the probability of observing My
in the first place, which sometimes can be expanded with the law of total probability,
allowing to choose between different models of explanation. It is necessary to make the
right hand side of Eq. (12) into a real probability—summing to unity—and hence the term
P(Ix|My), the posterior reflects our knowledge on Ix after observing My. The quotient
P(My|Ix)/P(My) is sometimes termed the Bayes factor, as it reflects the relative change
in probability after observingMy.
This statement Eq. (12) runs into problems if the set observations My has vanishing

measure,P(My) = 0, as is the casewhenwe observe continuous randomvariables, and the
theoremwould have to be formulated in densities, or more precisely in probability density
functions (pdfs). But the Bayes factor then has the indeterminate form 0/0, and some form
of limiting procedure is needed. As a sign that this is not so simple—there are different
and inequivalent forms of doing it—one may just point to the so-called Borel-Kolmogorov
paradox. See [23] for a thorough discussion.
There is one special case where something resembling Eq. (12) may be achieved with

pdfs, namely if y and x have a joint pdf πy,x(y, x). As y is essentially a function of x, this is
a special case depending on conditions on the error term v. In this case Eq. (12) may be
formulated as

πx|y(x|y) = πy,x(y, x)
Zs(y)

, (13)

where πx|y(x|y) is the conditional pdf, and the “evidence” Zs (from German
Zustandssumme (sum of states), a term used in physics) is a normalising factor such
that the conditional pdf πx|y(·|y) integrates to unity

Zs(y) =
∫

Ω

πy,x(y, x(ω))P(dω).

The joint pdf may be split into the likelihood density πy|x(y|x) and the prior pdf πx(x)

πy,x(y, x) = πy|x(y|x)πx(x),

so that Eq. (13) has its familiar form ([27] Ch. 1.5)

πx|y(x|y) = πy|x(y|x)
Zs(y)

πx(x). (14)

These terms are in direct correspondencewith those in Eq. (12) and carry the same names.
Once one has the conditional measure P(·|My) or even a conditional pdf πx|y(·|y), the
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conditional expectation (CE)E
(·|My

)
may be defined as an integral over that conditional

measure resp. the conditional pdf. Thus classically, the conditionalmeasure or pdf implies
the conditional expectation:

E
(
Ψ |My

)
:=

∫
X

Ψ (x)P(dx|My)

for any measurable function Ψ of x.
Please observe that the model for the RV representing the error v(ω) determines the

likelihood functions P(My|Ix) resp. the existence and form of the likelihood density
πy|x(·|x). In computations, it is here that the computational model Eqs. (6) and (10) is
needed to predict the measurement RV y given the state and parameters x as a RV.
Most computational approaches determine the pdfs, but we will later argue that it may

be advantageous to work directly with RVs, and not with conditional probabilities or
pdfs. To this end, the concept of conditional expectation (CE) and its relation to Bayes’s
theorem is needed [1].

Conditional expectation

To avoid the difficulties with conditional probabilities like in the Borel-Kolmogorov para-
dox alluded to in the “The theorem of Bayes and Laplace” section, Kolmogorov himself—
when he was setting up the axioms of the mathematical theory probability—turned the
relation between conditional probability or pdf and conditional expectation around, and
defined as a first and fundamental notion conditional expectation [1,23].
It has to be defined not with respect to measure-zero observations of a RV y, but w.r.t

sub-σ -algebrasB ⊂ A of the underlying σ -algebra A. The σ -algebra may be loosely seen
as the collection of subsets ofΩ onwhich we canmake statements about their probability,
and for fundamental mathematical reasons in many cases this is not the set of all subsets
of Ω . The sub-σ -algebraBmay be seen as the sets on which we learn something through
the observation.
The simplest—although slightly restricted—way to define the conditional expectation

[1] is to just consider RVs with finite variance, i.e. the Hilbert-space

S := L2(Ω ,A,P) := {r : Ω → R : r measurable w.r.t. A,E
(|r|2) < ∞}.

IfB ⊂ A is a sub-σ -algebra, the space

SB := L2(Ω ,B,P) := {r : Ω → R : r measurable w.r.t. B,E
(|r|2) < ∞} ⊂ S

is a closed subspace, and hence has a well-defined continuous orthogonal projection
PB : S → SB. The conditional expectation (CE) of a RV r ∈ S w.r.t. a sub-σ -algebra B
is then defined as that orthogonal projection

E (r|B) := PB(r) ∈ SB. (15)

It can be shown [1] to coincide with the classical notion when that one is defined, and
the unconditional expectation E () is in this view just the CE w.r.t. the minimal σ -algebra
B = {∅,Ω}. As the CE is an orthogonal projection, it minimises the squared error

E
(|r − E (r|B) |2) = min{E (|r − r̃|2) : r̃ ∈ SB}, (16)

from which one obtains the variational equation or orthogonality relation

∀r̃ ∈ SB : E (r̃(r − E (r|B))) = 0; (17)
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and one has a form of Pythagoras’s theorem

E
(|r|2) = E

(|r − E (r|B) |2) + E
(|E (r|B) |2) .

