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Background
Wave propagation through complex structures, composed of both propagating and 
absorbing media, are routinely simulated using numerical methods. Among the various 
numerical methods used, the Hybrid Discontinuous Galerkin (HDG) method has emerged 
as an attractive choice for such simulations. The easy passage to high order using interface 
unknowns, condensation of all interior variables, availability of error estimators and adap-
tive algorithms, are some of the reasons for the adoption of HDG methods.

It is important to design numerical methods that remain stable as the wavenumber 
varies in the complex plane. For example, in applications like computational lithography, 
one finds absorbing materials with complex refractive index in parts of the domain of 
simulation. Other examples are furnished by meta-materials. A separate and important 
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reason for requiring such stability emerges in the computation of resonances by itera-
tive searches in the complex plane. It is common for such iterative algorithms to solve 
a source problem with a complex wavenumber as its current iterate. Within such algo-
rithms, if the HDG method is used for discretizing the source problem, it is imperative 
that the method remains stable for all complex wavenumbers.

One focus of this study is on complex wavenumber cases in acoustics and electromag-
netics, motivated by the above-mentioned examples. Ever since the invention of the HDG 
method in Ref. [1], it has been further developed and extended to other problems in many 
works (so many so that it is now impractical to list all references on the subject here). 
Of particular interest to us are works that applied HDG ideas to wave propagation prob-
lems such as  [2–8]. We will make detailed comparisons with some of these works in a 
later section. However, none of these references address the stability issues for complex 
wavenumber cases. While the choice of the HDG stabilization parameter in the real wave 
number case can be safely modeled after the well-known choices for elliptic problems [9], 
the complex wave number case is essentially different. This will be clear right away from 
a few elementary calculations in the next section, which show that the standard prescrip-
tions of stabilization parameters are not always appropriate for the complex wave number 
case. This then raises further questions on how the HDG stabilization parameter should 
be chosen in relation to the wavenumber, which are addressed in later sections.

Another focus of this study is on the difference in speeds of the computed and the exact 
wave, in the case of real wavenumbers. By means of a dispersion analysis, one can com-
pute the discrete wavenumber of a wave-like solution computed by the HDG method, 
for any given exact wavenumber. An extensive bibliography on dispersion analyses for 
the standard finite element method can be obtained from Refs. [10, 11]. For nonstand-
ard finite element methods however, dispersion analysis is not so common [12], and for 
the HDG method, it does not yet exist. We will show that useful insights into the HDG 
method can be obtained by a dispersion analysis. In multiple dimensions, the discrete 
wavenumber depends on the propagation angle. Analytic computation of the dispersion 
relation is feasible in the lowest order case. We are thus able to study the influence of 
the stabilization parameter on the discrete wavenumber and offer recommendations on 
choosing good stabilization parameters. The optimal stabilization parameter values are 
found not to depend on the wavenumber. In the higher order case, since analytic calcula-
tions pose difficulties, we conduct a dispersion analysis numerically.

We begin, in the next section, by describing the HDG methods. We set the stage for 
this study by showing that the commonly chosen HDG stabilization parameter values 
for elliptic problems are not appropriate for all complex wavenumbers. In the subse-
quent section, we discover a constraint on the stabilization parameter, dependent on the 
wavenumber, that guarantees unique solvability of both the global and the local HDG 
problems. Afterward, we perform a dispersion analysis for both the HDG method and a 
mixed method and discuss the results.

Methods of the HDG type
We borrow the basic methodology for constructing HDG methods from Ref. [1] and apply 
it to the time-harmonic Helmholtz and Maxwell equations (written as first order systems). 
While doing so, we set up the notations used throughout, compare the formulation we use 
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with other existing works, and show that for complex wavenumbers there are stabilization 
parameters that will cause the HDG method to fail.

