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Abstract

This paper focuses on the low-dimensional representation of multivariate functions. We
study a recursive POD representation, based upon the use of the power iterate
algorithm to recursively expand the modes retained in the previous step. We obtain
general error estimates for the truncated expansion, and prove that the recursive POD
representation provides a quasi-optimal approximation in L2 norm. We also prove an
exponential rate of convergence, when applied to the solution of the reaction-diffusion
partial differential equation. Some relevant numerical experiments show that the
recursive POD is computationally more accurate than the Proper Generalized
Decomposition for multivariate functions. We also recover the theoretical exponential
convergence rate for the solution of the reaction-diffusion equation.

Keywords: Recursive POD, High Order SVD, Model Reduction, Multivariate functions,
PGD

Background
Model Reduction methods are nowadays basic numerical tools in the treatment of large-
scale parametric problems appearing in real-world problems. They are applied with suc-
cess, for instance, in signal processing, analysis of random data, solution of parametric
partial differential equations and control problems, among others. In signal processing,
Karhunen-Loève’s expansion (KLE) provides a reliable procedure for a low dimensional
representation of spatiotemporal signals (see [12,20]). Different research communities
use different terminologies for the KLE. It is named the proper orthogonal decomposi-
tion (POD) in mechanical computation (see [3]), referred to as the principal components
analysis (PCA) in statistics (see [17,18,24]) and data analysis or called singular value
decomposition (SVD) in linear algebra (see [13]). These techniques allow large reduction
of computational costs, thusmaking affordable the solution of many parametric problems
of practical interest, otherwise out of reach. Let usmention some representative references
[5,6,11,16,26,27], although this list, by far, is not exhaustive.
The extension of KLE to the tensor representation of multivariate functions is, how-

ever, a challenging problem. Real problems are quite often multivariate. Let us mention,
for instance the analysis of multivariate stochastic variables, simulation and control of
thermal flows and multi-component mechanics, among many others. Some recent tech-
niques have been introduced to build low-dimensional tensor decompositions of multi-
variate functions and data. Among them, the High-Order Singular Value Decomposition

© 2016 Azaïez et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

0123456789().,–: vol

http://crossmark.crossref.org/dialog/?doi=10.1186/s40323-016-0060-1&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Azaïez et al. Adv. Model. and Simul. in Eng. Sci. (2016) 3:3 Page 2 of 22

(HOSVD) provides low-dimensional approximation of tensor data, in a similar way as the
Singular Value Decomposition allows to approximate bi-variate data (see [7,8,21]). Also,
the Proper Generalized Decomposition (PGD) appears to be well suited in many cases to
approximate multivariate functions by low-dimensional varieties (see [14,15]). However,
in general there is not an optimal tensor of rank three or larger to approximate a given
high-dimensional tensor (see [9]).
In this paper we study an alternative method to build low-dimensional tensor decom-

positions of multivariate functions. This is a recursive POD (R-POD), based upon the
successive application of the bivariate POD to each of the modes obtained in the previous
step. In each step only one of the parameters is active, while the set of the remaining
parameters is considered as a passive single parameter. We introduce a feasible version of
the R-POD, in which the expansion is truncated whenever the singular values are smaller
than a given threshold. This provides a fast algorithm, as only a small number of modes is
computed, just those required to achieve a targeted error level.
As an application, we analyze the velocity of convergence of the R-POD applied to

approximate the solution of the reaction-diffusion equation.We prove that the expansion
converges with exponential rate. We use as main theoretical tool the Courant-Fischer-
Weyl Theorem, that allows to reduce the error analysis of the POD expansion to that of
the polynomial approximation of the function to be expanded. We also use the analytic
dependence of the solution on the diffusivity and reaction rate coefficients, that yields the
exponential convergence rate. This analysis is based upon the one introduced in [2]. Fur-
ther, we use sub-sequent bounds for the singular values to construct a practical truncation
error estimator, which is used to recursively compute the expansion by the Power Iterate
(PI) method [1]. This avoids to compute the full singular value decomposition of the cor-
relation matrix, just the modes needed to attempt a given error threshold are computed.
The PI method provides a fast and reliable tool to build the POD expansion of bivariate
functions, of which we take advantage to recursively build the R-POD expansion.
We present a battery of numerical tests, in which we apply the R-POD to the rep-

resentation of three-variate functions, and in particular to the solution of the reaction-
diffusion. We compare the R-POD to the PGD expansion. The PGD expansion can be
interpreted as the PI method applied to the effective computation of the POD for bivari-
ate functions (see [23]). We here consider its extension to multivariate functions. We
obtain exponential convergence rates for both R-POD and PGD expansions, although
the R-POD is in general more accurate than the PGD for the same number of modes.
We also recover an exponential rate of convergence for the R-POD approximation of the
solution of the reaction-diffusion equation, in quite good agreement with the theoretical
expectations.
The guidelines of the paper are as follows. “The Karhunen-Loève decomposition on

Hilbert spaces” section recalls the PODorKarhunen-Loève expansion inHilbert spaces. In
“Recursive POD representation” section, we introduce the recursive POD decomposition
of multivariate functions, and make a general error analysis. “Analysis of solutions of the
reaction-diffusion” section deals with the error analysis for the R-POD expansion of the
solutionof the reaction-diffusion equation. Finally, in “Numerical tests” sectionwepresent
some numerical tests where we analyze the practical performances of the recursive POD
decomposition of multivariate functions.
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Notation—Let X ⊂ R
d be a given Lipschitz domain andG a measure space. We denote

by L2(G,X) the Bochner space of measurable and square integrable functions from G on
X (cf. [10]).

The Karhunen-Loève decomposition on Hilbert spaces
The Karhunen-Loève decomposition, also known as Proper Orthogonal decomposition
(POD in the sequel) provides a technique to obtain low-dimensional approximations of
parametric functions. To describe it, let us consider a Hilbert space H endowed with
a scalar product (·, ·)H , and a parameter measure space G. Let us consider a function
f ∈ L2(G,H ), and introduce the POD operator

A : H �→ H, Av =
∫
G
f (γ ) (f (γ ), v)H dγ for v ∈ H.

