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addresses such type of issue. Its main objective is to demonstrate that standard Finite
Element discretizations of the heat conduction equation violate Clausius’s postulate of
the second law of thermodynamics, at nodal level. The problem occurs because
non-physical, reversed nodal heat-fluxes arise in such discretizations. Conditions for
compatibility of discrete nodal heat-fluxes with respect to Clausius's postulate are
derived here and named discrete thermodynamic compatibility conditions (DTCC).
Simple numerical examples are presented to show the undesirable consequences of
such failure. It must be pointed out that such DTCCs have previously appeared in the
context of the study of the conditions that make discrete solutions to satisfy the
discrete maximum principle (DMP). However, the present article does not put attention
on such mathematical principle but on the satisfaction of a fundamental physical one:
the second law of thermodynamics. Of course, from the presented point of view, it is
clear that the violation of such fundamental law will cause, among different problems,
the violation of the DMP.

Keywords: Finite Element discretization, Violation of the second law of
thermodynamics, Heat equation, Clausius’s postulate

Background

Numerical methods intend to solve, in a discrete approximation, physical phenomena
described by continuous differential equations. However, it is important to be aware that,
due to the discretization procedure, a physical principle originally present in the continu-
ous equation could no longer remain valid in the corresponding numerical scheme. This
can be the cause of severe failures of numerical methods, including the fact that smooth
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but non-physical solutions can be obtained. Different types of physical compatibility prob-
lems have been studied in the literature. For example, Limache et al. [1] have studied the
consequences of using Finite Element discretizations that violate the physical princi-
ple of objectivity. Some authors have studied the issue of developing time-integration
methods that restore energy and momentum conservation [2]. Many authors have also
study discretization methods that preserve the satisfaction of the Maximum Principle.
The Maximum Principle states maximal properties that caracterize solutions of certain
second order PDEs (like the heat equation to be discussed here). The discrete maximum
principle (DMP) [3-7], then refers to the satisfaction of these maximal properties by the
corresponding discrete solutions.

Quite similarly to the examples mentioned above, this informative research paper deals
with the issue of the compatibility of spatial discretizations with respect to Clausius’s pos-
tulate of second law of thermodynamics, at nodal level. The issue is revealed by studying
the general structure of spatial discretizations of the heat equation. From the resulting
semi-discrete equations it is seen that their discrete operators must satisfy certain alge-
braic conditions in order to guarantee that only thermodynamically compatible nodal
heat-fluxes exist. If these conditions, named here discrete thermodynamic compatibility
conditions (DTCC), are not satisfied non-physical reversed heat fluxes will appear between
nodes, violating Clausius’s postulate. Other types of DTCC related to other thermody-
namic aspects, like energy conservation, may exist and will not be considered here.

The present article is organized as follows. In “Space-discretizations of the unsteady
heat conduction equation” section, the unsteady heat conduction equation is introduced
together with a general expression of its corresponding (spatially) discrete equations. FE
spatial discretizations are presented as particular cases of the above general expression.
Also for completeness, time-discretization is briefly discussed. In “Discrete thermody-
namic compatibility conditions” section, Clauius’s postulate is presented and the DTCC
are derived. In “Thermodynamic incompatibility of Finite Element spatial discretizations”
section, FE spatial discretizations are analyzed and it is seen that they do not satisfy the
DTCC. Simple examples are given to show the effects of the violation of Clausius’s postu-
late. In “On the issue of generating thermodynamically compatible Finite-Element spatial
discretizations” section, it is discussed what alternative non-consistent Finite Element
formulations can be used in order to recover discrete thermodynamic compatibility. In
“Related final comments” section, final comments and open issues are presented and
discussed.

Notation Given an arbitrary field f(x, £), function of position & and time ¢, the partial
derivative with respect to time will be denoted as f (#, t), so:

o Bf(x, t)
ot

flxt

Similarly, given an arbitrary function g = g(¢) of time ¢, the time-derivative will be denoted
as g(t), so:

o dg(z)
dt

Whenever there is no risk of confusion, the explicit dependence on x and ¢ will be dropped

g)

so, f (%, t) and g(¢), will be simply written as f and g, respectively.
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Space-discretizations of the unsteady heat conduction equation
The heat conduction equation
The heat conduction equation:

peyT =V - kVT) (1)

defines the evolution of physical temperature T'(x, £) as a function of time ¢ and position x
in a body occupying a domain €2 in space. In the above equation, p is the material density,
¢y is the specific heat and « the conductivity. In Eq. (1), it has been assumed that there
are not external heat sources inside the domain. The heat conduction equation is based
on the physical assumption that the heat flux q is connected to the temperature gradient

through Fourier’s law of heat-flux:
q=—«kVT (2)