The CE is therefore a form of a minimum mean square error (MMSE) estimator.
Given the CE, one may completely characterise the conditional probability, e.g. for

A ⊂ Ω , A ∈ B by

P(A|B) := E (χA|B) ,

where χA is the RV which is unity iff ω ∈ A and vanishes otherwise—the usual charac-
teristic function, sometimes also termed an indicator function. Thus if we know P(A|B)
for each A ∈ B, we know the conditional probability. Hence having the CE E (·|B) allows
one to know everything about the conditional probability; the conditional or posterior
density is not needed. If the prior probability was the distribution of some RV r, we know
that it is completely characterised by the prior characteristic function—in the sense of
probability theory—ϕr(s) := E (exp(irs)). To get the conditional characteristic function
ϕr|B(s) = E (exp(irs)|B), all one has to do is use the CE instead of the unconditional
expectation. This then completely characterises the conditional distribution.
In our case of an observation of a RV y, the sub-σ -algebraB will be the one generated

by the observation y = h(x, v), i.e. B = σ (y), these are those subsets of Ω on which we
may obtain information from the observation. According to the Doob-Dynkin lemma the
subspace Sσ (y) is given by

Sσ (y) := {r ∈ S : r(ω) = φ(y(ω)),φ measurable} ⊂ S , (18)

i.e. functions of the observation. This means intuitively that anything we learn from an
observation is a function of the observation, and the subspace Sσ (y) ⊂ S is where the
information from the measurement is lying.
Observe that the CE E (r|σ (y)) and conditional probability P(A|σ (y))—which we will

abbreviate to E (r|y), and similarly P(A|σ (y)) = P(A|y)—is a RV, as y is a RV. Once an
observation has been made, i.e. we observe for the RV y the fixed value ŷ ∈ Y , then—for
almost all ŷ ∈ Y—E (r|ŷ) ∈ R is just a number—the posterior expectation, and P(A|ŷ) =
E (χA|ŷ) is the posterior probability. Often these are also termed conditional expectation
and conditional probability, which leads to confusion. We therefore prefer the attribute
posterior when the actual observation ŷ has been observed and inserted in the expressions.
Additionally, from Eq. (18) one knows that for some function φr—for each RV r it is a
possibly different function—one has that

E (r|y) = φr(y) and E (r|ŷ) = φr(ŷ) (19)

In relation to Bayes’s theorem, one may conclude that if it is possible to compute the
CE w.r.t. an observation y or rather the posterior expectation, then the conditional and
especially the posterior probabilities after the observation ŷ may as well be computed,
regardless whether joint pdfs exist or not. We take this as the starting point to Bayesian
estimation.
The conditional expectation has been formulated for scalar RVs, but it is clear that the

notion carries through to vector-valued RVs in a straightforward manner, formally by
seeing a—let us say—Y-valued RV as an element of the tensor Hilbert space Y = Y ⊗ S
[8], as

Y = Y ⊗ S ∼= L2(Ω ,A,P;Y),
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the RVs in Y with finite total variance

‖|ỹ|‖2Y =
∫

Ω

‖ỹ(ω)‖2Y P(dω) < ∞.

Here ‖ỹ(ω)‖2Y = 〈ỹ(ω), ỹ(ω)〉Y is the norm squared on the deterministic component Y
with inner product 〈·, ·〉Y ; and the total L2-norm of an elementary tensor y ⊗ r ∈ Y ⊗ S
with y ∈ Y and r ∈ S can also be written as

‖|y ⊗ r|‖2Y = 〈〈y ⊗ r, y ⊗ r〉〉Y = ‖y‖2Y‖r‖2S = 〈y, y〉Y 〈r, r〉S ,
where 〈r, r〉S = ‖r‖2S := E

(|r|2) is the usual inner product of scalar RVs.
The CE onY is then formally given byEY (·|B) := IY ⊗E (·|B), where IY is the identity

operator on Y . This means that for an elementary tensor y ⊗ r ∈ Y ⊗ S one has

EY (y ⊗ r|B) = y ⊗ E (r|B) .

The vector valued conditional expectation

EY (·|B) = IY ⊗ E (·|B) : Y = Y ⊗ S → Y
is also an orthogonal projection, but in Y , for simplicity also denoted by E (·|B) = PB
when there is no possibility of confusion.

Constructing a posterior random variable
We recall the equations governing our model Eqs. (9) and (10), and interpret them now
as equations acting on RVs, i.e. for ω ∈ Ω :

x̂n+1(ω) = f (xn(ω), wn(ω)), (20)

yn+1(ω) = h(xn(ω), vn(ω)), (21)

where one may now see the mappings f : X × W → X and h : X × V → Y acting
on the tensor Hilbert spaces of RVs with finite variance, e.g. Y := Y ⊗ S with the inner
product as explained in “Conditional expectation” section; and similarly forX := X ⊗S
resp.W and V .