POD operator is linear and bounded. Moreover, it is self-adjoint and non-negative.
Indeed, it holds A = B∗B, where B : H �→ L2(G) and its adjoint operator B∗ : L2(G) �→ H
are given by

(Bv)(γ ) = (f (γ ), v)H for v ∈ H,

B∗ϕ = (ϕ, f )L2(G) =
∫
G
f (γ )ϕ(γ ) dγ for ϕ ∈ L2(G). (1)

Furthermore, the operator A is compact. This arises because the operator B is compact
by the Kolmogorov compactness criterion in L2(G) (cf. Muller [22], Chapter 2).
Consequently, there exists a complete orthonormal basis of H formed by eigenvectors

(vm)m≥0 of A, associated to non-negative eigenvalues (λm)m≥0, that we assume to be
ordered in decreasing value. Each non-zero eigenvalue has a finite multiplicity, and 0 is
the only possible accumulation point of the spectrum. If H is infinite-dimensional, then
limm→∞ λm = 0.
Moreover, consider the correlation operator C = BB∗ : L2(G) �→ L2(G),

Cϕ(γ ) =
∫
G
(f (γ ), f (μ))H ϕ(μ) dμ for ϕ ∈ L2(G).

Then the sequence (ϕm)m≥0, with

ϕm(γ ) = 1
σm

(Bvm)(γ ) = 1
σm

(f (γ ), vm)H , σm = √
λm (it also holds vm = 1

σm
B∗ϕm)

(2)

is an orthogonal basis of L2(G). This yields the abstract Karhunen-Loève decomposition,

Corollary 0.1 It holds

f (γ ) =
∑
m≥0

σm ϕm(γ ) vm, a. e. in G,

where the series is convergent in L2(G,H ).

The main interest of the POD is the following best-approximation property (cf. [22],
Chapter 2):

Lemma 0.2 Let Vl = Span(ϕ1, . . . ,ϕl) ⊂ H. Let Wl be any sub-space of H of dimension l.
Then∫

G
dH (f (γ ), Vl)2 dγ ≤

∫
G
dH (f (γ ),Wl)2 dγ ,
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where

dH (v,Wl) = inf
w∈Wl

‖v − w‖H for v ∈ H

denotes the distance from the element ϕ ∈ H to the sub-space Wl.

Let us next consider the case of bivariate functions. Assume that X ⊂ R
d and Y ⊂ R

s

are two bounded domains, d and s are integers≥ 1. LetT be a given function in L2(X×Y ),
that we want to approximate in a low-dimensional variety. Let us consider the integral
operator with kernel T expressed as

v �→ B v, (B v)(y) =
∫
X
T (x, y) v(x) dx. (3)

The operator Bmaps L2(X) into L2(Y ), is bounded and has an adjoint operator B∗ defined
from L2(Y ) into L2(X) as

ϕ �→ B∗ ϕ, (B∗ ϕ)(x) =
∫
Y
T (x, y)ϕ(y)dy. (4)

We are thus in a particular case of the previous abstract setting, with G = Y , H = L2(X)
and f (γ )(x) = T (x, γ ).

Recursive POD representation
The POD expansionmay be recursively adapted to the representation ofmulti-parametric
functions. Let us consider the case of trivariate functions to avoid unnecessary complexi-
ties. Consider a bounded domain Z ⊂ R

q for some integer number q ≥ 1, and a trivariate
function T ∈ L2(X × Y × Z). We identify T with a function of L2(Y × Z, L2(X)) as both
spaces are isometric. From Corollary 0.1 we deduce that there exist two orthonormal sets
(vm)m≥0 and (ϕm)m≥0 which are respectively complete in L2(X) and in L2(Y × Z) such
that T admits the representation

T (x, y, z) =
∑
m≥0

σmϕm(y, z) vm(x), (5)

where the sum is convergent in L2(Y × Z, L2(X)). Moreover the singular values σm (that
we assume to be ordered in decreasing value) are non-negative and converge to zero.
We next apply the POD expansion to eachmode ϕm(y, z). There exists two orthonormal

sets (u(m)
k )k≥1 and (w

(m)
k )k≥1 which are respectively complete in L2(Y ) and L2(Z), such that

ϕm admits the representation

ϕm(y, z) =
∑
k≥0

σ
(m)
k u(m)

k (y)w(m)
k (z), (6)

where the expansion is convergent in L2(Z, L2(Y )), which is isometric to L2(Y × Z). Also,
the singular values (σ (m)

k )k≥0 are non-negative and decrease to zero. We then haves

Lemma 0.3 The function T ∈ L2(X × Y × Z) admits the expansions

T =
∑
m≥0

∑
k≥0

σm σ
(m)
k vm ⊗ u(m)

k ⊗ w(m)
k =

∑
m≥0

σm vm ⊗
⎛
⎝∑

k≥0
σ
(m)
k u(m)

k ⊗ w(m)
k

⎞
⎠ ,

(7)

where both sums are convergent in L2(X × Y × Z).
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Proof It is enough to prove that any of both series is absolutely convergent. Consider the
partial absolute sum for the first one

SN =
∑

0≤m≤N

∑
0≤k≤N

‖σm σ
(m)
k vm ⊗ u(m)

k ⊗ w(m)
k ‖2L2(X×Y×Z).

As the eigenfunctions are orthonormal (in their corresponding spaces),

SN =
∑

0≤m≤N

∑
0≤k≤N

|σm|2 |σ (m)
k |2 ≤

∑
0≤m≤N

|σm|2 ≤ ‖T‖2L2(X×Y×Z),

where the first inequality holds because ‖ϕm‖L2(Y×Z) = 1, and then
∑
k≥0

|σ (m)
k |2 = 1. �

Feasible recursive POD representation

To build up a feasible recursive POD (R-POD) representation, consider a partial sum of
the POD representation (7),

TPM =
∑

0≤m≤M
σm vm ⊗

⎛
⎝ ∑

0≤k≤Km

σ
(m)
k u(m)

k ⊗ w(m)
k

⎞
⎠ , (8)

for somegiven integersK1 ≥ 1, . . . , KM ≥ 1.ThenotationPM is a short for themulti-index
(M,K1, . . . , KM). We have

‖T − TPM‖2L2(X×Y×Z) =
∑

m≥M+1
|σm|2

⎛
⎝∑

k≥0
|σ (m)

k |2
⎞
⎠ +

∑
0≤m≤M

|σm|2
⎛
⎝ ∑

k≥Km+1
|σ (m)

k |2
⎞
⎠

≤
∑

m≥M+1
|σm|2 +

∑
0≤m≤M

|σm|2
⎛
⎝ ∑

k≥Km+1
|σ (m)

k |2
⎞
⎠ (9)

This estimate suggests a practical strategy for the IP method to construct the expansion
(8) within a targeted error:

Algorithm FR-POD (Feasible recursive POD representation)
Assume that some estimates of the remainders are computable:∑

m≥M+1
|σm|2 ≤ |αM |2,

∑
k≥Km+1

|σ (m)
k |2 ≤ |β(m)

K |2. (10)

Set a tolerance ε > 0. Let

A = 1/
√
2, B = 1/(

√
2 ‖T‖L2(X×Y×Z)). (11)

• Step 1: Compute the modes ϕm and vm and singular values σm for m = 1, . . . ,Mε ,
until αMε ≤ A ε.