Equations (1), (2) imply that the increase in temperature in an domain is directly propor-
tional to the net heat-fluxes g entering the domain:
T o Z q 3)
fluxes

To solve Eq. (1), initial conditions:
T(x,0) = To(x) (4)

and boundary conditions must be provided. Here, only homogeneous Neumann condi-

tions will be used:
q-n=0 at 02 (5)

The above condition and the absence of heat sources guarantee that the body is fully

isolated from the exterior.

Remark 1 The consideration of fully isolated bodies allows to study the mechanics of heat
conduction in pure form, without the interference of external perturbations. The addition
of heat sources or the use of other boundary conditions do not affect the results presented

in this paper and their addendum would only mean an unnecessary complication.

Spatial discretizations of the heat equation

Most commonly used discretization methods are based on the reduction of the infinite
dimensional representation of the temperature field T'(x, ) to a finite-dimensional rep-
resentation T"(x, ¢) in terms of values of temperature Tj(t) = T (x;, t) at certain points
x; in the domain. These discrete points are called nodes. Following the adopted nota-
tion convention, nodal temperature-rates will be denoted by Tj(t). Assuming a spatial
discretization in terms of # nodal points, the exact temperature distribution T'(x, £) is
approximated by a discrete approximation 7" (x, £):

T t) > T"x, 1) = D ¢;(®)T;(t) (6)
=1

where ¢;(x) are basis functions whose explicit form depend on the particular method being
used. Time-differentiation of Eq. (6) leads to the following approximation of temperature-
rates:

T~ T"x0 = g@0) ?)
j=1
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Whenever possible the explicit dependence on ¢ will be dropped, so Tj(t) and Tj(t) will
be simply denoted by T; and Tj, respectively. When Egs. (6), (7) are replaced into a differ-
ential or integral form of Eq. (1), the following general form of semi-discrete equations is
obtained:

MT = —KT (8)

In the equation above T = [T}] is the column vector of nodal temperatures and T = [Tj]
is the column vector of nodal temperature-rates. M = [M;;] and K = [IK;;] are matrix-
operators known as the mass matrix and the diffusion matrix, respectively. The mass
matrix is associated to the discretization of the LHS of Eq. (1) and the diffusion matrix to
the discretization of the RHS of Eq. (1). Discrete methods like for example: finite volume,
finite element and smoothed particle hydrodynamics present such form of semi-discrete
equations. Note that Eq. (8) can be written as:

T=—-HT )
where
H=M1K (10)

H is called the effective diffusion matrix of the system. Equations (8) and (9) can be written

in index notation as:

n n n
> MyTi=-> KT,  T;=-> HyTj (11)
j=1 j=1 j=1

Galerkin Finite Element spatial discretizations

In the particular case of FE discretizations, the domain 2 is partitioned into m non-
overlapping elemental subdomains Q2¢. The matrices M and K are computed as the fol-
lowing assembly of elemental matrices:

m m
My => MY, Kj=> K, (12)
e e
where in the Galerkin approach they are given by
]1\/[5;) = pcy /QE wEe)w;e) dav, ]Kg?) =« /Qe V(pl(e) . Vgoj(e) dv (13)

In the equations above, %(e) denotes the value of the basis function ¢;(x) corresponding
to node #; inside the elemental domain Q¢. Matrices M) = [IMEf)] and K© = [IKEI‘?)] are
usually called the elemental mass and diffusion matrices, respectively. In the 1D case with

piecewise linear elements, as the one shown in Fig. 1, the elemental matrices are given by
(see [8]):

M(e) _ ,Ocvhe 2 1 , K(e) _ i 1 —1 (14)
6 1 2 he | —1 1

where /1, is the length of the element. In the 2D case with linear triangular elements, the
elemental mass matrix turns out to be independent of the triangle’s shape, being only

proportional to the triangle’s area ¢(©). In this case, the general expression for M is
(19 pp. 473)):

M© = pe, (15)

)
— N
N = =
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Fig. 1 Piecewise linear elementin 1D

On the other hand, following the DMP works [10,11], the diffusion elemental matrices
for linear triangular elements are given by the following expression:

cot(ay) + cot(az) — cot(a3) — cot(ap)
K®© = g — cot(as) cot(ay) + cot(as) — cot(o) (16)
— cot(as) — cot(ap) cot(orp) + cot(ap)

where «; denote the triangle’s inner angle associate to node i.