Undesirable HDG stabilization parameters for the Helmholtz system

We begin by considering the lowest order HDG system for Helmholtz equation. Let k be a 
complex number. Consider the Helmholtz system on � ⊂ R2 with homogeneous Dirichlet 
boundary conditions, 

where f ∈ L2(�). Note that the second order form of the Helmholtz equation, 
−�Φ − k2Φ = ı̂kf  can be recovered by eliminating the �U variable. Also, although it is 
straightforward to define the method for spatially varying k, in this paper all our results 
will be stated only for constant k.

Let Th denote a square or triangular mesh of disjoint elements K, so � = ∪K∈ThK , 
and let Fh denote the collection of edges. The HDG method produces an approximation 
(�u,φ, φ̂) to the exact solution ( �U ,Φ , Φ̂), where Φ̂ denotes the trace of Φ on the collection 
of element boundaries ∂Th. The HDG solution (�u,φ, φ̂) is in the finite dimensional space 
Vh ×Wh ×Mh defined by

with polynomial spaces V(K), W(K), and M(F) specified differently depending on ele-
ment type:

 Here, for a given domain D, Pp(D) denotes polynomials of degree at most p, and Qp(D) 
denotes polynomials of degree at most p in each variable.

The HDG solution satisfies 

(1a)ı̂k �U + �∇Φ = �0, in �,

(1b)ı̂kΦ + �∇· �U = f , in �,

(1c)Φ = 0, on ∂�,

Vh =
�
�v ∈ (L2(�))2 : �v|K ∈ V (K ), ∀K ∈ Th

�

Wh =
�
ψ ∈ L2(�) : ψ |K ∈ W (K ), ∀K ∈ Th

�

Mh =



ψ̂ ∈ L2


 �

F∈Fh

F


 : ψ̂ |F ∈ M(F), ∀F ∈ Fh and ψ̂ |∂� = 0



,

(2a)

∑

K∈Th
ı̂k(�u, �v)K − (φ, �∇· �v)K + �φ̂, �v · �n�∂K = 0,

(2b)

∑

K∈Th
−( �∇· �u,ψ)K + �τ φ̂,ψ�∂K − �τφ,ψ�∂K − ı̂k(φ,ψ)K = −(f ,ψ)�,
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for all �v ∈ Vh, ψ ∈ Wh, and ψ̂ ∈ Mh. The last equation enforces the conservativity of the 
numerical flux

The stabilization parameter τ is assumed to be constant on each ∂K . We are interested 
in how the choice of τ in relation to k affects the method, especially when k is complex 
valued. Comparisons of this formulation with other HDG formulations for Helmholtz 
equations in the literature are summarized in Table 1.

One of the main reasons to use an HDG method is that all interior unknowns (�u,φ) 
can be eliminated to get a global system for solely the interface unknowns (φ̂). This is 
possible whenever the local system 

is uniquely solvable. (For details on this elimination and other perspectives on HDG 
methods, see [1].) In the lowest order (p = 0) case, on a square element K of side length 
h, if we use a basis in the following order

then the element matrix for the system (4a, 4b) is

(2c)

∑

K∈Th
��u · �n+ τ(φ − φ̂), ψ̂�∂K = 0,

(3)û · �n = �u · �n+ τ(φ − φ̂).

(4a)ı̂k(�u, �v)K − (φ, �∇· �v)K = −�φ̂, �v · �n�∂K , ∀�v ∈ V (K ),

(4b)
−( �∇· �u,ψ)K − �τφ,ψ�∂K − ı̂k(φ,ψ)K = −�τ φ̂,ψ�∂K

− (f ,ψ)K , ∀ψ ∈ W (K ),

�u1 =
[
1
0

]
, �u2 =

[
0
1

]
, φ1 = 1, on K ,

M =



ı̂k h2 0 0

ı̂k h2 0

0 0 −4 hτ − ı̂k h2


 .

Table 1 Comparison with some HDG formulations in other papers

Notations in the indicated external references are used after subscripting them by the reference number. Notations without 
subscripts are those defined in this paper.