Updating random variables

We now focus on the step from time tn to tn+1. Knowing the RV xn ∈ X , one predicts
the new state x̂n+1 ∈ X and the measurement yn+1 ∈ Y . With the CE operator from the
measurement prediction yn+1 in Eq. (21)

E (Ψ (xn+1)|σ (yn+1)) = φΨ (yn+1), (22)

and the actual observation ŷn+1 onemay then compute the posterior expectation operator

E (Ψ (xn+1)|ŷn+1) = φΨ (ŷn+1). (23)

This has all the information about the posterior probability.
But to then go on from tn+1 to tn+2 with the Eqs. (20) and (21), one needs a new RV

xn+2 which has the posterior distribution described by the mappings φΨ (ŷn+1) in Eq. (23).
Bayes’s theorem only specifies this probabilistic content. There are many RVs which have
this posterior distribution, and we have to pick a particular representative to continue the
computation. We will show a method which in the simplest case comes back to MMSE.
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Here it is proposed to construct this new RV xn+1 from the predicted x̂n+1 in Eq. (20)
with a mapping, starting from very simple ones and getting ever more complex. For the
sake of brevity of notation, the forecast RV will be called xf = x̂n+1, and the forecast
measurement yf = yn+1, and we will denote the measurement just by ŷ = ŷn+1. The RV
xn+1 we want to construct will be called the assimilated RV xa = xn+1—it has assimilated
the new observation ŷ = ŷn+1. Hence what we want is a new RV which is an update of the
forecast RV xf

xa = B(xf , yf , ŷ) = xf + Ξ (xf , yf , ŷ), (24)

with a Bayesian update map B resp. a change given by the innovation map Ξ . Such
a transformation is often called a filter—the measurement ŷ is filtered to produce the
update.

Correcting the mean

We take first the task to give the new RV the correct posteriormean x̄a = E (xa|ŷ), i.e. we
take Ψ (x) = x in Eq. (23). Remember that according to Eq. (15) E

(
xa|σ (yf )

) = φxf (yf ) =:
φx(yf ) is an orthogonal projection Pσ (yf )(xf ) from X = X ⊗ S onto X∞ := X ⊗ S∞,
where S∞ := Sσ (y) = L2(Ω , σ (yf ),P). Hence there is an orthogonal decomposition

X = X ⊗ S = X∞ ⊕ X ⊥∞ = (X ⊗ S∞) ⊕ (X ⊗ S⊥∞), (25)

xf = Pσ (yf )(xf ) + (IX − Pσ (yf ))(xf ) = φx(yf ) + (xf − φx(yf )). (26)

As Pσ (yf ) = E
(·|σ (yf )) is a projection, one sees from Eq. (26) that the second term has

vanishing CE for any measurement ŷ:

E
(
xf − φx(yf )|σ (yf )

) = Pσ (yf )(IX − Pσ (yf ))(xf ) = 0. (27)

One may view this also in the following way: From the measurement ya resp. ŷ we only
learn something about the subspaceX∞.Hencewhen themeasurement comes,we change
the decomposition Eq. (26) by only fixing the component φx(yf ) ∈ X∞, and leaving the
orthogonal rest unchanged:

xa,1 = φx(ŷ) + (xf − φx(yf )) = xf + (φx(ŷ) − φx(yf )). (28)

Observe that this is just a linear translation of the RV xf , i.e. a very simple map B in
Eq. (24). From Eq. (27) follows that

x̄a,1 = E (xa,1|ŷ) = φx(ŷ) = E (xa|ŷ) ,
hence the RV xa,1 from Eq. (28) has the correct posterior mean.
Observe that according to Eq. (27) the term x⊥ := (xf − φx(yf )) in Eq. (28) is a zero

mean RV, hence the covariance and total variance of xa,1 is given by

cov(xa,1) = E (x⊥ ⊗ x⊥) = E

(
x⊗2
⊥

)
=: C1, (29)

var(xa,1) = E
(‖x⊥(ω)‖2X

) = tr(cov(xa,1)). (30)

Correcting higher moments

Here let us just describe two small additional steps: we take Ψ (x) = ‖x − φx(ŷ)‖2X in
Eq. (23), and hence obtain the total posterior variance as

var(xa) = E
(‖xf − φx(yf )‖2X |ŷ) = φx−x̄(ŷ). (31)
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Now it is easy to correct Eq. (28) to obtain

xa,t = φx(ŷ) + var(xa)
var(xa,1)

(xf − φx(yf )), (32)

a RV which has the correct posterior mean and the correct posterior total variance

var(xa,t ) = var(xa).

Observe that this is just a linear translation and partial scaling of the RV xf , i.e. still a very
simple map B in Eq. (24).
With more computational effort, one may choose Ψ (x) = (x − φx(ŷ))⊗2 in Eq. (23), to

obtain the covariance of xa:

cov(xa) = E
(
(x − φx(ŷ))⊗2|ŷ) = φ⊗2(ŷ) =: Ca. (33)

Instead of just scaling the RV as in Eq. (32), one may now take

xa,2 = φx(ŷ) + BaB1
−1(xf − φx(yf )), (34)

where B1 is any operator “square root” that satisfies B1B1
∗ = C1 in Eq. (29), and similarly

BaBa
∗ = Ca in Eq. (33). One possibility is the real square root—as C1 and Ca are positive

definite—B1 = C1/2
1 , but computationally a Cholesky factor is usually cheaper. In any

case, no matter which “square root” is chosen, the RV xa,2 in Eq. (34) has the correct
posterior mean and the correct posterior covariance. Observe that this is just an affine
transformation of the RV xf , i.e. still a fairly simple map B in Eq. (24).
By combining further transport maps [20] it seems possible to construct a RV xa which

has the desired posterior distribution to any accuracy. This is beyond the scope of the
present paper, and is ongoing work on how to do it in the simplest way. For the following,
we shall be content with the update Eq. (28) in “Correcting the mean” section.