It is worth to mention here that some FE approaches modify the consistency of the
discretization by replacing M by a diagonal lumped matrix M. In this case, the effective
diffusion matrix is 1 = M~ IK. Using that the diagonal elements of M are given by

M;i = m; = 3, My;, one gets that:
. 1
Hy = —Kj (17)
m;

Note that, in this case, every row of I is directly proportional to the corresponding row
of elements of K.

Exact solutions of spatial discretizations of the heat conduction equation
A general exact solution of Eq. (9) exists (for constant mass and diffusion matrices):

T(t) = e B T(0) (18)

Time and space discretizations of the heat conduction equation

Usually, Eq. (9) is further discretized in time so as to arrive to fully discrete schemes.
Different time-discretization methods can be used for this purpose. For example, if the
Euler explicit method where used, the fully discrete scheme will look like:

70D = 70 _ A HT™ (19)

where T denotes the vector of nodal temperature values at discrete time £”. The stability

of the above scheme is guaranteed if the time-step At is chosen such that:

2
At < Aty = —— (20)

)‘max
where 1,4, is the maximum eigenvalue of matrix H. Note that condition (20) is a gener-

alized version of the standard Fourier stability condition:

112
At < Atpourier = = — (21)
2k

which appears when finite-differences are used.
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Discrete thermodynamic compatibility conditions

Thermodynamics is the part of physics that studies the relationships between heat and
other energy forms. The first law of thermodynamics expresses conservation of energy.
The second law expresses an evolutionary property of all physical processes. Different
equivalent statements of the second law exist. Here, the oldest one will be used. It was
given around 150 years ago by Rudolf Clausius, it is known as Clausius’s postulate, and

according to his own words is [12]:

Clausius’s postulate: “Heat can never pass from a colder to a warmer body (without
some other change, connected therewith, occurring at the same time). Everything
we know concerning the interchange of heat between to bodies of different temper-
atures confirm this, for heat everywhere manifests a tendency to equalize existing
differences of temperature, and therefore to pass in contrary direction, i.e. from
warmer to colder bodies. Without further, explanation, therefore, the truth of the

principle will be granted”.!
Mathematically Clausius’s postulate can be expressed as follows.

Clausius’s postulate, bis: Consider two regions %; and %; with different tempera-
tures T; and T}, respectively. Assume T; > T;. Let us use the convention that heat g
entering a system is positive. If the two regions above enter in thermal contact then:

Heat can only flow from %; towards %;, so:
if Tj > T; then gj,; > 0 (22)

In turn, according to Eq. (3), this positive heat supply g;_,; towards i will necessarily
produce an increase of temperature in %;, i.e. a positive contribution to temperature-

rates in %, i.e.:

if Tj > T; then T >0 (23)

j contribution =~

Of course, the heat equation (1) satisfies Clausius’s postulate at any point.> However, not
necessarily, a consistent discretization of such equation will fully satisfy such postulate.
Next some algebraic DTCC will be deduced. These DTCC have to be satisfied by standard
discretizations in order to avoid violations of Clausius’s postulate, at nodal level:

DTCC (Clausius’s postulate—DTCC)
To be thermodynamically compatible with Clausius’s postulate, a spatial discretiza-
tion of the heat equation must always generate effective-diffusion matrices H with

non-positive off-diagonal elements:
Hy <0 Vj#i 24)

Proof Consider the general form of heat equation’s semi-discrete equations derived
in “Space-discretizations of the unsteady heat conduction equation” section:

! At that time, Clausius used such postulate to derive an expression of a new state variable he called entropy [13]. In
terms of this variable, a second equivalent statement of the second law was given:

Entropy statement: In any physical process, the change of entropy of an isolated system can only be greater or
equal than zero.

This is true because the PDE (1) imposes the satisfaction of the two laws of thermodynamics by construction. In
particular, note that the presence of Fourier’s law of heat flux (g = —« VT) inside Eq. (1), forces the satisfaction of the
second law in the form of Clausius’s postulate.

Page 6 of 18
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T=-HT (25)
Expanding Eq. (25) in components, one has:

T; = — z H;T; (26)
j

Separating diagonal terms (j = i) of the off-diagonal terms (j # i), Eq. (26) can be

rewritten as:

Ty = —HiT; — > HyTy = —(Hi+ p Hy) T; = > Hy (T - T) (27)
J#i J#i J#i
So in general, one has:
Ty =T, - Z]Hij (T; - Tv) (28)
j#i

where the coefficient h; = Zi H;j, equal to the row sum of the effective diffusion
matrix, has been defined.