Reference Their notations and equations Connection to our formulation

Helmholtz case [2] �q[2] + �∇u[2] = �0
�∇· �q[2] − k2u[2] = 0

q̂[2] · �n = �q[2] · �n+ ı̂τ[2](u[2] − û[2])

τ[2] = k τ
ı̂ku[2] = φ
�q[2] = �u

Helmholtz case [4]
ı̂k�q[4] + �∇u[4] = �0
ı̂ku[4] + �∇· �q[4] = 0

q̂[4] · �n = �q[4] · �n+ τ[4](u[4] − û[4])

τ[4] = τ

u[4] = φ
�q[4] = �u

2D Maxwell case [6]
ı̂ω[6]εr E[6] − ∇× �H[6] = 0

ı̂ω[6]µr
�H[6] + �∇× E[6] = �0

Ĥ[6] = �H[6] + τ[6](E[6] − Ê[6])�t

τ[6] =
√

εr
µr
τ

ω[6] = ω
√
ε0µ0

E[6] = 1√
εr
E , �H[6] = 1√

µr

�H
 Maxwell case [8] µ �w[8] − �∇× �u[8] = �0

�∇× �w[8] − εω2�u[8] = �0
ŵ[8] = �w[8] + τ[8](�u[8] − û[8])× �n

τ[8] = ı̂

√
εω2

µ
τ

µ �w[8] = −ı̂k �H, with k = ω
√
µε,

�u[8] = �E
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This shows that if

then M is singular, and so the HDG method will fail. The usual recipe of choosing τ = 1 
is therefore inappropriate when k is complex valued. Indeed, if τ = 1 and a complex wave 
number k happens to be very near 4ı̂/h, the element matrices will be so close to being 
singular that interior variables cannot be reliably condensed out.

Intermediate case of the 2D Maxwell system

It is an interesting exercise to consider the 2D Maxwell system before going to the full 3D 
case. In fact, the HDG method for the 2D Maxwell system can be determined from the 
HDG method for the 2D Helmholtz system. The 2D Maxwell system is 

where J ∈ L2(�), and the scalar curl ∇× · and the vector curl �∇× · are defined by

Here R(v1, v2) = (v2,−v1) is the operator that rotates vectors counterclockwise by +π/2 
in the plane. Clearly, if we set , then (6a, 6b) becomes

which, since RR�v = −�v (rotation by π), coincides with  (1a, 1b, 1c) with Φ = E, , 
and f = −J . This also shows that the HDG method for Helmholtz equation should yield 
an HDG method for the 2D Maxwell system. We thus conclude that there exist stabiliza-
tion parameters that will cause the HDG system for 2D Maxwell system to fail.

To examine this 2D HDG method, if we let �H and E denote the HDG approximations 
for R�r and E, respectively, then the HDG system (2a, 2b, 2c) with �u and φ replaced by 
−R �H and E, respectively, gives

for all �w ∈ R(Vh),ψ ∈ Wh and ψ̂ ∈ Mh. We have used the fact that −(R �H) · �n = �H · �t, 
where �t = R�n the tangent vector, and we have used the 2D cross product defined by 
�v × �n = �v · �t. In particular, the numerical flux prescription (3) implies

(5)4τ = −ı̂kh,

(6a)ı̂kE − ∇× �H = −J ,

(6b)ı̂k �H+ �∇× E = 0,

∇× �H = ∂1H2 − ∂2H1 = �∇·R( �H), �∇× E = (∂2E ,−∂1E) = R( �∇E).

∑

K∈Th
−(E, �∇× �w)K + �Ê, �n× �w�∂K − ı̂k( �H , �w)K = 0,

∑

K∈Th
ı̂k(E,ψ)K − ( �∇× �H ,ψ)K + �τ (E − Ê), ψ�∂K = −(�J ,ψ)�,

∑

K∈Th
�R̂ �H · �n, ψ̂�∂K = 0,

−R̂ �H · �n = −R �H · �n+ τ (E − Ê),
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where R̂ �H  denotes the numerical trace of R �H . We rewrite this in terms of �H and E, to 
obtain

One may rewrite this again, as

This expression is notable because it will help us consistently transition the numerical 
flux prescription from the Helmholtz to the full 3D Maxwell case discussed next. A com-
parison of this formula with those in the existing literature is included in Table 1.