The Gauss-Markov-Kalman filter (GMKF)
It turned out that practical computations in the context of Bayesian estimation can be
extremely demanding, see [19] for an account of the history of Bayesian theory, and
the break-throughs required in computational procedures to make Bayesian estimation
possible at all for practical purposes. This involves both the Monte Carlo (MC) method
and theMarkov chainMonte Carlo (MCMC) sampling procedure. Onemay have gleaned
this also already from the “Constructing a posterior random variable” section.
To arrive at computationally feasible procedures for computationally demanding mod-

els Eqs. (20) and (21), whereMCMCmethods are not feasible, approximations are neces-
sary. This means in someway not using all information but having a simpler computation.
Incidentally, this connectswith theGauss-Markov theorem [15] and theKalmanfilter (KF)
[7,11]. Thesewere initially stated anddevelopedwithout any reference toBayes’s theorem.
TheMonte Carlo (MC) computational implementation of this is the ensemble KF (EnKF)
[5]. We will in contrast use a white noise or polynomial chaos approximation [18,21,24].
But the initial ideas leading to the abstract Gauss-Markov-Kalman filter (GMKF) are inde-
pendent of any computational implementation and are presented first. It is in an abstract
way just orthogonal projection, based on the update Eq. (28) in “Correcting the mean”
section.
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Building the filter

Recalling Eqs. (20) and (21) together with Eq. (28), the algorithm for forecasting and
assimilating with just the posterior mean looks like

x̂n+1(ω) = f (xn(ω), wn(ω)),

yn+1(ω) = H (f (xn(ω), wn(ω)), vn(ω)),

xn+1(ω) = x̂n+1(ω) + (φx(ŷn+1) − φx(yn+1(ω))).

For simplicity of notation the argument ω will be suppressed. Also it will turn out that the
mappingφx representing theCE can inmost cases only be computed approximately, so we
want to look at update algorithms with a general map g : Y → X to possibly approximate
φx:

xn+1 = f (xn, wn) + (g(ŷn+1) − g(H (f (xn, wn), vn)))

= f (xn, wn) − g(H (f (xn, wn), vn)) + g(ŷn+1), (35)

where the first two equations have been inserted into the last. This is the filter equation for
tracking and identifying the extended state of Eq. (20). One may observe that the normal
evolution model Eq. (20) is corrected by the innovation term. This is the best unbiased
filter, with φ(ŷ) aMMSE estimate. It is clear that the stability of the solution to Eq. (35) will
depend on the contraction properties or otherwise of themap f −g ◦H ◦ f = (I−g ◦H )◦ f
as applied to xn, but that is not completely worked out yet and beyond the scope of this
paper.
By combining theminimisation property Eq. (16) and the Doob-Dynkin lemma Eq. (18),

we see that the map φΨ is defined by

‖Ψ (x) − φΨ (y)‖2X = min
�

‖Ψ (x) − � (y)‖2X = min
z∈X∞

‖Ψ (x) − z‖2X , (36)

where � ranges over all measurable maps � : Y → X . As Xσ (y) = X∞ is L-closed
[2,18], it is characterised similarly to Eq. (17), but by orthogonality in the L-invariant
sense

∀z ∈ X∞ : E (z ⊗ (Ψ (x) − φΨ (y))) = 0, (37)

i.e. the RV (Ψ (x) − � (y)) is orthogonal in the L-invariant sense to all RVs z ∈ X∞,
which means its correlation operator vanishes. Although the CE E (x|y) = Pσ (y)(x) is an
orthogonal projection, as the measurement operator Y , resp. h orH , which evaluates y, is
not necessarily linear in x, hence the optimal map φx(y) is also not necessarily linear in y.
In some sense it has to be the opposite of Y .

The linear filter

The minimisation in Eq. (36) over all measurable maps is still a formidable task, and
typically only feasible in an approximate way. One problem of course is that the spaceX∞
is in general infinite-dimensional. The standardGalerkin approach is then to approximate
it by finite-dimensional subspaces, see [18] for a general description and analysis of the
Galerkin convergence.
Herewe replaceX∞ bymuch smaller subspace; andwe choose in someway the simplest

possible one

X1 = {z : z = Φ(y) = L(y(ω)) + b, L ∈ L (Y ,X ), b ∈ X } ⊂ X∞ ⊂ X , (38)
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where the Φ are just affine maps; they are certainly measurable. Note that X1 is also an
L-invariant subspace ofX∞ ⊂ X .
Note that also other, possibly larger, L-invariant subspaces ofX∞ can be used, but this

seems to be smallest useful one. Now the minimisation Eq. (36) may be replaced by
‖x − (K (y) + a)‖2X = min