Now, in Eq. (28), let us isolate the jth-contribution of an arbitrary node j # i to the
temperature rate of node i:

=-H;(T; - T) (29)

T; | j contribution
The procedure leading to Eq. (29) from Eq. (28) is physically equivalent to completely
isolate the small region %; associated to node «; from all other regions except from
the small region %; associated to node x;. Since Clausius’s postulate should be valid
over these two nodal regions in thermal contact. Application of condition Eq. (23)
into Eq. (29) implies that:

H; <0 Vj#i (30)

As a consequence, a discrete formulation will be thermodynamically compatible
with Clausius’s postulate, at nodal level, only if all off-diagonal coefficients of IH are
nonpositive. This completes the proof.

The DTCC given in Eq. (24) define necessary conditions that must be satisfied by the
effective diffusion matrix H of any spatial discretization in order to preserve thermody-
namic compatibility of numerical solutions. If such discrete conditions are not satisfied,
the second law of thermodynamics will be violated at nodal level because of the emergence
of reversed, non-physical heat flows going from colder temperature regions to warmer
temperature regions.

Thermodynamic incompatibility of Finite Element spatial discretizations
This section is devoted to study the compatibility of FE discretizations with respect to the
above presented DTCC. Only the case of linear elements in 1D and 2D will be considered.

Thermodynamic incompatibility of 1D Finite Element discretizations

Consider the problem of solving the heat equation in a 1D body using FE discretizations.
The body is completely isolated from the exterior [there are not external heat sources and
there is not heat flow through its two boundaries (x = 0 and ¥ = L)]. In this case, given
any mesh made of m consecutive non-overlapping segments as the ones shown in Fig. 2,
the FE matrices M and K can be computed using Egs. (12) and (14).
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Fig.2 1D mesh discretization of space

For the sake of easy reading, assume the body has unit length L = 1 and unit physical
coefficients «, p, ¢, = 1. First, let us consider the elemental case where the mesh is made
of only one single element (i.e. m = 1) so the single element occupies the total length of
the body. In this case one has that: M = M and K = K so the effective diffusion

matrix turns out to be:
6K 1 -1
—_— 31
pcyL? [ -1 1 :| (3D

Since all off-diagonal coefficiens are non-positive (Hijp < 0 and Hy; < 0), Eq. (24) is

H=MO-1KeE —

satisfied, so one gets the following result:

Result 1 Trivial (m = 1) 1D FE spatial discretizations based on piecewise-linear elements
and consistent mass matrices always satisfy the DTCC.

Likewise, one would expect that the same result holds if the mesh has more elements
(m > 1). The following simple example will demonstrate that this is not so. Consider the
1D-body of lenght L = 1 and assume that it is discretized by a mesh of four nodes and
3 segments of equal length L/3. The nodes are located at positions x; = 0, xp = 1/3L,
x3 = 2/3L, x4 = L. Using Eq. (14), the FE mass and diffusion matrices turn out to be:

2/18 1/18 0 0 3 -3 0 0
1/18 4/18 1/18 0O -3 6 -3 0
M= | Y / / , K= (32)
0 1/18 4/18 1/18 0 -3 6 -3
0 0 1/18 2/18 | 0 0 -3 3

Then, in this case, the effective diffusion matrix turns out to be:

39.6 —50.4 14.4 —3.6 |
—252 468 —288 7.2
H= (33)
7.2 —288 46.8 —25.2

-3.6 144 —-50.4 39.6 |

From Eq. (33) one sees that some off-diagonal coefficients of H do not satisfy condition
(24), having positive values (14.4 and 7.2). So, this FE discretization is nodally termody-
namically incompatible. Actually, it can be shown that, for any non-trivial mesh m > 1, FE
effective diffusion matrices will have some positive off-diagonal elements violating DTCC
conditions. Therefore, one has that:

Result 2 Non-trivial (m > 1) 1D FE discretizations based on piecewise-linear elements
and consistent mass matrices always violate the DTCC.