The 3D Maxwell system

Consider the 3D Maxwell system on � ⊂ R3 with a perfect electrically conducting bound-
ary condition, 

where �J ∈ (L2(�))3. For this problem, Th denotes a cubic or tetrahedral mesh, and Fh denotes 
the collection of mesh faces. The HDG method approximates the exact solution ( �E , �H, Ê) by 
the discrete solution (�E, �H , Ê) ∈ Yh × Yh × Nh. The discrete spaces are defined by

with polynomial spaces Y(K) and N(F) specified by:

Our HDG method for (8a, 8b, 8c) is

where, in analogy with (7), we now set numerical flux by

Ĥ · �t = �H · �t + τ (E − Ê).

(7)Ĥ × �n = �H × �n+ τ (E − Ê).

(8a)ı̂k �E − �∇× �H = −�J , in �,

(8b)ı̂k �H+ �∇× �E = �0, in �,

(8c)�n× �E = �0, on ∂�,

Yh =
{
�v ∈ (L2(�))3 : �v|K ∈ Y (K ), ∀K ∈ Th

}
,

Nh =
{
η̂ ∈ (L2(Fh))

3 : η̂|F ∈ N (F), ∀F ∈ Fh and η̂|∂� = �0
}
,

Tetrahedra Cubes

Y (K ) = (Pp(K ))3 Y (K ) = (Qp(K ))3

N (F) =
{
η̂ ∈ (Pp(F))

3 : η̂ · �n = 0
}

N (F) =
{
η̂ ∈ (Qp(F))

3 : η̂ · �n = 0
}

∑

K∈Th
ı̂k(�E, �v)K − ( �∇× �H , �v)K + �(Ĥ −H)× �n, �v�∂K = −(�J , �v)�, ∀�v ∈ Yh,

∑

K∈Th
−(�E, �∇× �w)K + �Ê, �n× �w�∂K − ı̂k( �H , �w)K = 0, ∀�w ∈ Yh,

∑

K∈Th
�Ĥ × �n, ŵ�∂K = 0, ∀ŵ ∈ Nh,

(9)Ĥ × �n = �H × �n+ τ (�E − Ê)t ,
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where (�E − Ê)t denotes the tangential component, or equivalently

Note that the 2D system  (6a, 6b) is obtained from the 3D Maxwell system  (8a, 8b, 
8c) by assuming symmetry in x3-direction. Hence, for consistency between 2D and 3D 
formulations, we should have the same form for the numerical flux prescriptions in 2D 
and 3D.

The HDG method is then equivalently written as 

for all �v, �w ∈ Yh, and ŵ ∈ Nh. For comparison with other existing formulations, see 
Table 1.

Again, let us look at the solvability of the local element problem

for all �v, �w ∈ Y (K ). In the lowest order (p = 0) case, on a cube element K of side length 
h, if we use a basis in the following order

then the 6× 6 element matrix for the system (11a, 11b) is

where I3 denotes the 3× 3 identity matrix.
Again, exactly as in the Helmholtz case—cf. (5)—we find that if

then the local static condensation required in the HDG method will fail in the Maxwell 
case also.

Ĥ × �n = �H × �n+ τ (�n× (�E − Ê))× �n.