• Step 2: For each m = 1, . . . ,Mε , compute the modes u(k)m and w(m)
k and the singular

values σ
(k)
m for k = 1, . . . , Km, until β(m)

Km
≤ B ε.

For smooth functions the singular values decrease very fast, so that good estimators
of the remainders are αM = σM+1, β(m)

K = σm
K+1. For less smooth functions, some more

summands of the series defining the remainders could be need. In “Analysis of solutions of
the reaction-diffusion” section we shall obtain estimators αM and β

(m)
K whenT is the solu-

tion of the reaction-diffusion, considered as a function depending on three parameters:
The diffusivity, the reaction speed and the space-time variable. These estimators decrease
exponentially withM.
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Lemma 0.4 Let Tε the representation of T provided by AlgorithmFR-PODwithin an error
level ε. It holds

‖T − Tε‖L2(X×Y×Z) ≤ ε. (12)

Proof From estimate (9) and (10),

‖T − TPM‖2L2(X×Y×Z) ≤ |αMε |2 +
∑

0≤m≤M
|σm|2 |β(m)

Km
|2 ≤ (A2 + ‖T‖2L2(X×Y×Z) B

2) ε2 < ε2,

where we have used that
∑

0≤m≤M
|σm|2 ≤ ‖T‖2L2(X×Y×Z). �

In practice we recursively compute the expansion by the PI method [1]. This avoids to
compute the full singular value decomposition of the correlation matrix, we just compute
the modes needed to reach a given error threshold.

Quasi-optimality of recursive POD representation

The POD representation in general provides themost accurate representation in L2 norm,
for a given number of truncation modes. This is due to the best-approximation property
stated in Lemma 0.2. Let us consider a trivariate approximation of T with M modes, of
the form

T̂M(x, y, z) =
∑

0≤m≤M
X̂m(x) Ŷm(y) Ẑm(z), for (x, y, z) ∈ X × Y × Z. (13)

Lemma 0.5 Let T ∈ L2(X × Y × Z). It holds

‖T − TM‖L2(X×Y×Z) ≤ ‖T − T̂M‖L2(X×Y×Z), (14)

where

TM(x, y, z) =
∑

0≤m≤M
σmϕm(y, z) vm(x), (15)

and T̂M is any trivariate approximation of T with M modes, of the form (13).

Proof Let VM the space spanned by v1, . . . , vM in L2(Y × Z). Observe that TM is the
orthogonal projection in L2(Y × Z) of T on VM . LetWM be any sub-space of dimension
M of L2(Y × Z). Then, due to Lemma 0.2, it holds∫

X
‖(T − TM)(x)‖2L2(Y×Z) dx ≤

∫
X

‖(T − SM)(x)‖2L2(Y×Z) dx

for any SM ∈ WM , where we denoteT (x)(y, z) = T (x, y, z), and similarlyTM(x) and SM(x).
As the spaces L2(X, L2(Y × Z)) and L2(X × Y × Z) are isometric, taking SM = T̂M , the
inequality (14) follows. �
Note that in particular this implies that the POD expansion (15) is more accurate than

the three-variate PGD one.
The following result states the quasi-optimality of the feasible R-POD with representa-

tions.

Lemma 0.6 It holds

‖T − Tε‖L2(X×Y×Z) ≤ ‖T − T̂M‖L2(X×Y×Z) + ε/
√
2, (16)

for any trivariate approximation T̂M of T withM modes, of the form (13).
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Proof We have

‖T − Tε‖L2(X×Y×Z) ≤ ‖T − TM‖L2(X×Y×Z) + ‖TM − Tε‖L2(X×Y×Z)

≤ ‖T − TM‖L2(X×Y×Z) +
⎛
⎝ ∑

0≤m≤M
|σm|2

⎛
⎝ ∑

k≥Km+1
|σ (m)

k |2
⎞
⎠

⎞
⎠

1/2

≤ ‖T − TM‖L2(X×Y×Z) + ε/
√
2 ≤ ‖T − T̂M‖L2(X×Y×Z) + ε/

√
2,

where the second-to-last estimate is obtained similarly to the proof of Lemma 0.4, and
the last one follows from Lemma 0.5. �

Then, the feasible R-POD representation is more accurate than T̂M , for ε small enough,
if the inequality in (16) is strict. If (16) is an equality, this means that T̂M is optimal. In this
case the accuracy of the feasible R-POD representation can be made arbitrarily close to
the optimal one. It should be noted, however, that the R-POD contains more modes than
T̂M . Anyhow, we present some numerical experiments in “Numerical tests” section that
show than the R-POD representation is more accurate than the PGD one, for the same
number of modes.

Analysis of solutions of the reaction-diffusion
Let us now consider the homogeneous Dirichlet boundary value problem of the linear
reaction-diffusion equation,⎧⎪⎨

⎪⎩
∂tT − γ 
T + α T = f in Q,

T = 0 in (0, b) × ∂�,
T (x, 0) = T0(x) in �,

(17)

where γ > 0 and α ≥ 0 respectively denote the diffusivity and the reaction rate, and
Q = � × (0, b). This problem fits into the functional framework of constant-coefficient
linear parabolic equations, and admits a unique solution T ∈ L2((0, b), H1(�)) such that
∂tT ∈ L2(Q) if f ∈ L2(Q) and T0 ∈ L2(�). We shall assume that the pair (γ ,α) ranges
in a set G = [γm, γM] × [α0,αM] with 0 < γm < γM , 0 ≤ α0 ≤ αM . Our purpose in this
section is to analyze the rate of convergence of the approximation of T by a recursive
POD expansion in separated tensor form:

T ((x, t), (γ ,α)) � TP((x, t), (γ ,α)) =
M∑

m=0

I∑
i=0

τ
(m)
i ϕ

(m)
i (γ )w(m)

i (α) vm(x, t), (18)

where P = (M, I), the τ
(m)
i are real numbers and ϕ

(m)
i ∈ L2(γm, γM), w(m)

i ∈ L2(0,αM)
and vm ∈ L2(Q) are eigenmodes. To obtain this expression, let us start from the POD
expansion of T where μ = (γ ,α) ∈ G and z = (x, t) ∈ Q,

T ((x, t), (γ ,α)) =
∑
m≥0

σm ϕm(γ ,α) vm(x, t), (19)

where the expansion converges in L2(G × Q). As ϕm ∈ L2(G), it also admits a POD
expansion

ϕm(γ ,α) =
∑
i≥0

σ
(m)
i u(m)

i (γ )w(m)
i (α), (20)
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which is convergent in L2(G), where {u(m)
i }i≥0 is an orthonormal basis of L2(γm, γM) and

{w(m)
i }i≥0 is an orthonormal basis of L2(0,αM). If we truncate the expansion (19) for T to

M+1 summands and that (20) for ϕm at I +1 summands, then we recover the expression
for TP in (18) where τ

(m)
i = σm σ

(m)
i .