L,b
‖x − (L(y) + b)‖2X , (39)

and the optimal affine map is defined by K ∈ L (Y ,X ) and a ∈ X .
Using this g(y) = K (y) + a, one disregards some information asX1 ⊂ X∞ is usually a

true subspace—observe that the subspace represents the information we may learn from
the measurement—but the computation is easier, and one arrives in lieu of Eq. (28) at

xa,1L = xf + (K (ŷ) − K (y)) = xf + K (ŷ − y). (40)
This is the best linear filter, with the linear MMSE K (ŷ). One may note that the constant
term a in Eq. (39) drops out in the filter equation.
The algorithm corresponding to Eq. (35) is then

xn+1 = f (xn, wn) + K ((ŷn+1) − H (f (xn, wn), vn))

= f (xn, wn) − K (H (f (xn, wn), vn)) + K (ŷn+1). (41)

The Gauss-Markov theorem and the Kalman filter

The optimisation described in Eq. (39) is a familiar one, it is easily solved, and the solution
is given by an extension of the Gauss-Markov theorem [15]. The same idea of a linear
MMSE is behind the Kalman filter [5–7,11,22]. In our context it reads

Theorem 1 The solution to Eq. (39), minimising

‖x − (K (y) + a)‖2X = min
L,b

‖x − (L(y) + b)‖2X

is given by K := cov(x, y)cov(y)−1 and a := x̄ − K (ȳ), where cov(x, y) is the covariance of x
and y, and cov(y) is the auto-covariance of y. In case cov(y) is singular or nearly singular,
the pseudo-inverse can be taken instead of the inverse.

The operator K ∈ L (Y ,X ) is also called the Kalman gain, and has the familiar form
known from least squares projections. It is interesting to note that initially the connection
between MMSE and Bayesian estimation was not seen [19], although it is one of the
simplest approximations.
The resulting filter Eq. (40) is therefore called the Gauss-Markov-Kalman filter

(GMKF). The original Kalman filter has Eq. (40) just for the means
x̄a,1L = x̄f + K (ŷ − z̄).

It easy to compute that

Theorem 2 The covariance operator corresponding to Eq. (29) cov(xa,1L) of xa,1L is given
by

cov(xa,1L) = cov(xf ) − Kcov(xf , y)T = cov(xf ) − cov(xf , y)cov(z)−1cov(xf , y)T ,

which is Kalman’s formula for the covariance.

This shows that Eq. (40) is a true extension of the classical Kalman filter (KF). Rewriting
Eq. (40) explicitly in less symbolic notation

xa(ω) = xf (ω) + cov(xf , y)cov(z)−1(ŷ − y(ω)), (42)
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one may see that it is a relation between RVs, and hence some further stochastic discreti-
sation is needed to be numerically implementable.

Nonlinear filters
The derivation of nonlinear but polynomial filters is given in [18]. It has the advantage of
showing the connection to the “Bayes linear” approach [6], to the Gauss-Markov theorem
[15], and to the Kalman filter [11,22]. Correcting higher moments of the posterior RV
has been touched on in the “Correcting higher moments” section, and is not the topic
here. Now the focus is on computing better than linear (see “The linear filter” section)
approximations to the CE operator, which is the basic tool for the whole updating and
identification process.
We follow [18] for a more general approach not limited to polynomials, and assume a

set of linearly independent measurable functions, not necessarily orthonormal,

B := {ψα | α ∈ A, ψα(y(ω)) ∈ S} ⊆ S∞ (43)

whereA is some countable index set. Galerkin convergence [18] will require that

S∞ = span B,
i.e. that B is a Hilbert basis of S∞.
Let us consider a general function Ψ : X → R of x, whereR is some Hilbert space, of

which we want to compute the conditional expectation E (Ψ (x)|y). Denote byAk a finite
part ofA of cardinality k , such thatAk ⊂ A� for k < � and

⋃
k Ak = A, and set

Rk := R ⊗ Sk ⊆ R∞ := R ⊗ S∞, (44)

where the finite dimensional and hence closed subspaces Sk are given by

Sk := span{ψα | α ∈ Ak , ψα ∈ B} ⊆ S . (45)

Observe that the spacesRk fromEq. (44) areL-closed, see [18]. In practice, also a “spatial”
discretisation of the spaces X resp.R has to be carried out; but this is a standard process
and will be neglected here for the sake of brevity and clarity.
For a RV Ψ (x) ∈ R = R ⊗ S we make the following ‘ansatz’ for the optimal map φΨ ,k

such that PRk (Ψ (x)) = φΨ ,k (y):

�Ψ ,k (y) =
∑

α∈Ak

vαψα(y), (46)

with as yet unknown coefficients vα ∈ R. This is a normal Galerkin-ansatz, and the
Galerkin orthogonality Eq. (37) can be used to determine these coefficients.
Take Zk := R

Ak with canonical basis {eα | α ∈ Ak}, and let

Gk := (〈ψα(y(x)),ψβ (y(x))〉S )α,β∈Ak ∈ L (Zk )

be the symmetric positive definite Gram matrix of the basis of Sk ; also set

v :=
∑

α∈Ak

eα ⊗ vα ∈ Zk ⊗ R,

r :=
∑

α∈Ak

eα ⊗ E (ψα(y(x))R(x)) ∈ Zk ⊗ R.
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Theorem 3 For any k ∈ N, the coefficients {vα}α∈Ak of the optimal map φΨ ,k in Eq. (46)
are given by the unique solution of the Galerkin equation

(Gk ⊗ IR)v = r. (47)

It has the formal solution

v = (Gk ⊗ IR)−1r = (G−1
k ⊗ IR)r ∈ Zk ⊗ R.