(10a)

∑

K∈Th
ı̂k(�E, �v)K − ( �∇× �H , �v)K + �τ (�E − Ê)× �n, �v × �n�∂K = −(�J , �v)�,

(10b)

∑

K∈Th
−(�E, �∇× �w)K + �Ê, �n× �w�∂K − ı̂k( �H , �w)K = 0,

(10c)

∑

K∈Th
� �H + τ �n× (�E − Ê), ŵ × �n�∂K = 0,

(11a)ı̂k(�E, �v)K − ( �∇× �H , �v)K + �τ �E × �n, �v × �n�∂K = �τ Ê × �n, �v × �n�∂K − (�J , �v)K ,

(11b)−(�E, �∇× �w)K − ı̂k( �H , �w)K = −�Ê, �n× �w�∂K ,

(12)

�E1 =



1
0
0


 , �E2 =



0
1
0


 , �E3 =



0
0
1


 , �H1 =



1
0
0


 , �H2 =



0
1
0


 , �H3 =



0
0
1


 ,

M =
[
(4h2τ + ı̂kh3)I3 0

0 −(ı̂kh3)I3

]
,

(13)4τ = −ı̂kh,
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Behavior on tetrahedral meshes

For the lowest order (p = 0) case on a tetrahedral element, just as for the cube element 
described above, there are bad stabilization parameter values. Consider, for example, the 
tetrahedral element of size h defined by

with a basis ordered as in (12). The element matrix for the system (11a, 11b) is then

We immediately see that the rows become linearly dependent if

Hence, for τ = −ı̂kh/(3
√
3+ 6), the HDG method will fail on tetrahedral meshes.

For orders p ≥ 1, the element matrices are too complex to find bad parameter values 
so simply. Instead, we experiment numerically. Setting τ = −ı̂ , which is equivalent to 
the choice made in Ref. [8] (see Table 1), we compute the smallest singular value of the 
element matrix M [the matrix of the left hand side of (11a, 11b) with K set by (14)] for 
a range of normalized wavenumbers kh. Figure  1a, b show that, for orders p = 1 and 
p = 2, there are values of kh for which τ = −ı̂  results in a singular value very close to 
zero. Taking a closer look at the first nonzero local minimum in Figure 1a, we find that 
the local matrix corresponding to normalized wavenumber kh ≈ 7.49 has an estimated 
condition number exceeding 3.9× 1015, i.e., for all practical purposes, the element 
matrix is singular. To illustrate how a different choice of stabilization parameter τ can 
affect the conditioning of the element matrix, Figure  1c, d show the smallest singular 
values for the same range of kh, but with τ = 1. Clearly the latter choice of τ is better 
than the former. In other unreported experiments we observed similar behavior for 
orders up to p = 5.

From another perspective, Figure 1e shows the smallest singular value of the element 
matrix as τ is varied in the complex plane, while fixing kh to 1. Figure 1f is similar except 
that we fixed kh to the value discussed above, approximately 7.49. In both cases, we find 
that the values of τ that yielded the smallest singular values are along the imaginary axis. 
Finally, in Figure 1g, h, we see the effects of multiplying these real values of kh by 1+ ı̂ . 
The region of the complex plane where such values of τ are found changes significantly 
when kh is complex.

Results on unisolvent stabilization
We now turn to the question of how we can choose a value for the stabilization param-
eter τ that will guarantee that the local matrices are not singular. The answer, given by 
a condition on τ, surprisingly also guarantees that the global condensed HDG matrix is 

(14)K =
{
�x ∈ R

3 : xj ≥ 0 ∀j, x1 + x2 + x3 ≤ h
}
,

M = 1

6




(2
√
3+ 6)h2τ + ı̂kh3 −

√
3h2τ −

√
3h2τ 0 0 0

−
√
3h2τ (2

√
3+ 6)h2τ + ı̂kh3 −

√
3h2τ 0 0 0

−
√
3h2τ −

√
3h2τ 4h2τ + ı̂kh3 0 0 0

0 0 0 −ı̂kh3 0 0

0 0 0 0 −ı̂kh3 0

0 0 0 0 0 −ı̂kh3



.