To analyze the rate of convergence of TP towards T , we need some technical tools. Let
us consider the orthonormal Fourier basis {ek} of L2(�) formed by the eigenfunctions of
the Laplace operator. It holds

− 
ek = λk ek in�, ek = 0 in ∂�, (21)

where λk > 0 is the eigenvalue associated to ek . The sequence {λk}k≥0 is ordered to be
non-decreasing with lim

k→∞
λk = 0. We decompose T0 and f as

T0(x) =
∑
k≥0

ak ek (x), f (x, t) =
∑
k≥0

fk (t) ek (x), with ak = (T0, ek )L2(�), fk (t) = (f (·, t), ek )L2(�),

where the series are respectively convergent in L2(�) and L2(Q), and

‖T0‖2L2(�) =
∑
k≥0

|ak |2, ‖f ‖2L2(Q) =
∑
k≥0

‖fk‖2L2(0,b). (22)

The solution of the reaction-diffusion equations is then expanded in terms of the eigen-
functions ek ,

T ((x, t), (γ ,α)) =
∑
k≥0

θk (t, (γ ,α)) ek (x), (23)

where the coefficients θk are defined by

θk (t, (γ ,α)) = ak e−(γ λk+α) t +
∫ t

0
fk (s) e−(γ λk+α)(t−s) ds.

We shall consider T as a mapping from G into L2(Q) that brings a couple (γ ,α) ∈ G into
the function T ((·, ·), (γ ,α)) ∈ L2(Q), that we denote T(γ ,α).
Our main result is the following.

Theorem 0.7 The truncated POD series expansion TP given by (18) satisfies the error
estimate

‖T − TP‖L2(G×Q) ≤ Cρ (ρ−M + √
M ρ−I ), (24)

for any 1 < ρ < ρ∗, where Cρ > 0 is a constant depending on ρ, unbounded as ρ → 1,
and ρ∗ = (√γM + √

γm)/(
√

γM − √
γm).

Therefore, the recursive POD expansion converges with spectral accuracy in terms of
the number of truncation modes in the main and secondary expansions.
The proof of this result is essentially based upon the analyticity of T with respect to

diffusivity γ and reaction rate α. It is rather technical, and will come up after several
lemmas, the first of which is

Lemma 0.8 The mapping (γ ,α) ∈ G �→ T(γ ,α) ∈ L2(Q) is analytic.

Proof According to (23), T is the sum of two contributions, coming from the initial
condition T0 and the source f . We prove the analyticity for each of them.
i.—Let us consider the part generated by the initial condition, corresponding to

θk (t, (γ ,α)) = ak e−(γ λk+α) t .
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Let us bound the residual

sup
γ≥ε,α≥0

∥∥∥∥
∑
k≥L

θk (t, (γ ,α)) ek (x)
∥∥∥∥
2

L2(Q)
= sup

γ≥ε,α≥0

∑
k≥L

(ak )2
∫ b

0
e−2(γ λk+α)t dt

= sup
γ≥ε,α≥0

∑
k≥L

(ak )2
1 − e−2(γ λk+α)b

2(γ λk + α)
≤ 1

2ελ0

∑
k≥L

(ak )2,

for any L > 0. Then the series uniformly converges on each set [ε,+∞[×[0,+∞[, for all
ε > 0. As each term in the series (23) determines an analytic function from G into L2(Q),
then the limit is analytic from (0,+∞) × (0,+∞) into L2(Q).
ii.—Let us now investigate the part arisen from the source f , corresponding to

θk (t, (γ ,α)) =
∫ t

0
fk (s) e−(γ λk+α)(t−s) ds. (25)

This needs the preliminary statement.
Let g ∈ L2(0, b) and λ > 0, α ≥ 0 be given, the function

G : (γ ,α) �→
∫ t

0
g(s) e−(γ λ+α)(t−s) ds,

mapping ]0,+∞[×]0,+∞[ into L2(0, b), is analytic.
To prove it, we show that (γ ,α) �→ G(γ ,α) is locally expressed as a convergent power

series. Let γ0 > 0, α0 > 0 be fixed. On account of the analyticity of the exponential we
derive that

G(γ , t) =
∑
n≥0

[λ(γ − γ0) + (α − α0)]n

n!

∫ t

0
g(s)[−(t − s)]ne−(γ0λ+α0)(t−s) ds

:=
∑
n≥0

[λ(γ − γ0) + (α − α0)]n

n!
Gn(t).

This series is absolutely convergent in L2(0, b). Indeed, the integral term being a convolu-
tion, then Young’s inequality can be used which implies that

∑
n≥0

[λ(γ − γ0) + (α − α0)]n

n!
‖Gn‖L2(0,b)

≤
∑
n≥0

[λ(γ − γ0) + (α − α0)]n

n!
‖g‖L2(0,b)‖(−t)ne−(γ0λ+α0)t‖L1(0,∞)

= ‖g‖L2(0,b)
∑
n≥0

[λ(γ − γ0) + (α − α0)]n

(λγ0 + α0)n
.

The geometrical series is convergent for (λ,α) such that |(λγ + α) − (λγ0 + α0)| < η

provided that η < λγ0 + α0. Then, the function G : ]0,+∞[×]0,+∞[�→ L2(0, b) is
analytic.
To finish the proof, let us check out that the series (23) with θk given by (25) is uniformly

convergent in [ε,+∞[×[0,+∞[, for all ε > 0. For a given L we have

sup
γ≥ε,α≥0

∥∥∥∑
k≥L

θk (t, (γ ,α)) ek (x)
∥∥∥2
L2(Q)

= sup
γ≥ε,α≥0

∑
k≥L

‖θk (t, (γ ,α))‖2L2(0,b)

≤ sup
γ≥ε,α≥0

∑
k≥L

‖fk‖2L2(0,b)‖e−(γ λk+α)t‖2L1(0,∞)

≤ 1
(ελ0)2

∑
k≥L

‖fk‖2L2(0,b).
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Then the series (23) of analytic functions is uniformly convergent. As a result, the limit is
also analytic. The proof is complete. �
Another preliminary tool required in our study is related to the polynomial approxima-

tion of regular vector-valued functions. We shall adapt a result by S. Bernstein (in 1912),
stated for complex-valued functions, and improved since then in many works (see for
instance [19]). For some ρ > 1, let the set Eρ in the complex plan be defined as

Eρ = {
ζ ∈ C; |ζ − 1| + |ζ + 1| ≤ ρ + ρ−1 }

.