Proof TheGalerkinEq. (47) is a simple consequenceof theGalerkin orthogonality Eq. (37).
As the Gram matrix Gk and the identity IR on R are positive definite, so is the tensor
operator (Gk ⊗ IR), with inverse (G−1

k ⊗ IR). ��
The block structure of the equations is clearly visible. Hence, to solve Eq. (47), one only

has to deal with the ‘small’ matrix Gk .
The update corresponding to Eq. (35), using again Ψ (x) = x, one obtains a possibly

nonlinear filter based on the basis B:
xa ≈ xa,k = xf + (

φx,k (ŷ) − φx,k (y(xf ))
) = xf + x∞,k . (48)

In case that Y∗ ⊆ span{ψα}α∈Ak , i.e. the functions with indices in Ak generate all the
linear functions on Y , this is a true extension of the Kalman filter.
Observe that this allows one to compute the map in Eq. (19) or rather Eq. (23) to any

desired accuracy. Then, using this tool, one may construct a new random variable which
has the desired posterior expectations; as was started in the “Correcting the mean” and
“Correcting higher moments” sections. This is then a truly nonlinear extension of the
linear filters described in “The Gauss-Markov-Kalman filter (GMKF)” section, and one
may expect better tracking properties than even for the best linear filters. This could for
example allow for less frequent observations of a dynamical system.

Numerical realisation
This is only going to be a rough overview on possibilities of numerical realisations. Only
the simplest case of the linear filter will be considered, all other approximations can be
dealt with in an analogous manner. Essentially we will look at two different kinds of
approximations, sampling and functional or spectral approximations.

Sampling

As starting point take Eq. (42). As it is a relation between RVs, it certainly also holds for
samples of the RVs. Thus it is possible to take an ensemble of sampling points ω1, . . . ,ωN
and require

∀� = 1, . . . , N : xa(ω�) = xf (ω�) + Cxf yC−1
y (y̌ − y(ω�)), (49)

and this is the basis of the ensemble Kalman filter, the EnKF [5]; the points xf (ω�) and
xa(ω�) are sometimes also denoted as particles, and Eq. (49) is a simple version of a particle
filter. In Eq. (49), Cxf y = cov(xf , y) and Cy = cov(y)
Some of the main work for the EnKF consists in obtaining good estimates of Cxf y and

Cy, as they have to be computed from the samples. Further approximations are possible,
for example such as assuming a particular form for Cxf y and Cy. This is the basis for
methods like kriging and 3DVAR resp. 4DVAR, where one works with an approximate
Kalman gain K̃ ≈ K . For a recent account see [12].
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Functional approximation

Here we want to pursue a different tack, and want to discretise RVs not through their
samples, but by functional resp. spectral approximations [14,17,30]. This means that all
RVs, say v(ω), are described as functions of knownRVs {ξ1(ω), . . . , ξ�(ω), . . . }. Often, when
for example stochastic processes or random fields are involved, one has to deal here with
infinitely many RVs, which for an actual computation have to be truncated to a finite
vector ξ(ω) = [ξ1(ω), . . . , ξn(ω)] of significant RVs. We shall assume that these have been
chosen such as to be independent. As we want to approximate later x = [x1, . . . , xn], we
do not need more than n RVs ξ.
One further chooses a finite set of linearly independent functions {ψα}α∈JM of the

variables ξ(ω), where the index α often is amulti-index, and the set JM is a finite set with
cardinality (size)M. Many different systems of functions can be used, classical choices are
[14,17,30] multivariate polynomials—leading to the polynomial chaos expansion (PCE),
as well as trigonometric functions, kernel functions as in kriging, radial basis functions,
sigmoidal functions as in artificial neural networks (ANNs), or functions derived from
fuzzy sets. The particular choice is immaterial for the further development. But to obtain
results which match the above theory as regards L-invariant subspaces, we shall assume
that the set {ψα}α∈JM includes all the linear functions of ξ. This is easy to achieve with
polynomials, and w.r.t kriging it corresponds to universal kriging. All other function
systems can also be augmented by a linear trend.
Thus a RV v(ω) would be replaced by a functional approximation

v(ω) =
∑

α∈JM

vαψα(ξ(ω)) =
∑

α∈JM

vαψα(ξ) = v(ξ). (50)

The argument ω will be omitted from here on, as we transport the probability measure P
onΩ to� = �1×· · ·×�n, the range of ξ, givingPξ = P1×· · ·×Pn as a productmeasure,
where P� = (ξ�)∗P is the distributionmeasure of the RV ξ�, as the RVs ξ� are independent.
All computations from here on are performed on�, typically some subset ofRn. Hence n
is the dimension of our problem, and if n is large, one faces a high-dimensional problem.
It is here that low-rank tensor approximations [8] become practically important.
It is not too difficult to see that the linear filter, when applied to the spectral approxi-

mation, has exactly the same form as shown in Eq. (42). Hence the basic formula Eq. (42)
looks formally the same in both cases, once it is applied to samples or “particles”, in the
other case to the functional approximation of RVs, i.e. to the coefficients in Eq. (50).
In both of the cases described here in the “Sampling” and “Functional approximation”