(3
√
3+ 6)τ = −ı̂kh.
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Figure 1 The smallest singular values of a tetrahedral HDG element matrix.
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nonsingular. These results are based on a tenuous stability inherited from the fact nonzero 
polynomials are never waves, stated precisely in the ensuing lemma. Then we give the con-
dition on τ that guarantees unisolvency, and before concluding the section, present some 
caveats on relying solely on this tenuous stability.

As is standard in all HDG methods, the unique solvability of the element problem 
allows the formulation of a condensed global problem that involves only the interface 
unknowns. We introduce the following notation to describe the condensed systems. 
First, for Maxwell’s equations, for any η ∈ Nh, let (�Eη, �Hη) ∈ Yh × Yh denote the fields 
such that, for each K ∈ Th, the pair (�Eη|K , �Hη|K ) satisfies the local problem (11a, 11b) 
with data η|∂K . That is, 

for all �v ∈ Y (K ), �w ∈ Y (K ). If all the sources in  (10a, 10b, 10c) vanish, then the con-
densed global problem for Ê ∈ Nh takes the form

where

By following a standard procedure [1] we can express a(·, ·) explicitly as follows:

Here we have used the complex conjugate of (15b) with �w = �H�, along with the defini-
tion of Ĥ�, and then used (15a).

Similarly, for the Helmholtz equation, let (�uη,φη) ∈ Vh ×Wh denote the fields such 
that, for all K ∈ Th, the functions (�uη|K ,φη|K ) solve the element problem  (4a, 4b) for 
given data φ̂ = η. If the sources in (2a, 2b, 2c) vanish, then the condensed global problem 
for φ̂ ∈ Mh is written as

where the form is found, as before, by the standard procedure:

(15a)ı̂k(�Eη, �v)K − ( �∇× �Hη, �v)K + �τ �Eη × �n, �v × �n�∂K = �τη × �n, �v × �n�∂K ,

(15b)−(�Eη, �∇× �w)K − ı̂k( �Hη, �w)K = −�η, �n× �w�∂K ,

(16)a(Ê, η) = 0, ∀η ∈ Nh,

a(�, η) =
∑

K∈Th
�Ĥ� × �n, η�∂K .

a(�, η) =
∑

K∈Th
� �H� × �n, η�∂K + �(Ĥ� − �H�)× �n, η�∂K

=
∑

K∈Th
ı̂k( �H�, �Hη)K − ( �∇× �H�, �Eη)K + �τ �n× (�n× (�− �E�)), η�∂K

=
∑

K∈Th
ı̂k( �H�, �Hη)K − ı̂k(�E�, �Eη)K + �τ �n× (�− �E�), �n× �Eη�∂K

− �τ �n× (�− �E�), �n× η�∂K
=

∑

K∈Th
ı̂k( �H�, �Hη)K − ı̂k(�E�, �Eη)K − τ ��n× (�− �E�), �n× (η − �Eη)�∂K .

(17)b(φ̂, η) = 0, ∀η ∈ Mh,
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The sesquilinear forms a(·, ·) and b(·, ·) are used in the main result, which gives sufficient 
conditions for the solvability of the local problems  (11a, 11b), (4a, 4b)   and the global 
problems (16), (17).

Before proceeding to the main result, we give a simple lemma, which roughly speak-
ing, says that nontrivial harmonic waves are not polynomials.

Lemma 1 Let p ≥ 0 be an integer, 0 �= k ∈ C, and D an open set. Then, there is no non-
trivial �E ∈ (Pp(D))

3 satisfying

and there is no nontrivial φ ∈ Pp(D) satisfying

Proof We use a contradiction argument. If E �≡ �0, then we may assume without loss of 
generality that at least one of the components of �E is a polynomial of degree exactly p. 
But this contradicts k2 �E = �∇×( �∇× �E) because all components of �∇×( �∇× �E) are poly-
nomials of degree at most p− 2. Hence �E ≡ �0. An analogous argument can be used for 
the Helmholtz case as well. �

Theorem 1 Suppose 

Then, in the Maxwell case, the local element problem (11a, 11b) and the condensed global 
problem  (16) are both unisolvent. Under the same condition, in the Helmholtz case, the 
local element problem (4a, 4b) and the condensed global problem (17) are also unisolvent.