Consider a function F : Eρ → H where H is a Hilbert space. For a given integer number
M ≥ 0 let FM be the truncated Chebyshev polynomial series expansion of F of degreeM
with coefficients in H . The shape of the polynomial FM will be fixed later on (see Remark
0.2). Following the proof as exposed in [19], we come up with

Lemma 0.9 Assume that F is analytic and bounded in Eρ . There holds that

max
ξ∈[−1,1]

‖F (ξ ) − FM(ξ )‖H ≤ Cρ ρ−M.

Remark 0.1 The constant in the lemma may be fixed to (see [25, Theorem 8.2])

Cρ = 2
ρ − 1

‖F‖L∞(Eρ ,H ),

that blows up as ρ goes to unity.

We now need to derive similar approximation estimates for analytic vector valued
functions defined from G into L2(Q). The following result holds

Lemma 0.10 For any α ∈ [0,αM] there exists a polynomial S(α)M ranging from [γ0, γM] into
L2(Q), with degree ≤ M, such that for all ρ (1 < ρ < ρ∗),

max
(γ ,α)∈G

‖T (γ ,α) − S(α)M (γ )‖L2(Q) ≤ Ĉρ ρ−M,

where Ĉρ is a non-negative constant, possibly unbounded as ρ → 1.

Proof Weonly give a sketch of the proof. Following the result by Lemma 0.8, for any given
α ≥ 0, the vector-valued function γ ∈ C �→ T (γ ,α) is analytic inReγ > 0. This implies
that provided that ρ < ρ∗, the ellipse

Eρ =
{
ζ ∈ C; |ζ − γM | + |ζ − γm| ≤ γM − γm

2
(ρ + ρ−1)

}

is included in the analyticity set of T . Consider thus the coordinates transformation

ζ = τ (ζ̂ ) := γM − γm
2

ζ̂ + γM + γm
2

, ζ̂ ∈ Eρ .

It is affine and bijective from Eρ into Eρ and transforms the reference interval [−1, 1]
into G = [γm, γM]. This transformation makes it possible to construct such a polynomial
S(α)M . In fact, we start by constructing the truncated Chebyshev series expansion Ŝ(α)M (ζ̂ ) of
the (transformed) function T̂ (α)(ζ̂ ) = T (ζ ,α). Then, back to the interval [γm, γM], we set
S(α)M (ζ ) = Ŝ(α)M (ζ̂ ).
To obtain the error estimate, from Lemma 0.9 we obtain

max
γ∈G ‖T (γ ,α) − S(α)M (γ )‖L2(Q) ≤ 2

ρ − 1
‖T (·,α)‖L∞(Eρ ,L2(Q)) ρ

−M ≤ 2K
ρ − 1

ρ−M,



Azaïez et al. Adv. Model. and Simul. in Eng. Sci. (2016) 3:3 Page 11 of 22

where

K = sup
α∈[0,αM ]

‖T (·,α)‖L∞(Eρ ,L2(Q)),

which is finite and independent of α ∈ [0,αM] due to the uniform boundedness of T (γ ,α)
in compact sets of (0,+∞) × (0,+∞). The proof is complete. �

Remark 0.2 The polynomial S(α)M may be put under the form

S(α)M (γ ) =
∑

0≤m≤M
w(α)
m Um(γ ), ∀γ ∈ G,

where Um stands for the polynomial obtained by transporting the Chebyshev polynomial
of degree m defined in [−1, 1] to the interval G, and the coefficients (w(α)

m )0≤m≤M belong
to L2(Q).

Proof of Theorem 0.7 Let us consider the truncated primary expansion

TM((x, t), (γ ,α)) =
M∑

m=0
σm ϕm(γ ,α) vm(x, t),

for some integerM ≥ 0. Let SM be the vector-valued polynomial (considered as a function
of (γ ,α)) constructed in Lemma 0.10. In view of Lemma 0.2 and Remark 0.2, the following
identity holds,

‖T − TM‖L2(G×Q) ≤ ‖T − SM‖L2(G×Q) ≤ |G|1/2 max
(γ ,α)∈G

‖T (γ ,α) − S(α)M (γ )‖L2(Q).

Applying the result stated in Lemma 0.10 it follows that

‖T − TM‖L2(G×Q) ≤ Ĉρ ρ−M. (26)

Next, observe that as the sequence (vm)m≥0 is orthonormal in L2(Q), then

‖TM − TP‖2L2(G×Q) ≤
M∑

m=0
σ 2
m ‖ϕm − ϕ(I)

m ‖2L2(G), (27)

where

ϕ(I)
m (γ ,α) =

I∑
i=1

σ
(m)
i u(m)

i (γ )w(m)
i (α)

is the truncated POD expansion of ϕm to I + 1 terms. Also, by (2),

ϕm(γ ,α) = 1
σm

∫
Q
T ((x, t), (γ ,α)) vm(x, t) dx dt. (28)

Then ϕm is an analytic function from (0,+∞) × (0,+∞) into R. By an argument similar
to that of Lemma 0.10, we prove that for any α ∈ [0,α1] there exists a polynomial in γ ,
r(m)
I,α (γ ), of degree least or equal than I such that

max
γ∈[γm,γM ]

|ϕm(γ ,α) − r(m)
I,α (γ )| ≤ 2

1 − ρ
‖ϕm(·,α)‖L∞(Eρ ) ρ

−I . (29)

From (28), we deduce σm |ϕm(γ ,α)| ≤ ‖T (γ ,α)‖L2(Q) for all (γ ,α) ∈ G, and then

σm max
(γ ,α)∈G

|ϕm(γ ,α) − r(m)
I,α (γ )| ≤ K

1 − ρ
ρ−I ,
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for some constant K ≥ 0 independent ofm and α. Consequently, in view of Lemma 0.2,

σ 2
m ‖ϕm − ϕ(I)

m ‖2L2(G) ≤ σ 2
m ‖ϕm − r(m)

I ‖2L2(G) ≤ |G| σ 2
m ‖ϕm − r(m)

I ‖2L∞(G) ≤ C2
ρ ρ−2I ,

(30)

where r(m)
I (γ ,α) = r(m)

I,α (γ ) and Cρ = |G|1/2 K
1 − ρ

. From (27) we deduce that

‖TM − TP‖L2(G×Q) ≤ Cρ

√
M ρ−I .