Page 8 of 18
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The above result implies that 1D FE discretizations are, nodally, thermodynami-
cally incompatible with Clausius’s postulate. Then, their use should produce visible
non-physical results. This is what actually occurs as shown in the following simple
numerical experiment. Consider the isolated 1D-body being used, discretized with the
3-element mesh defined above [the corresponding effective diffusion matrix is given
by Eq. (33)]. Assume the body has the following initial nodal temperature distribution:
T(0) = [T1(0) = 0.0, T»(0) = 0.0, T3(0) = 1.0, T4(0) = 1.0]7. According to this distrib-
ution the initial maximum and minimum temperatures in the body are Tr,x = 1.0 and
Tmin = 0.0, respectively. Once the heat conduction process starts, regions with higher
temperatures should immediately start decreasing their temperature because they should
be transmitting heat to all surrounding regions which are at lower temperatures. On the
contrary, as a consequence of the received heat, lower temperature regions should start
increasing their temperature. Of course, these natural evolution should continue until a
uniform steady-temperature is reached everywhere in the body. Now, let us determine
the nodal temperatures predicted by the FE discretization. For this purpose Eq. (18) is
used. The obtained nodal temperature evolution is shown in Fig. 3. Since at location x4
the body has initially the maximum body-temperature (74(0) = Tmax = 1.0), heat should
flow from this region towards colder regions, so body-temperature T (x4, £) = Ta(t) at
x4 should decrease continuously from Tp,.x. However, this is not what the FE solution
predicts. On the contrary, as shown by the yellow line in Figs. 3 and 4, FE solution predicts
that at initial times (¢ < 0.01 s apprx.), the body-temperature T4(t) at such location will
increase instead of decrease (going above the maximum temperature Tinax). Of course, this

temperature

time

Fig.3 Time-evolution of nodal temperatures in a 1D-body using a consistent FE discretization with a mesh
of 4 nodes
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Fig.4 Zoom-in from Fig. 3 with time-evolution of nodal temperature T4(t)

is a completely non-physical behavior. A similar but reversed situation occurs at location
x1. There, the body has initially the minimum temperature 77(0) = Tpin = 0.0 so heat
should flow from warmer regions towards this region, this positive flow of heat should
cause a continuous increase of temperature at such location. Instead, the numerical FE
solution predicts (blue line of Fig. 3), that at initial times (¢ < 0.01 apprx.), the temperature
T1(t) in #1 will become negative instead of increase its value. Again, this prediction is ther-
modynamically incompatible. Both observed phenomena at locations x; and x4 are caused
by the non-physical reversed heat-fluxes produced by the thermodynamic incompatibility
of the FE discretization, at nodal level.

Thermodynamic incompatibility of 2D Finite Element discretizations
In this section, the thermodynamic compatibility of 2D FE spatial discretizations based
on linear triangular elements is investigated. Simple counter-examples are presented to
show that, contrary to what one may have expected, such discretizations are nodally
incompatible with Clausius’s postulate.

For simplicity, consider fully isolated 2D bodies with unit physical coefficients «, p, ¢, =
1. First, let us consider a body formed by a single triangular element e whose nodes are
defined by coordinates:

0.0 0.0
9 =110 00
15 10
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From Egs. (15) and (16), it turns out that the elemental matrices are given by:

1/12 1724 1/24

M® =|1/24 1/12 1/24 (34)
1/24 1/24 1/12
0.625 —0.875  0.250
K =|-0875 1625 —0.750 (35)
0.250 —0.750  0.500

As a consequence, the effective diffusion matrix of this elemental discretization turns out
to be:

15 —21 6
H=MO1K® = | _21 39 —18 (36)
6 —18 12

Since some off-diagonal elements are positive (Hi3, H31 = 6 > 0), the above triangular
element is nodally incompatible with Clausius’s postulate.

Another simple numerical example is presented to show that consistent 2D-FE spatial
discretizations are also nodally thermodynamically incompatible for non-trivial meshes
(m > 1). Consider the problem of heat conduction in a 2D-body with quadrangular shape,
as the one shown in Fig. 5. Assume the vertices of the quadrangular-body are defined by
the following coordinates:

1 =
H = === Element 1 j-"f;f
3 nnn Element 2 S
. = &
09 5? W Tnode1 f' i' 1
B B Tnode?2 yed ;"
08 H W Thode 3 ,,,,c“ P
3 Tnode 4 P4 L
= i’ !
07 = # y .
E o &
= e &
= P &
o ! »
06 = ‘_‘* ¥ 1
= .f’* L
= g ¥
L = = ¥ -
> 05 E -~ G
rd &
5 'a’» »
i 1 J
0.4 ’Lp i
ﬂ'{' ‘3'
03f e ¢ 1
x
¥
4
02 ¥
L
: r
01} 5 ¥ .
¥
s
O o .‘
0 0.5 1 15
X
Fig.5 Quadrangular domain partitioned with a mesh of two obtuse triangular elements
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X1 0.0 0.0
x(e) _ X2 _ 1.0 0.0
X3 1.5 1.0
X4 0.5 1.0