Proof We first prove the theorem for the local problem for Maxwell’s equations. 
Assume (18a, 18b) holds and set Ê = �0 in the local problem (11a, 11b). Unisolvency will 
follow by showing that �E and �H must equal �0. Choosing �v = �E, and �w = �H , then sub-
tracting (11b) from (11a), we get

whose real part is

b(�, η) =
∑

K∈Th
�û� · �n, η�∂K

=
∑

K∈Th
ı̂k(�u�, �uη)K − ı̂k(φ�,φη)K − τ ��− φ�, η − φη�∂K .

�∇×( �∇× �E)− k2 �E = 0

�φ + k2φ = 0.

(18a)Re(τ ) �= 0, whenever Im(k) = 0, and

(18b)Im(k)Re(τ ) ≤ 0, whenever Im(k) �= 0.

ı̂k
(
||�E||2K + || �H ||2K

)
+ 2ı̂Im(�E, �∇× �H)K + τ ||�E × �n||2∂K = 0,

−Im(k)
(
||�E||2K + || �H ||2K

)
+ Re(τ )||�E × �n||2∂K = 0.
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Under condition (18b), we immediately have that the fields �E and �H are zero on K. Oth-
erwise, (18a) implies �E × �n|∂K = 0, and then (11a, 11b) gives

implying

By Lemma 1 this equation has no nontrivial solutions in the space Y(K). Thus, the ele-
ment problem for Maxwell’s equations is unisolvent.

We prove that the global problem for Maxwell’s equations is unisolvent by showing 
that Ê = �0 is the unique solution of Eq. (16). This is done in a manner almost identical to 
what was done above for the local problem: First, set η = Ê in Eq. (16) and take the real 
part to get

This immediately shows that if condition  (18b) holds, then the fields �E and �H are 
zero on � ⊂ R3 and the proof is finished. In the case of condition  (18a), we have 
�n× (Ê − �E|∂K ) = �0 for all K. Using Eqs. (10a, 10b, 10c), this yields

so Lemma 1 proves that the fields on element interiors are zero, which in turn implies 
Ê = �0 also. Thus, the theorem holds for the Maxwell case.

The proof for the Helmholtz case is entirely analogous. �

Note that even with Dirichlet boundary conditions and real k, the theorem asserts the 
existence of a unique solution for the Helmholtz equation. However, the exact Helm-
holtz problem  (1a, 1b, 1c) is well-known to be not uniquely solvable when k is set to 
one of an infinite sequence of real resonance values. The fact that the discrete system is 
uniquely solvable even when the exact system is not, suggests the presence of artificial 
dissipation in HDG methods. We will investigate this issue more thoroughly in the next 
section.

However, we do not advocate relying on this discrete unisolvency near a resonance 
where the original boundary value problem is not uniquely solvable. The discrete 
matrix, although invertible, can be poorly conditioned near these resonances. Con-
sider, for example, the Helmholtz equation on the unit square with Dirichlet boundary 
conditions. The first resonance occurs at k = π

√
2. In Figure 2, we plot the condition 

number σmax/σmin of the condensed HDG matrix for a range of wavenumbers near the 
resonance k = π

√
2, using a small fixed mesh of mesh size h = 1/4, and a value of τ = 1 

that satisfies (18a, 18b). We observe that although the condition number remains finite, 
as predicted by the theorem, it peaks near the resonance for both the p = 0 and the 
p = 1 cases. We also observe that a parameter setting of τ = −ı̂  that does not satisfy the 

ı̂k �E − �∇× �H = 0,

ı̂k �H + �∇× �E = 0,

�∇×( �∇× �E) = k2 �E.