Combining this estimate with (26) completes the proof. �
Remark 0.3 • The constantCρ in estimate (24) also depends on the parameters domain

G. We do not make explicit this dependence to simplify the notation.
• The limit value for the convergence rates ρ∗ only depends on the ratio γM/γm, as

ρ∗ = 2√
γM
γm

− 1
+ 1.

• In view of estimate (24), in general a quasi-optimal choice for I is I = M + 1
2
logM

(actually, the closest integer to this number). In this case,

‖T − TP‖L2(G×Q) ≤ Cρ ρ−M.

We thus obtain the same asymptotic convergence order when M → ∞ as for ‖T −
TM‖L2(G×Q).

• For more general parameter-depending parabolic equations, the above technique
applies if the elliptic operator is symmetric.This allows todiagonalize theproblemand
expand the solution as a series in terms of the eigenfunctions of the elliptic operator.
The use of Courant–Fischer–Weyl Theorem [19] allows to reduce the estimate of the
truncation error of the PODexpansion to the estimate of the interpolation error of the
solution with respect to one of the parameters, eventually by polynomial functions.
Then the convergence rate of the POD expansion will depend on the smoothness of
the solution with respect to the parameters of the problem.

Reordering of recursive POD expansion

A practical way to re-order expansion (18) is in decreasing order of the values τ
(i)
m =

σm σ
(i)
m . This leads to an expansion of the form

TP((x, t), (γ ,α)) =
L∑

l=0
τ̃l ϕ̃l(γ ) w̃l(α) ṽl(x, t), L = (M + 1)(I + 1), (31)

where the sets {τ (i)m , m = 0, . . . ,M, i = 1, . . . , I} and {τ̃l , l = 0, . . . , L} coincide, and
τ̃0 ≥ τ̃1 ≥ · · · ≥ τ̃L.
To analyze the rate of convergence of this rearrangement of the RPOD expansion, let us

at first remark that Theorem 0.7 allows, as a by-product, to estimate the singular values
σm and σ

(i)
m . Indeed, denote by L(E, F ) the set of linear bounded mappings from a Banach

space E into a Banach space F , the following bound holds,

σM+1 = min
BM∈L(L2(G),L2(Q)),rankBM≤M

‖B − BM‖L(L2(G),L2(Q)), (32)

where

(Bϕ)(z) =
∫
G
T (γ , z)ϕ(γ ) dγ .∀z ∈ Q.
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Consider the operator

(B̃Mϕ)(z) =
∫
G
TM(γ , z)ϕ(γ ) dγ , ∀z ∈ Q. (33)

Then by estimate (26)

σM+1 ≤ ‖B − B̃M‖L = ‖T − TM‖L2(G×Q) ≤ Ĉρ ρ−M. (34)

Similarly,

σ
(m)
i+1 ≤ min

E(m)
I ∈L,rankE(m)

I ≤I
‖E(m) − E(m)

I ‖L(L2(G),L2([0,α1]),

where (E(m)u)(α) =
∫
G

ϕ(m)(γ ,α)u(γ ) dγ , ∀α ∈ [0,α1]. Let us assume that the ϕ(m)

satisfy the additional (slightly) stronger boundedness property

sup
α∈[0,α1], m=0,1,...

‖ϕm(·,α)‖L∞(Eρ ) < +∞. (35)

Then, in view of estimate (29),

σ
(m)
I+1 ≤ ‖E(m) − Ẽ(m)

I ‖L(L2(G),L2([0,α1]) = ‖ϕ(m) − r(m)
I ‖L2(G) ≤ Ĉ (m)

ρ ρ−I , (36)

where (Ẽ(m)
I u)(α) =

∫
G
r(m)
I (γ ,α)u(γ ) dγ , ∀α ∈ [0,α1].

Then the error associated to this reordering, for largeM and I , is estimated by

‖T − TP‖L2(G×Q) ≤ Dρ L1/4 ρ−2
√
L (37)

for any 1 < ρ < ρ∗, where Dρ is a constant, possibly unbounded as ρ → 1. To justify it,
let us write TP as

TP((x, t), (γ ,α)) =
K∑

k=0

∑
m+i=k

τ
(m)
i ϕ

(m)
i (γ )w(m)

i (α) vm(x, t),

where for simplicity we assume thatMand I are such that L = (K + 1)(K + 2)/2 for some
integer K ≥ 0. For other values there will appear a residual corresponding to high order
modes that will be asymptotically negligible, as it is of larger order with respect to ρ. If
estimates (34) and (36) are sharp, it holds

τ
(m)
i � Aρ ρ−(m+i) (38)

for some constant Aρ . Then, τ
(m)
i < τ

(n)
j if i + m > j + n and consequently the set

{τ̃l , (k(k + 1)/2) − 1 ≤ l ≤ (k + 1)(k + 2)/2 } coincides with the set {τ (m)
i , m + i = k }.

Then, due to estimate (38),

‖T − TP‖2L2(G×Q) ≤
∑

k≥K+1

∑
m+i=k

|τ (m)
i |2 ≤ Aρ

∑
k≥K+1

(k + 1) ρ−2k . (39)

As
∑

k≥K+1
(k + 1) ρ−2k � (K + 1) ρ−2(K+1), K � √

2L, then (37) follows.

Practical implementation

Assume again that estimate (36) is sharp. Then
∑
i≥I+1

|σ (m)
i |2 � C ′

m ρ−2I � |σ (m)
I+1|2. Thus,

we may set the estimator β
(m)
I = σ

(m)
I+1, and similarly αM = σM+1, in (10). This suggests to
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consider a different number of summands in the secondary expansions of (18), what leads
to an expansion as in (8),

TP((x, t), (γ ,α)) =
M∑

m=0

Im∑
i=0

τ
(m)
i ϕ

(m)
i (γ )w(m)

i (α) vm(x, t), (40)

where M and Im are determined to fit the error tolerance tests σM ≤ A ε and σ
(m)
Im ≤ B ε

where A and B are given in (11). In practice for simplicity these may be replaced by
σM+1 ≤ ε and σ

(m)
Im+1 ≤ ε.

Also, in view of (38) and (39), we deduce that a good estimator the error ‖T−TP‖L2(G×Q)
is τ

(M)
I , associated to the last computed mode, such that I + M = K .