Assume the body is discretized in space by a mesh formed by two equal triangular elements
e1 and ey, as shown in Fig. 5. The elements are defined by node indices [1, 2, 3] and [3, 4,
1], respectively. Using Eq. (12), the global effective diffusion matrix H for this case is:

135 —105 60  —9.0
2025 2925 —1875 9.75
H= (37)
60 —90 135 —105

—-1875 975 —20.25 29.25

The existence of positive off-diagonal coefficients (6.0 and 9.75) in the effective diffusion
matrix H imply that condition (24) is violated. Actually, Thomée and Wahlbin [14, pp.
15-16] have proved in the context of the DMP that, for meshes (triangulations) with more
than one element, the FE method always produces effective diffusion matrices H = M-1K
that violate condition (24). Then, the following result follows:

Result 3 2D FE discretizations with piecewise-linear triangular elements and consistent
mass matrices always violate the DTCC.

Such violation of Clausius’s postulate is observable in numerical experiments. As an
example, consider the 2D FE discretization of the quadrangular-body mentioned above
and assume that the following initial temperature distribution is given to the body: T'(0) =
[T1(0) = 0.0, T5(0) = 0.0, T5(0) = 1.0, T4(0) = 0.0]. Note that the initial temperatures
given to the body are between Tpin = 0.0 and Tax = 1.0, in particular note that, initially,
node 1 has the lowest temperature value. Recall that the body is fully isolated from the
exterior. The time-evolution of body temperatures predicted by the FE discretization can
be computed using Eq. (18) and it is shown in Fig. 6. There one can see that the FE discrete
solution predicts a non-physical evolution of the temperature at node 1 (blue line): such
region has the minimum value of temperature, then by Clausius’s postulate it should
always received heat and increase its temperature. However, this not what it is predicted
by the numerical solution: at initial times (¢: 0.0 < ¢ < 0.05), it predicts that the nodal
temperature will further decrease (as if it were giving heat instead of receiving it). This is

a completely non-physical result.

Remark 2 Although, in the example above, the non-physical effects are clearly seen for ¢:
0.0 < t < 0.05sec, it is important to note that the existence of reversed nodal heat-fluxes
due to the incompatible discretization occurs not only at those times but along the whole

simulation.

A natural question to be made is whether the issue of nodal thermodynamic incom-
patibility of consistent FE Discretizations, discussed here for the 1D and 2D cases, also
happens in the 3D case. Recent Finite-Element formulas presented in DMP works [15-18])
indicate that the problem is also present in 3D FE discretizations.



Limache and Idelsohn Adv. Model. and Simul. in Eng. Sci.(2016)3:13 Page 13 0of 18

= Thode 1
e Tnode 2

— Tnode 3
Tnode 4

temperature

i | i
0.05 01 0.15 0.2 0.25 0.3 0.35 0.4
time

Fig.6 Time-evolution of nodal temperatures predicted by FE for the quadrangular domain shown in Fig. 5

On the issue of generating thermodynamically compatible Finite-Element
spatial discretizations

In “Thermodynamic incompatibility of Finite Element spatial discretizations” section, it
has been shown that 1D and 2D consistent FE spatial discretizations (with piecewise linear
interpolating functions) always generate effective diffusion matrices H that violate the
DTCC. Then, such discretizations are physically incompatible with Clausius’s postulate,
at nodal level. This negative result opens the question if FE discretizations can be modified
in order to recover nodal thermodynamic compatibility. A partially positive answer to this
question can be given if lumped mass matrices are used instead of using the consistent
mass matrix. In this case, as mentioned in “Spatial discretizations of the heat Equation”
section, the effective-diffusion matrix of the discretization is I = M~!K. Since each of
row I is proportional to the corresponding row of I [see Eq. (17)]. The following result
(see [14]) is valid:

Result 4 Any FE effective-diffusion matrix I1 is DTCC if and only if the corresponding K
is DTCC.

The above result indicates the FE discretizations with lumped mass are thermodynam-
ically compatible if their respective diffusion matrices satisfy the DTCC. Now, due to the
relationship (12) between K and its conforming elemental difussion matrices K©), the
following result holds:

Result 5 Any FE diffusion matrix K is DTCC if all of its conforming elemental matrices
K© are DTCC.



