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the cellular automata, which is a dynamic system that is discrete both in space and time.
Method: This work describes a computer model based on cellular automata for the
adhesion process and cell proliferation to predict the behavior of a cell population in
suspension and adhered to a substrate. The values of the simulated system were
obtained through experimental tests on fibroblast monolayer cultures.
Results: The results allow us to estimate the cells settling time in culture as well as the
adhesion and proliferation time. The change in the cells morphology as the adhesion
over the contact surface progress was also observed. The formation of the initial link
between cell and the substrate of the adhesion was observed after 100 min where the
cell on the substrate retains its spherical morphology during the simulation. The cellular
automata model developed is, however, a simplified representation of the steps in the
adhesion process and the subsequent proliferation.
Conclusion: A combined framework of experimental and computational simulation
based on cellular automata was proposed to represent the fibroblast adhesion on
substrates and changes in a macro-scale observed in the cell during the adhesion
process. The approach showed to be simple and efficient.
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Background
The process of cell-substrate adhesion occurs on anchorage-dependent cells such as
fibroblasts. This is accomplished either by electrostatic forces and other interactions of
cell adhesion molecules on the cell membrane [1,2]. The process involves initial events as
protein adsorption, followed by cell adhesion and proliferation. Furthermore late events
associated with cell growth, differentiation, and matrix deposition cell functioning are
involved.

At the junctions between cell-substrate basal adhesions can be found. These adhesions
are developed by anchoring proteins, mainly integrins, which allow the cell to adhere to
the substrate through focal adhesions, connecting the actin cytoskeleton to the substrate
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through them [3,4]. The bonding between cells and/or on a specific substrate determines
the formation of a tissue. The functional properties of the tissue are also critically deter-
mined by the right ordering of the cells together. Hence understanding how the adhesion
process and the factors involved in it is very important. A bad cell anchorage may trigger
different pathologies which may appear in humans as disorders or physiological troubles.

The in-silico models can demonstrate how the biophysical stimuli can be correlated with
the experimental patterns observed in the development of different tissues. One of these
computational tools currently used is the cellular automata (CA). A cell population can be
defined as a discrete dynamical system in space and time, where the individual behavior of
each cell behaves according to specific variables and local rules [5]. Each element evolves
according to its state at a specific time and the state of neighboring entities [6]. These
states vary over time by changing stimuli from the cell or its neighbors [7].

Thus, this set of elements achieves a sensible evolution towards the state of neighboring
elements which is known as the local transition rule. This rule affects a number of states
within the regular arrangement, known as the evolution of space and determines the
behavior of cellular automata [8—10]. Within this context, several authors have developed
algorithms in which the cells are considered as elements of an automaton whose evolution
rules were established by the behavior of normal cells and cancer cells [11-13].

Another cellular-automaton model is developed in [14], in which the cell behavior is
regulated by oxygen concentration, thus involving the use of nutrient-transport equations
in the model. The main objective was to study both cell migration and growth within
scaffolds in-vitro. Moreover, for the study of cell proliferation process simulations were
carried out in a two-dimensional network of the finite state defined by the automaton
[15]. In these works the authors were based on a single cellular process at a time.

Therefore, to understand the cell dynamics during its life cycle, a cellular-automata
model for the cell adhesion process of fibroblasts on a substrate, followed by cell pro-
liferation, was designed and implemented in the present research. For this model, the
work is carried out in two steps: the first one focused on experimental trials of the 3T3-
fibroblast cell-culture to assess the adhesion process and the second part consisting in the
computational simulation using cellular automata.

Methods

As mentioned above, the work is carried out in two steps in parallel. The experimental
part show the changes that occur in the cell after the binding process to the substrate
begins, followed by the cell proliferation, while the second part carries out a computer
simulation using cellular automata.

Experimental tests

Establishment of the 3T3cell culture

A 3T3 cell culture of murine fibroblasts was used. These cells were cultured from cryo-
preserved cells in liquid nitrogen. Cells were thawed at 37 °C in thermostat bath, cen-
trifuged and resuspend in culture medium DMEM-F12 supplemented and kept in an oven
ata temperature of 37 °C and an atmosphere of 5 % CO3 and 90 % humidity. After reaching
a confluency close to 80 % in a T-75 flask cell count was performed using Trypan-blue and
then resuspend in a medium DMEM-F12 supplemented with 10 % fetal bovine serum and
1 % antibiotic-antimycotic. The rest of the trials were carried out with this cell population.