Numerical tests
This section is devoted to the comparison of the practical performances of the feasible
R-POD expansion. In particular, we confirm the exponential rate of convergence of the
truncated POD expansion for the diffusion-reaction equation proved in section “Analysis
of solutions of the reaction-diffusion”. We are also interested in comparing the rate of
convergence of R-POD and PGD expansions, as the latter is particularly well suited to
approximate multivariate functions. We have considered functions with high and low
smoothness, as the smoothness plays a crucial role in the decreasing of the size of the
modes in both expansions. In addition we have tested the ability of both representations
to approximate functions that already have a separated tensor structure. For complete-
ness we describe in the Appendix the application of the PGD expansion to approximate
multivariate functions.

Multi-variate functions

In this test we apply the R-PODand the PGD to approximatemultivariate functions. Actu-
ally we consider tri-variate functions a generic test to determine the relative performances
of both expansions. We have considered the following tests:
Case 1: Function with tensor structure.

S1(x, y, z) = x + y + z. (41)

Case 2: Function with non tensor structure.

S2(x, y, z) = sin(xyz). (42)

Case 3: Function with low regularity

S3(x, y, z) = √
x + 2y + z + 4. (43)

The space domain is fixed to � = X × Y × Z, with X = Y = Z =] − 1, 1[ and
Gauss–Lobatto–Legendre quadrature is used (see [4]) with the polynomial degree equal
toN = 64. These formulas are used to evaluate thematrix representation of the operators
B and A.
We set the tolerance error in L2(X × Y × Z) in the residual of both RPOD and PGD

expansions toμ = 10−7. This corresponds to ε = 10−14 inAlgorithmFR-RPOD.Wehave
displayed in Figs. 1, 2, 3 the comparison of the convergence history of the feasible R-POD
and PGD processes, for all the three-variate functions considered. The x-axis represents
the number of eigen-modes while the y-axis represents the L2(X × Y × Z) error, in
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Fig. 1 Comparison of errors for feasible R-POD and PGD. Function S1(x, y, z) = x + y + z
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Fig. 2 Comparison of errors for feasible R-POD and PGD. Function S2(x, y, z) = sin(xyz)
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Fig. 3 Comparison of errors for feasible R-POD and PGD. Function S3(x, y, z) = √
x + 2y + z + 4

logarithmic coordinates. We observe in Fig. 1 that the R-POD just needs 3 modes to fit a
function that already has a separated tensor structure, while the PGD requires 17 modes
to reach the error level. Further, that for functions with low smoothness both expansions
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require approximately the same number of modes to reach amoderate accuracy, however
the R-POD is more efficient to reach high accuracy in all cases. Finally, that the error
associated to the R-POD expansions is almost in all cases below the one associated to the
PGD one for the same number of modes.
Table 1 displays the number of modes required by each expansion to reach the error

below the threshold μ = 10−7. We observe that both expansions appear to converge
for all cases considered, although in general both require a larger number of modes to
approximate functions with lower smoothness. Also, that in all cases considered the R-
POD requires less modes than the PGD.

Reaction-Diffusion equation

This part is devoted to determining the effective convergence rate of the R-POD approxi-
mation of some solutions to the transient reaction-diffusion equationwhen parameterized
by the diffusivity and reaction coefficients. We assess the exponential convergence rate
and investigate the variation of this rate with respect to the set G = [γm, γM] × [αm,αM].
Test 1: Exponential convergence rate.
Weconsider the time-dependent reaction-diffusion equation in the domainQ = (0, 1)×

(0, 1) and we select three possible pairs of source terms and initial conditions, given by

Data 1: f (t, x) = √|x − t − 0.3|, T0(x) = 0,

Data 2: f (t, x) = 0, T0(x) = |x − 0.4|,
Data 3: f (t, x) = √|x − t − 0.3|, T0(x) = |x − 0.4|.

These data have mild singularities, so the temperature solutions of (17), have a reduced
regularity with respect to x and t, in particular for t = 0 for the two last data. The heat
problem is discretized by an Euler scheme/Gauss–Lobatto–Legendre spectral method see
[4] (the time step is δt = 10−2 and the polynomial degree is N = 64).
Calculation for the matrix representations of the operators B and A are realized by

means of accurate quadrature formulas. Indeed, various integrals (with respect to either
γ ,α or (t, x)) are computed usingGauss-Lobatto quadrature formulaswith high resolution
in the corresponding intervals.
Figure 4 shows the convergence history of the R-POD expansion for the reaction-

diffusion equation (40) in terms of the total number of modes in the expansion. We have
considered the sets of diffusivities γ ∈ [1, 51], and reaction rates α ∈ [0, 100]. The error
is measured in L2(Q) norm. The numbers of secondary modes Im has been determined to
fit the test σ

(Im+1)
m ≤ ε = 10−10. In practice a small amount of secondary modes (actually,

Im � 4) is needed to fit this test. The modes have been re-arranged in decreasing order
of the effective singular values τ

(m)
i = σm σ

(m)
i (denoted by a � symbol). We observe that

the τ
(m)
i indeed are good error estimators for this re-arranged expansion, as was argued

in “Practical implementation” section.

Table 1 Comparison of feasible R-POD and PGD for trivariate functions

Modes R-POD Modes PGD

Case 1 3 17

Case 2 9 17

Case 3 21 43
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To assess the regularity of the eigenmodes associated to the conductivity parameter γ

we choose to plot the three first corresponding to themost important singular values. The
computational is made for case of Data 3. Based on Fig. 5 we clearly observe that these
functions are regular. Same observation is made for the reaction parameter
Test 2: Dependence of the convergence rate with respect to the parameters range.
The dependence with respect to the ratio of diffusivities R = γM/γm of the exponential

convergence rate, stated byTheorem0.7, is illustrated in Fig. 6.Wedepict the convergence

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
M

10-10

10-8

10-6

10-4
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100

Singular Values

L2-error
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10-2

100

Singular Values
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0 2 4 6 8 10 12 14
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Fig. 4 Convergence history for POD expansion of the solution of the reaction-diffusion equation. Data 1 (top
left), Data 2 (top right) and Data 3 (bottom)

0 10 20 30 40 50
Conductivity

-1,0

-0,5

0,0

0,5 First mode
Second mode
Third mode

Fig. 5 Three first eigenmodes associated to the conductivity parameter (γ )
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Fig. 6 Variation of the R-POD errors (in logarithmic scale) with respect to the ratio R = γM/γm , for fixed
αm = 0, αM = 100. The variableM stands for the square root of the number of modes

history for Data 3, computed for R = 25, 64 and 400, in all cases with a fixed interval of
reaction rates [αm,αM] = [0, 100], with respect to the square root of the numbers of
modes,M = √

L. We can point out that the convergence rate degrades as R increases, in
accordance with the fact that

ρ∗ = 2√
γM
γm

− 1
+ 1.