sections, the question as how to compute the covariance matrices in Eq. (42) arises. In the
EnKF in “Sampling” section they have to be computed from the samples [5], and in the case
of functional resp. spectral approximations they can be computed from the coefficients in
Eq. (50), see [21,24].
In the sampling context, the samples or particles may be seen as δ-measures, and one

generally obtains weak-∗ convergence of convex combinations of these δ-measures to
the continuous limit as the number of particles increases. In the case of functional resp.
spectral approximation one can bring the whole theory of Galerkin-approximations to
bear on the problem, and one may obtain convergence of the involved RVs in appropriate
norms [18]. We leave this topic with this pointer to the literature, as this is too extensive
to be discussed any further and hence is beyond the scope of the present work.
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Examples
The first example is a dynamic system considered in [21], it is the well-known Lorenz-84
chaoticmodel, a system of three nonlinear ordinary differential equations operating in the
chaotic regime. This is an example along the description of Eqs. (3) and (5) in the “Data
model” section. Remember that this was originally a model to describe the evolution of
some amplitudes of a spherical harmonic expansion of variables describing world climate.
As the original scaling of the variables has been kept, the time axis in Fig. 1 is in days.
Every 10 days a noisy measurement is performed and the state description is updated. In
between the state description evolves according to the chaotic dynamic of the system.
One may observe from Fig. 1 how the uncertainty—the width of the distribution as given
by the quantile lines—shrinks every time ameasurement is performed, and then increases
again due to the chaotic and hence noisy dynamics. Of course, we did not really measure
the world climate, but rather simulated the “truth” as well, i.e. a virtual experiment,
like the others to follow. More details may be found in [21] and the references therein.
All computations are performed in a functional approximation with polynomial chaos
expansions as alluded to in the “Functional approximation” section, and the filter is linear
according to Eq. (42).
To introduce the nonlinear filter as sketched in “Nonlinear filters” section, where for

the nonlinear filter the functions in Eq. (46) included polynomials up to quadratic terms,
onemay look shortly at a very simplified example, identifying a value, where only the third
power of the value plus a Gaussian error RV is observed. All updates follow Eq. (28), but
the update map is computed with different accuracy.
Shown are the pdfs produced by the linear filter according to Eq. (42)—Linear polyno-

mial chaosBayesianupdate (Linear PCBU)—a special formof Eq. (28), alsowith an iterated
linear filter—iterative LPCBU—usingNewton iterations, i.e. an iterated version of Eq. (42),
and using polynomials up to order two, the quadratic polynomial chaos Bayesian update

Fig. 1 Time evolution of the Lorenz-84 model with state identification with the LBU, from [21]. For the
estimated state uncertainty the 50 (full line), ±25, and ±45 % quantiles are shown
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(QPCBU).Onemayobserve that due to the nonlinear observation, the differences between
the linear filters and the quadratic one are already significant, theQPCBU yielding a better
update.
We go back to the example shown in Fig. 1, but now consider only for one step a

nonlinear filter like in Fig. 2, see [18].
As a first set of experiments we take the measurement operator to be linear in the state

variable to be identified, i.e. we can observe the whole state directly. At the moment we
consider updates after each day—whereas in Fig. 1 the updates were performed every
10 days. The update is done once with the linear Bayesian update (LBU), and again with a
quadratic nonlinear BU (QBU). The results for the posterior pdfs are given in Fig. 3, where
the linear update is dotted in blue and labelled z1, and the full red line is the quadraticQBU
labelled z2; there is hardly any difference between the two except for the z-component of
the state, most probably indicating that the LBU is already very accurate.
Now the same experiment, but the measurement operator is cubic:
These differences in posterior pdfs after one updatemay be gleaned fromFig. 4, and they

are indeed larger than in the linear case Fig. 3, due to the strongly nonlinear measurement
operator, showing that the QBUmay provide a much more accurate tracking of the state,
especially for non-linear observation operators.
As a last example we follow [18] and take a strongly nonlinear and also non-smooth

situation, namely elasto-plasticity with linear hardening and large deformations and a
Kirchhoff-St. Venant elastic material law [24,25]. This example is known as Cook’s mem-
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Fig. 2 Perturbed observations of the cube of a RV, different updates—linear, iterative linear, and quadratic
update

Fig. 3 Lorenz-84 model, perturbed linear observations of the state: posterior for LBU and QBU after one
update, from [18]
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Fig. 4 Lorenz-84 model, perturbed cubic observations of the state: posterior for LBU and QBU after one
update, from [18]

brane, and is shown in Fig. 5 with the undeformed mesh (initial), the deformed one
obtained by computing with average values of the elasticity and plasticity material con-
stants (deterministic), and finally the average result from a stochastic forward calculation
of the probabilistic model (stochastic), which is described by a variational inequality [25].
The shear modulus G, a random field and not a deterministic value in this case, has to

be identified, which is made more difficult by the non-smooth non-linearity. In Fig. 6 one
may see the ‘true’ distribution at one point in the domain in an unbroken black line, with
the mode—the maximum of the pdf—marked by a black cross on the abscissa, whereas
the prior is shown in a dotted blue line. The pdf of the LBU is shown in an unbroken red
line, with its mode marked by a red cross, and the pdf of the QBU is shown in a broken
purple line with its mode marked by an asterisk. Again we see a difference between the
LBU and the QBU. But here a curious thing happens; the mode of the LBU-posterior is
actually closer to the mode of the ‘truth’ than themode of the QBU-posterior. This means
that somehow the QBU takes the prior more into account than the LBU, which is a kind