Vivas et al. Adv. Model. and Simul. in Eng. Sci.(2015)2:32 Page 3 0of 12

Cell adhesion evaluation

The evaluation of the adhesion process was performed through continuous observation
with an optical microscope. Approximately 1 x 10% cells were plated in a T-25 flask,
ensuring that they were dispersed enough to permit the focus on few individual cells
without forming cell aggregates. The cell declination was recorded by taking pictures
every 30 s for 5 min. Later the cells on the flask surface were photographed every 5 min
for a period of 3 h. Tests were performed in triplicate.

Cell proliferation

Once the cells are sedimented on the bottle surface the cell viability and proliferation dur-
ing 24 h-periods was determined. The culture medium was removed and 100 .l of MTT
(concentration 5 mg/ml) and 400 .1 of culture medium were added. Then, it was incubated
for another 3 h. Later the supernatant was removed and 1 ml of DMSO (dimethyl sulfox-
ide) was added to dissolve the formazan generated at intracellular level [16]. It was allowed
to solubilize for 5 min and was read with a PERKIN-ELMER brand spectrophotometer at
a wavelength of 570 nm. The test was performed in quadruplicate.

Computational model

In order to simulate the adhesion process in time for a generic cell population a com-
putational model based on cellular automata is proposed herein. While the first step of
the process occurs in seconds (see Fig. 1a) the cell adhesion was completed after 2 h (see
Fig. 1b). Finally new cells can be observed after 24 h, as shown in Fig. 1c.

A cellular-automata methodology considering each cell as an individual entity is
employed. The simulated area is a generic space whose lower edge is smooth, with a
length of 1 mm and a height of 0.5 mm.

A rectangular domain was defined and discretized with square elements. Thus, a regular
mesh of 15 pm-sided quadrilateral-elements was defined, having 67 horizontal and 33
vertical elements. The cell is considered as a two-dimensional 15 pm-diameter spherical
structure in suspension with defined and constant mass and volume. The simulation
started with 50 initial cells randomly placed. This number of cells guarantees an available
area in the bottom surface of the simulation domain, which represents the substrate where
the cell will lie and anchorage.

To implement the CA model is necessary to define a neighborhood around the element.
This delimits the adjoining set of cells and relative position to each of them as a spatial
arrangement of pixels, where each participant pixel has an influence on one or more
pixels within the spatial arrangement. Starting from an initial state of the cell population,
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Fig. 1 Schematic representation of the cell adhesion and proliferation processes
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they change their states synchronously at each instant. This change is established via a
neighborhood system of Von Neumann, as can be observed in Fig. 2. A free and open
boundary is considered in the model where all the cells are allowed to be outside this
boundary. Then the number of cells in the model is known. The number of cells can
decrease when a cell approaches the boundary limit and thus it becomes out of the cells
population.

The probabilistic aspects of the simulation must be considered within its dynamics. As
well, further studies are also being done to consider other neighborhoods such as the
system Moore.

The state of a cell in a given generation depends upon the states of neighboring cells
and its own state in the previous time. The time is discrete and during the progressive
steps the space is partitioned into discrete cells and conditions can be defined in a finite
space. At the beginning (t = 0) the cell occupies a random position in the space, which is
denoted as Py (position 0). Then, from this state, possible places that the cell can occupy
in the next time step are defined. The next position of the cell is given by chance together
with the evolution rules of the method. The cells are assumed to be in a good physiological
shape in the GO state of the cell cycle. This guarantees the continuity of the cell cycle once
the cell made contact with the substrate surface.

Any design can be set as an initial condition in a given time ty and every cell of simul-
taneous order has a value involving a new global state at time t;. Then, the new value of
a given cell at time t is a function of the values and locations of the cell which are the
neighborhoods found at time to. Therefore a sequence of global states is formed for its
interaction each other which is usually known as the transition function.

The CA has the ability to detect collisions between cells (defined as the evolution rule).
Thus the cell can move forward in time, reaching new positions in the neighborhood
without preventing the displacements of closer cells (two cells can’t occupy the same
physical space). In this model, we are describing just the falling down of the cells. We can
represent the inlet and outlet of cells and to avoid the possibility that cells coming from the
adjacent non-considered domain become part of the modeled domain we have included

Level 1: p=a/2

/) Cellinitial position
Z |

Fig.2 Representation of the cell neighborhood and probabilities of its new position according to level 1, 2
or3
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a reflexive boundary. On the other hand, cells cannot move in diagonal directions since a
von Neumann neighborhood scheme was chosen for the CA model.