Limache and Idelsohn Adv. Model. and Simul. in Eng. Sci.(2016)3:13 Page 14 0f 18

From Eq. (14) and Results 4 and 5, one gets that:

Result 6 1D FE spatial discretizations with piecewise-linear elements and lumped mass
matrices always satisfy the DTCC.

Regrettably, the same result is not valid for lumped 2D FE discretizations. The problem
in this case is that not all elemental diffusion matrices IK®) are DTCC, so Result 5 can
not be used. More specifically, only elemental matrices formed by acute or right angles
are DTCC (see Eq. 16). Elements formed by obtuse triangles generate diffusion matrices
K that violate the DTCC and then produce non-physical reversed nodal fluxes. Note
that the satisfaction of the DTCC by elemental diffusion matrices IK®) is only a sufficient
but not a necessary condition for satisfaction of the DTCC by K. In particular, note that
a 2D Delaunay triangulation can have some obtuse triangular-elements but still generate
a global matrix K satisfying DTCC (see [14,19, p. 78]). Although from a purely algebraic
point of view, thermodynamic compatibility of matrix IK can be satisfied without the strict
need that every elemental matrix IK®) be thermodynamically compatible, from a physical
point of view, it does not seem right to allow having such thermodynamically incompatible
elemental contributions. As a summary of the above discussion, the following result can
be stated:

Result 7 2D FE spatial discretizations with piecewise-linear triangular elements and
lumped mass matrices will be DTCC, both, at elemental and global level, only if the
mesh is formed by acute and right triangles. If the mesh is a Delaunay Triangulation,
such lumped FE discretization will still be DTCC, globally, but each of their elemental
contributions will not.

Result 7 states that arbitrary meshes can not be used if one wants to have 2D FE formu-
lations that are DTCC.

All the above results can be verified in the context of the 1D and 2D examples given
in “Thermodynamic incompatibility of 1D Finite Element discretizations” and “Thermo-
dynamic incompatibility of 2D Finite Element discretizations” sections, by using of the
lumped mass matrix instead the consistent mass matrix. In particular, the reader can verify
that in the case of the quadrangular body, the triangular mesh contains obtuse triangles, so
the lumped discretization approach still fails. However, if the mesh is re-triangulated, with
two triangular elements formed by the node indices [1, 2, 4] and [2, 3, 4] as shown Fig. 7.
Then, in this case, since the mesh is formed only by acute triangles, the effective-diffusion
matrix for the lumped FE discretization takes the form:

375 =225 0 —15
= 'K — -1125 3375 -075 -—15 (38)
0.0 —1.5 375 =225

-075 —-15 -—-1125 3.375

which agrees with Result 7. The time-evolution of temperatures in the quadrangular-
body predicted by this discretization is shown in Fig. 8. Note that, this time, the nodal
temperatures are physically consistent and stay within the real physical limits imposed by
the initial values of maximum and minimum temperatures in the body. In particular, node
1 which has the lowest temperature in the body correctly starts to increase its temperature.
Compare this result with the non-physical solution shown in Fig. 6.
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Fig.7 Quadrangular domain triangulated with a mesh formed by two acute triangular elements
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Fig. 8 Evolution of nodal temperatures in the quadrangular domain shown in Fig. 7. The evolution has been
determined using a FE spatial discretization with a lumped mass matrix and a mesh formed by acute triangles
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Related final comments

In the derivation of the DTCC only spatial discretizations have been considered, time ¢
has been left as a continuous variable. From this, it follows that the results discussed in
this paper will affect any numerical scheme having any type of time-discretization. This
is so, because by means of numerical consistency any time-discretization will tend to
the time-continuous solution, as At — 0. As a consequence, for example not only the
Euler explicit method (presented in “Exact solutions of spatial discretizations of the heat
conduction equation” section but all time-integration numerical schemes are affected by
the presented results. Even implicit schemes are affected.