Weobserve some gap between the purely exponential decay of the error and the computed
one, as the error curve in logarithmic coordinates appears to be a slightly concave curve
instead of a straight line. This is consistent with the presence of the factor L1/4 in estimate
(37).
In Table 2, we present the computed exponential convergence rate αc = 2 log ρc, so

that the L2(G × Q) error, in terms of the number of modes after rearranging the RPOD
series, is assumed to satisfy

e(L) = C e−αc
√
L,

and the theoretical one given by α∗ = 2 log ρ∗. The value αc is calculated by exponential
regression. We indeed recover an exponential rate of convergence with respect to the
square root of the number of modes, with an effective convergence rate larger than the
theoretical one. We numerically state that the computed rate in all cases is larger than
one (see Table 2). We thus observe a kind of super-convergence effect.
We next test the dependence of the convergence rate with respect to the interval of

reaction rates [α0,αM]. We show in Fig. 7 the convergence rates history corresponding

Table 2 Computed and theoretical convergence rates, for different values of R = γM/γm
and fixed αm = 0, αM = 100 (for Data 3)

R = γM/γm αc α∗
25 1.48 0.81

36 1.44 0.67

64 1.38 0.50

100 1.36 0.40

400 1.35 0.20
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Fig. 7 Variation of the R-POD errors with respect to the reaction rate α. The curves correspond to α0 = 0,
αM = 10, 100, 500, 1000, with γm = 1, γM = 51 in all cases. The variableM stands for the square root of the
number of modes
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Fig. 8 Analysis of dependence of the R-POD errors with respect to the ratio R = γM/γm . The curves
correspond to the indicated pairs (γm, γM). The variableM stands for the square root of the number of modes

to αm = 0, αM = 10, 100, 500, 1000 for fixed γm = 1, γM = 51. We observe a decrease
of the rate as αM increases, that however appears to be uniformly bounded, in agreement
with estimate (37), where the dependence of the error bound with respect to [α0,αM] only
appears through the coefficient Dρ .
The last numerical experiment studies wether the dependence of the exponential con-

vergence on the diffusivities range [γm, γM] indeed takes place in terms of the ratio
R = γM/γm. This is confirmed by the result plot in Fig. 8, where we consider the couples
(γm, γM) = (1, 2) and (4, 8), corresponding to R = 2, and (γm, γM) = (1, 25) and (4, 100),
corresponding to R = 25, with fixed α0 = 0, αM = 100.

Conclusion
We have introduced in this paper a recursive POD (RPOD) expansion to approximate
multivariate functions. The approach consists in building truncated recursive PODexpan-
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sions of the modes that appear in the expansions at the previous level, to a given tolerance
error. We have constructed a practical truncation error estimator by means of bounds for
the singular values, which is used to recursively compute the expansion by the Power Iter-
ate (PI) method. This allows to compute just the modes needed to attempt a given error
threshold. We have proved the quasi-optimality of this RPOD expansion in L2, similar to
that of the POD expansion.
We have proved the exponential rate of convergence of the RPOD expansion for the

solution of the reaction-diffusion equation, based upon the analyticity of its solution with
respect to those parameters.
We have finally performed some relevant numerical tests that on one hand show that

the RPOD is more accurate than the PGD expansion for three-variate functions, and
that on another hand confirm the exponential rate of convergence for the solution of
the reaction-diffusion equation, presenting a good agreement with the qualitative and
quantitative theoretical expectations.
Further extensive tests for more complex multivariate functions, in particular of practi-

cal interest for engineering applications, are in progress and will appear in a forthcoming
paper.
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Appendix: The PGD representation of multivariate functions
We describe in this section the procedure to calculate the PGD representation of a multi-
variate functions. We focus on trivariate functions for the sake of clarity. Its extension to
general multivariate functions is straightforward.
The PGD approximation of a trivariate functionT searches for an expansion of the form

T (x, y, z) =
∑
m≥0

Xm(x)Ym(y)Zm(z), for (x, y, z) ∈ X × Y × Z. (44)

The leading term X0 ⊗ Y0 ⊗ Z0 is initially computed by means of an adaptation of the
Power Iteration algorithm: Assume known an approximation X (n−1)

0 ⊗ Y (n−1)
0 ⊗ Z(n−1)

0 .

Step 1. Find Z(n)
0 ∈ L2(Z) such that for all Z∗ ∈ L2(Z),(

X (n−1)
0 ⊗ Y (n−1)

0 ⊗ Z(n)
0 − T, X (n−1)

0 ⊗ Y (n−1)
0 ⊗ Z∗ )

L2(X×Y×Z)
= 0. (45)

Step 2. Find X̃ (n)
0 ∈ L2(X) such that for all X∗ ∈ L2(X),(

X̃ (n)
0 ⊗ Y (n−1)

0 ⊗ Z(n)
0 − T, X∗ ⊗ Y (n−1)

0 ⊗ Z(n)
0

)
L2(X×Y×Z)

= 0. (46)

Set

X (n)
0 = X̃ (n)

0

‖X̃ (n)
0 ‖L2(X)

.
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Step 3. Find Ỹ (n)
0 ∈ L2(Y ) such that for all Y ∗ ∈ L2(Y ),(

X (n)
0 ⊗ Ỹ (n)

0 ⊗ Z(n)
0 − T, X (n)

0 ⊗ Y ∗ ⊗ Z(n)
0

)
L2(X×Y×Z)

= 0. (47)

Set

Y (n)
0 = Ỹ (n)

0

‖Ỹ (n)
0 ‖L2(Y )

.

The procedure is to be iterated until the error eventually is below a given tolerance.
TheMth mode XM ⊗YM ⊗ZM is computed in the same way, by replacing the function

T by the residual T − T̂M−1, where now

T̂M−1(x, y, z) =
∑

0≤m≤M−1
Xm(x)Ym(y)Zm(z), for (x, y, z) ∈ X × Y × Z. (48)

In this way, the residual T − T̂M is orthogonal to Span(XM ⊗ YM ⊗ ZM).
There is no proof, up to the knowledge of the authors, that the PGD expansion (44)

exists for functions T ∈ L2(X ×Y ×Z) or perhaps with additional regularity, nor that the
alternate Power Iteration process (45)–(47) converges. There is a proof, however, that for
general functions depending on three or more parameters, there does not exist optimal
sub-spaces of finite dimension 3 or larger, that satisfy the optimal approximation property
set by Theorem 0.2 (see [9]).
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