The factor that is directly involved in the cellular sedimentation is the gravity since
the culture system is stationary and no disturbances are observed in the medium. The
sedimentation velocity of the cell into the medium is estimated by the Stoke’s law which

calculates the movement of small spherical particles moving at small velocities as
Fr = 6w Rnv (1)

where R is the radius of the sphere, v is the velocity and his the fluid viscosity. Then for
particles falling down within a viscous medium because of their own weight, the velocity
of sedimentation can be computed by equaling the drag force with the apparent weight of
the particle in the fluid as shown below
v = %rg(pc - pm)'g @)
n

being r. the cell radius, p. the cell density, pm, the medium density,  the medium viscosity
and g is the gravity constant 9.8 m/s?. This value determines the speed with which the
cell descends over time. To compute the probability associated to every cell decline, the
vicinity of each cell is divided into three levels, where each level has a different probability
of being occupied in the next time step. Level 1 consists of a single possible position above
the initial location of the cell. Level 2, with two possible positions for the new location of
the cell, has an associated probability p=a while the lower level, level 3, was assigned a
probability p = a/2 as shown in Fig. 2.

To assign this sedimentation condition to the simulation the “a” value is determined
below. The sum of the probabilities of the 3 levels in the vicinity is given by

a/2+a+2a=1 3)
and therefore
a=2/7 (4)

Now, by substituting the value of the probability (Eq. 4) in the neighborhood already
established levels (see Fig. 2) the probabilities for a new position of each cell are:
P(evel 1) = a/2 = 1/7 (the lowest probability) to be less likely that the cell ascends in
time; P(level 2) = @ = 2/7 and finally p(jevel 3) = 2a = 4/7 which has the highest probability
of being occupied. Here, the gravity is the determinant factor.

In cases where the new selected location is occupied by another cell, the system randomly
chooses a new position. In cases where there is no free space for movement, the cell will
take the same place in the next time step. This selection of the new location is performed
as often as necessary until the cell finds a position on the contact surface, defined inside

the borders of the simulation environment.

Cell adhesion model

Once the cell is above the surface the neighborhood changes to two possible side positions,
again randomly selected. If any of the side positions is available the cell begins the adhesion
process that is simulated as a morphological change, where the cell will occupy two
continuous positions in the same time interval. If the new position is occupied by another
cell, the searching for available positions to the cell is performed.
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Cell proliferation model

When the cell is fully adhered the proliferation process starts. A new search of side
positions around the cell is performed and a third neighborhood of the adhered cell
is defined. If two continuous free side-positions are available then the cell duplicates.
Otherwise the cell is not duplicated and a contact inhibition phenomenon is presumed.

Results
For the simulation, 50 initial cells were placed in a 0.5 mm? simulation environment. The
initial position of all cells in the computational model was randomly assigned.

Celular sedimentation

The theoretical velocity of sedimentation obtained using Eq. (2) was v=28.5 x 107> m/s.
Furthermore simulation predicted a sedimentation time of 22 s for a cell population of
50 starting cells, randomly placed on the simulation environment (see Fig. 3a). During
the fall of the cells, each iteration requires 0.5 s. As the position of each individual cell
is randomly assigned, drop times are different for each cell, depending on the distance
to the substrate they were at t =0 s. The first cell comes into contact with the substrate
after 4.0 s (see Fig. 3b). After 44 iterations and 22 s, as shown in Fig. 3d, the cells have
descended and made contact with at least one surface. It can be noted that there exist still
cells that are not in contact with the bottom surface (see the cell very close to the bottom,

b
a o o I}
o o o
o o o @ - o
n} [m) n}
0
o 40 5 D 0 o U oo
] ]
o n]
_ _ O Cg—
o o b O o
o O a)
B a 7=
c d
0
u] o o
0@
v o 5] oo ©
v} @ D
) 0 A
e
Fig.3 Cells sedimentation during computer simulation (side views). a Cells initial positions at t = 0. b First
cell in contact with the substrate at t = 4 s. ¢ Cells are in the lower half of the simulation area att = 10s.d All
the cells contact at least one surface at t = 22 s. @ All the cells are over the substrate at t = 34 s
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at the right zone of the figure). Also, at the middle bottom region of Fig. 3d, it can be seen
a cell with a like-spherical shape, before to attach to the surface. Finally, at 34 s the entire
cell population is completely attached to the substrate, as displayed in Fig. 3e.

Cell adhesion

In Fig. 4, the simulated cells on the contact surface in the initial phase of adhesion (focal
adhesion) are observed. The adhesion process begins once the cell contacts the substrate.
The adhesion times vary since cell descended at different times according to the distance
to the substrate. Initially the cells are observed with their characteristic rounded shape
with sharp edges, representing the cytoplasm concentrated in the spherical shape of the
cell. The morphological change of the cells occurs in about the first hour after the first
contact with the substrate. The model required 236 iterations to simulate the adhesion
process.