Note that the violation of the DTCC does not imply that the discrete solution will not
converge to the exact solution as the mesh is refined. However, one might expect that
thermodynamically compatible algorithms should be more stable or converge faster than
the ones that are not. As mentioned in Eq. (20), the stability condition depends directly
on the maximum eigenvalue Ay of the discretization matrix H. So stability changes will
depend on how the satisfaction or the non-satisfaction of the DTCC will alter the value of
Amax- The issue of improving convergence if thermodynamically compatible formulations
are used, could be related to the work of Ciarlet and Raviart [20] who proved uniform
convergence of FE solutions. DTCC and non DTCC solutions could also be compared
using error estimation procedures [21,22]

Similarly, it must be pointed that a scheme that violates the DTCC is not necessarily
unstable. In particular, note that all non-DTCC examples presented in “Thermodynamic
incompatibility of 1D Finite Element discretizations” and “Thermodynamic incompatibil-
ity of 2D Finite Element discretizations” sections are stable and can be solved without prob-
lems. Note also that those cases could also be solved using fully-discrete time-integration
algorithms, like for example, Euler’s method (19) and they will be stable as long as the
used time-steps At are below the stability limit of the time-integration algorithm. For the
case of Euler method this stability limit is given by Eq. (20).

Note that numerical solutions obtained in “Thermodynamic incompatibility of 1D Finite
Element discretizations” and “Thermodynamic incompatibility of 2D Finite Element dis-
cretizations” sections prove that the use of thermodynamically incompatible formulations
can produce non-physical solutions which are not only stable but also smooth and non-
oscillatory. Then, the decision to use a thermodynamically incompatible discretization
anyway, can be very dangerous because not necessarily the obtained solutions will show
signs that something is evidently wrong.

Another well-known source of spurious spatial numerical oscillations are the ones pro-
duced in thermal shocks. It is known that consistent 1D FE formulations can generate
non-physical thermal shock oscillations if [23]:

At < Atghock (39)

This means that, for any given mesh size, as At — 0 consistent FE formulations will
generate non-physical oscillations in thermal shocks. One open question is if these non-
physical oscillations can be fully attributed to the nodal thermodynamical incompatibility
of consistent FE discretizations (see Result 2). The fact that condition (39) disappears
if lumped mass (thermodynamically consistent) FE discretizations are used ([23,24]),
supports this conjecture.
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Another point to be analyzed in the future is if popular stabilization techniques [25,26]
used to avoid the above mentioned spurious numerical oscillations [24] are somehow
connected to the DTCCs presented in this article. One may intuitively think that, by
means of these techniques, diffusion is added to compensate for unphysical heat flow.
However, to the authors is uncertain if stabilization techniques are smart enough to detect
(and correct) the thermodynamic incompatibility of any FE discretization. Of course these
topics need further research.

The matrix property of non-positive off-diagonal elements [such as condition (24)]
emerging here in the context of the satisfaction of the second law of thermodynamics
seems to appear in different types of previously studied matrices, such as Mezler Matrices
in dynamical systems [27], non-negative matrices, Z-matrices and M-matrices in eco-
nomics, discretization methods of PDEs, Markov processes, stability, etc. (see [28], [29]).
In particular, it can be shown that —IH must be a Metzler matrix and H must be a Z-
matrix. Also it can be shown that B = /,,,,,I — H must be a nonnegative matrix (where
Nym = max(lH;;) and I is the identity matrix).

Finally note that, the thermodynamical incompatibility phenomenon discussed here
applies not only to heat transfer problems but to any type of diffusive process. For example,
itis completely equivalent to phenomena of negative viscosity associated with the diffusion

equation for momentum

— =V (40)
at

involving kinematic viscosity v = p/v. Such phenomena correspond to diffusion of

momentum from low velocity to high velocity regions of the flow and could be shown

to also constitute a violation of the second law of thermodynamics. Finally, another par-

allel problem (that could also be called negative diffusion) can occur with the diffusion

equation for partial densities

dpi 2

— =D;V-p; 41

9t iV Pi (41)
involving mass diffusivity D;. Now, counter-gradient diffusion of mass such as a sweet cup
of coffee becoming bitter spontaneously with time would also indicate the same type of

violation of the second law of thermodynamics.

Conclusions

This paper describes the issue that consistent Finite Element spatial discretizations with
linear elements lead to numerical schemes that are nodally thermodynamically incom-
patible. These incompatible schemes violate Clausius’s postulate of the second law of
thermodynamics at nodal level producing reversed non-physical heat fluxes. Discrete
mathematical conditions for nodal thermodynamic compatibility are presented. These
conditions have appeared before in the context of the satisfaction of the discrete maxi-
mum principle. However, the purpose of this article is to emphasize that the root of such
mathematical problem may lie in the violation of such fundamental physical principle.
Simple numerical examples in 1D and 2D are used to demonstrate that the use of thermo-
dynamically incompatible discretizations can produce non-physical numerical solutions.
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Requirements to restore nodal thermodynamic compatibility of FE formulations are pre-

sented.
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