Fig. 5 Cook’s membrane—large strain elasto-plasticity, undeformed grid [initial], deformations with mean
properties [deterministic], and mean of the deformation with stochastic properties [stochastic], from
[18,24,25]
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Fig. 6 Cook’s membrane—large strain elasto-plasticity, perturbed linear observations of the deformation,
LBU and QBU for the shear modulus, from [18]

of overshooting which has been observed at other occasions. On the other hand the pdf
of the QBU is narrower—has less uncertainty—than the pdf of the LBU.

Conclusion
A general approach for state and parameter estimation has been presented in a Bayesian
framework. The Bayesian approach is based here on the conditional expectation (CE)
operator, and different approximations were discussed, where the linear approximation
leads to a generalisation of the well-known Kalman filter (KF), and is here termed the
Gauss-Markov-Kalman filter (GMKF), as it is based on the classical Gauss-Markov theo-
rem. Based on the CE operator, various approximations to construct a RVwith the proper
posterior distribution were shown, where just correcting for the mean is certainly the
simplest type of filter, and also the basis of the GMKF.
Actual numerical computations typically require a discretisation of both the spatial

variables—something which is practically independent of the considerations here—and
the stochastic variables. Classical are sampling methods, but here the use of spectral resp.
functional approximations is alluded to, and all computations in the examples shown are
carried out with functional approximations.

Authors’ contributions
HGM provided ideas and wrote draft. EZ and BVR helped improve the research idea, BVR and AL conducted the
numerical implementation and computation and the results parts. All authors read and approved the final manuscript.

Author details
1Institute of Scientific Computing, Technische Universität Braunschweig, Braunschweig, Germany , 2Center for
Uncertainty Quantification, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.

Acknowledgements
Partly supported by the Deutsche Forschungsgemeinschaft (DFG) through SFB 880.
Dedicated to Pierre Ladevèze on the occasion of his 70th birthday.

Competing interests
The authors declare that they have no competing interests.

Received: 12 March 2016 Accepted: 21 June 2016



Matthies et al. Adv. Model. and Simul. in Eng. Sci. (2016) 3:24 Page 21 of 21

References
1. Bobrowski A. Functional analysis for probability and stochastic processes. Cambridge: Cambridge University Press;

2005.
2. Bosq D. Linear processes in function spaces. Theory and applications. In: Lecture notes in statistics, vol. 149. Contains

definition of strong or L-orthogonality for vector valued random variables. Berlin: Springer; 2000.
3. Engl HW, Groetsch CW. Inverse and ill-posed problems. New York: Academic Press; 1987.
4. Engl HW, Hanke M, Neubauer A. Regularization of inverse problems. Dordrecht: Kluwer; 2000.
5. Evensen G. Data assimilation—the ensemble Kalman filter. Berlin: Springer; 2009.
6. GoldsteinM,WooffD. Bayes linear statistics—theory andmethods,Wiley series in probability and statistics. Chichester:

Wiley; 2007.
7. Grewal MS, Andrews AP. Kalman filtering: theory and practice using MATLAB. Chichester: Wiley; 2008.
8. Hackbusch W. Tensor spaces and numerical tensor calculus. Berlin: Springer; 2012.
9. Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. Biometrika. 1970;57(1):97–

109. doi:10.1093/biomet/57.1.97.
10. Jaynes ET. Probability theory, the logic of science. Cambridge: Cambridge University Press; 2003.
11. Kálmán RE. A new approach to linear filtering and prediction problems. J Basic Eng. 1960;82:35–45.
12. Kelly DTB, Law KJH, Stuart AM.Well-posedness and accuracy of the ensemble Kalman filter in discrete and continuous

time. Nonlinearity. 2014;27:2579–603. doi:10.1088/0951-7715/27/10/2579.
13. Kennedy MC, O’Hagan A. Bayesian calibration of computer models. J Royal Stat Soc Series B. 2001;63(3):425–64.
14. Le Maître OP, Knio OM. Spectral methods for uncertainty quantification. Scientific computation. Berlin: Springer; 2010.

doi:10.1007/978-90-481-3520-2.
15. Luenberger DG. Optimization by vector space methods. Chichester: Wiley; 1969.
16. Marzouk YM, Najm HN, Rahn LA. Stochastic spectral methods for efficient Bayesian solution of inverse problems. J

Comput Phys. 2007;224(2):560–86. doi:10.1016/j.jcp.2006.10.010.
17. Matthies HG. Uncertainty quantification with stochastic finite elements. In: Stein E, de Borst R, Hughes TJR, editors.

Encyclopaedia of computational mechanics. Chichester: Wiley; 2007. doi:10.1002/0470091355.ecm071.
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24. Rosić BV, Kučerová A, Sýkora J, Pajonk O, Litvinenko A, Matthies HG. Parameter identification in a probabilistic setting.

Eng Struct. 2013;50:179–96. doi:10.1016/j.engstruct.2012.12.029.
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