In Fig. 5, the change in cell morphology can be seen as time progresses. After approxi-
mately 80 min (240 iterations of the computational model), the more cells are adhered to
the substrate. Cells with cytoplasmic projections are observed, losing their initial spher-
ical shape. Figures in the left column of Fig. 5a, ¢ and e display a top-to-bottom view of
the experimental results, while figures in the right column (b, d and f) represent a lateral
view (in two dimensions) of the computational simulation corresponding to experiments
reported in figures a, c and e.

The formation of the first extensions of the cytoplasm in a cell are observed in Fig. 5a,
b, suggesting that this entity was the first to contact the substrate and the first to begin
the anchoring process. These elongations occur at 100 min after the cell decline. After
145 min (equivalent to 540 iterations) a scattered cytoplasm with a larger number of lateral
projections is observed, also missing the initial spherical shape of the cells, as shown in
Fig. 5¢, d.

The adhesion process is then completed after about 180 min, showing spindle-like-
shape cell morphology which is characteristic of this cell type. The cytoplasm occupies
the maximum space in the substrate, allowing neighboring cells to interact with each other
as displayed in Fig. 5e, f.

Cell proliferation
The increase in the number of cells as time progresses is observed in Fig. 6. The culture
was started with 1 x 10% cells and after 24 h the cell population doubled successfully.

a b

Fig.4 Final position of the cells over the substrate at t = 34 s. a Side view of the simulation. b Micrography
of in-vitro test. x 20 (top-to-bottom view)
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Fig.5 Cell shape variation during the adhesion process. Images on left column (a,c,e) come from in-vitro
testing (top-to-bottom views) while images on right column (b,d,f) come from computer simulations (side
views of the environment). Upper row: morphological changes of the first cells at t&100min. Middle row:
shape changes in intermediate cells at t&~145min. Lower row: shape changes in all cells at t&~180min
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Fig.6 Evolution of the number of 3T3 cells in the culture

Cell number continues to increase in the next 100 h achieving a slight plateau which
can be related to the area available for the culture. This behavior suggests the limited
presence of resources to maintain the proliferation rate. Once the culture reaches a semi-
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confluent condition the area available for growth is limited, thereby decreasing the rate
of proliferation. Upon reaching the confluence contact inhibition is observed in the cells
after 120 h in culture, reflected as a steady-state in the cell proliferation.

Figure 6 shows a population of cells in a plate. This figure does not have a strict corre-
spondence with the computational model because the growth plate represents a 3D exper-
imental (in-vitro) model while the computational model is a 2D model whose domain is
a cross-section of the 3D model. In addition, Fig. 6 displays the whole well plate instead
of the 2D model that represents a window of dimensions 1.0 mm width x 0.5 mm height.
This is a representative volume close to the well-plate surface. It should be mentioned
here that, in order to refine this simulation, a multiscale model is currently being devel-
oped, which is oriented to the representation and prediction of the cell colonization in a
spherical scaffold.

In our model, all cells attached and having extended morphology on the substrate begins
the cell proliferation process. This computational domain represents a rectangle cross-
section close to the surface of the well plate where the events occur. Analogous to the
experimental tests, the cells with side free positions in substrate duplicated (Fig. 7). The
proliferation can be seen with the surface completely covered by cells, which are graph-
ically observed when looking at all occupied positions of the lower part of the cellular-
automata mesh. Both initial and “daughter” populations are observed as well.

Conversely, in those cases where two or more cells are adjacent each other at the surface,
the proliferation process fails to start. When the whole substrate surface is covered by cells,
the cells halt their proliferation process in a phenomenon known as contact inhibition.

Discussion and concluding remarks

Cell adhesion and cell proliferation were modeled and described in this work by a using
CA computational model. This 2D model represents the falling down and lying of the cells
when they are attaching to a surface.

The sedimentation time in the simulation corresponds to the numerical value obtained
theoretically by Eq. (3). The values of the variables involved were established according
to the real conditions of the culture system. The behavior observed in the simulation is
due to the conditions provided to the system, where each cell behaves individually also
being able of independent movement but limited because of the positions of the other
cells. These parameters are specific to the cell type tested and the culture conditions used.

While the cells tend to move down because of the gravity there is a low probability of a
lateral movement which delays the cell declination. These variables were included in the

==

Fig. 7 Duplicated cells covering the whole contact surface
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simulation. Studies conducted in previous decades have shown that cells recognize each
other and become adhered in specific ways [17,18].

In our simulation, the adhesion process begins once the cell is on the substrate. This
process is based on the presence of specific molecules called “Cell Adhesion Molecules”
(CAMS) [19]. The formation of a link between a cell and the solid surface is dependent
on the force exerted by both structures in contact [20].

The model showed the two steps of the adhesion process in a cell population. The
formation of the initial link between cell and substrate, which occurs in the first minutes
of the adhesion, known as focal adhesion, was observed after 100 min where the cell on
the substrate retains its spherical morphology during the simulation. Immediately after,
the reorganization of the molecules of the membrane occurs. Also the concentration of
cytoskeletal in adhesive regions and the reorganization of glycocalyx occur to minimize
repulsion between the cells and the substrate [21,22]. This process allows the maturation
of focal adhesions, then increasing the number of anchoring sites and making adhesions.
The size and distribution of these adhesions reflect the contractile state of the cell [23].

The morphological change of cells after at least 1 h after the starting of the adhesion
process is observed. This phenomenon is dependent on the space available, allowing the
cytoskeleton to be strongly anchored to the substrate. Moreover, the adhesion process is
not reversible and once started, the cell is capable of activating mechanisms and signaling
cascades that allow the proliferation to start [24].

In a general sense, it can be observed the adhesion process caused by the change in
the cytoplasm. During this process the cytoplasm extends, retaining its initial volume and
occupying the maximum space, as shown in Fig. 5d, f. This cytoplasm extension is related
to the presence of a set of integrin receptors responsible for the binding of substrate to the
cytoskeleton [25]. At this step, the glycoproteins of the cell membrane are adsorbed to the
surface. The cell deformation takes place while it tries to occupy the largest possible area.
Particularly, the 3T3 cells in suspension without contact with any surface do not duplicate.
This phenomenon is commonly known as a “anchorage-dependence” on the cell division.

The frequency at which the cell duplicates is increased as cell spreads. This fact could be
associated with the fact that the more extended cells with larger surfaces are, the greater
the number of growth-factors molecules and nutrients they can capture. The cells of the
3T3 cell line are, however, virtually unable to grow in suspension but they can duplicate
rapidly when they find an anchorage point in any surface by forming a focal contact. Even
if this anchorage point is so small for preventing the cell extension, it will enable them to
duplicate more frequently.

This focal contact occurs in the first seconds of contact between the cell and substrate
surface. As time progresses these initial adhesions mature, get stronger and in greater
quantity that allows a better attachment of cells. These processes also allow the cell to be
anchored on the surface, giving it the right signaling for the cell to advance from G1-step
to the S-step of the cell cycle [26,27]. The signal intracellularly emitted by integrins acts
in close synergy with those signals produced by growth factors thus helping in the cell
evolution.

The total colonization of the surface is determined by the ratio of available area and
the number of initial cells being considered. In our test it was observed that the cell
population doubled after 24 h, corresponding to results reported in the literature [28—30].
The cell duplication process is progressive which allows the new cell to remain anchored
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to the surface. Furthermore cytokinesis requires the action of integrins because if they
are inactive separation of daughter cells will not occur. It is also presumed that integrins
are anchor points to generate traction forces. Both cadherins and integrins (adhesion
molecules) have been related to the orientation of the division arc that will separate the
two cells. Hence the importance of evaluating both processes in a continuous manner
since the cell proliferation in general requires cell anchorage. These results could be
extrapolated to larger surfaces as well as to different cell types since the adhesion behavior
in initial steps is similar for all cell types.

However, both adhesion and proliferation times as well as lifetimes, proliferation and
even lifetimes must be considered since they play a determinant and specific role in
the substrate conditions under study. Similarly, the study of cell proliferation can be
potentially used to quantify or optimize experimental tests that require large number of
cells thus reducing costs in estimating the cellular behavior.

There reader can find some other works which have proposed modeling of cell adhesion
and proliferation. Among these applications, it should be mentioned the modeling of
different kind of cells, e.g., for cancer [31,32] and different extracellular matrices [33]. The
adhesion and proliferation of cells in fibrin scaffolds, however, have not been previously
modelled. Indeed, the model proposed herein is a simple starting point for this kind of
models.

Finally, it should be mentioned herein that our computational model is an approxima-
tion to the experimental testing environment because cells are constrained to move in a
plane system xy while in the real experiment they move in a space xyz. Therefore, our
model can be viewed as a starting point for more realistic approaches. Also, it should
be mentioned here that, in order to refine this simulation, a multiscale model is cur-
rently being developed, which is oriented to the representation and prediction of the cell
colonization in a spherical scaffold.
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