(19)

∑

K∈Th
Im(k)

(
|| �H ||2K + ||�E||2K

)
− Re(τ )||�n× (Ê − �E)||2∂K = 0.

|K = k2 �E|K ,
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conditions of the theorem produce much larger condition numbers, e.g., the condition 
numbers that are orders of magnitude greater than 1010 (off axis limits of Figure 2b) for k 
near the resonance were obtained for p = 1 and τ = −ı̂ . To summarize the caveat, even 
though the condition number is always bounded for values of τ that satisfy (18a, 18b), it 
may still be practically infeasible to solve a source problem near a resonance by the HDG 
method. (Of course, the eigenvalue problem can be discretized by the HDG method [13] 
and used to approximate the resonant eigenfunctions.)

Results of dispersion analysis for real wavenumbers
When the wavenumber k is complex, we have seen that it is important to choose the sta-
bilization parameter τ such that  (18b) holds. We have also seen that when k is real, the 
stability obtained by  (18a) is so tenuous that it is of negligible practical value. For real 
wavenumbers, it is safer to rely on stability of the (un-discretized) boundary value prob-
lem, rather than the stability obtained by a choice of τ.

The focus of this section is on real k and the Helmholtz equation (1a, 1b, 1c). In this 
case, having already separated the issue of stability from the choice of τ, we are now free 
to optimize the choice of τ for other goals. By means of a dispersion analysis, we now 
proceed to show that some values of τ are better than others for minimizing discrep-
ancies in wavespeed. Since dispersion analyses are limited to the study of propagation 
of plane waves (that solve the Helmholtz equation), we will not explicitly consider the 
Maxwell HDG system in this section. However, since we have written the Helmholtz and 
Maxwell system consistently with respect to the stabilization parameter [see the transi-
tion from (3) to (9) via  (7)], we anticipate our results for the 2D Helmholtz case to be 
useful for the Maxwell case also.

The dispersion relation in the one‑dimensional case

Consider the HDG method (2a, 2b, 2c) in the lowest order (p = 0) case in one dimension 
(1D)—after appropriately interpreting the boundary terms in (2a, 2b, 2c). We follow the 
techniques of [10] for performing a dispersion analysis. Using a basis on a segment of size 
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h in this order u1 = 1, φ1 = 1, φ̂1 = 1, φ̂2 = 1, the HDG element matrix takes the 

form M =
[
M11 M12

M21 M22

]
 where

The Schur complement for the two endpoint basis functions {φ̂1, φ̂2} is then

Applying this matrix on an infinite uniform grid (of elements of size h), we obtain the 
stencil at an arbitrary point. If ψ̂j denotes the solution (trace) value at the jth point 
(j ∈ Z), then the jth equation reads

In a dispersion analysis, we are interested in how this equation propagates plane waves 
on the infinite uniform grid. Hence, substituting ψ̂j = exp(ı̂khjh), we get the following 
dispersion relation for the unknown discrete wavenumber kh:

Simplifying,

This is the dispersion relation for the HDG method in the lowest order case in one 
dimension. Even when τ and k are real, the argument of the arccosine is not. Hence

in general, indicating the presence of artificial dissipation in HDG methods. Note how-
ever that if τ is purely imaginary and kh is sufficiently small, (20) implies that Im(kh) = 0.

Let us now study the case of small kh (i.e., large number of elements per wavelength). 
As kh → 0, using the approximation cos−1(1− x2/2) ≈ x + x3/24 + · · · valid for small 
x, and simplifying (20), we obtain

Comparing this with the discrete dispersion relation of the standard finite element 
method in one space dimension (see  [10]), namely khh− kh ≈ O((kh)3), we find that 
wavespeed discrepancies from the HDG method can be larger depending on the value 

M11 =
[
ı̂kh 0
0 −ı̂kh− 2τ

]
M12 =

[
−1 +1
τ τ

]

M21 = Mt
12 M22 =

[
−τ 0
0 −τ

]
.

S = −




1

ı̂kh
− τ 2

ı̂kh+ 2τ
+ τ − 1

ı̂kh
− τ 2

ı̂kh+ 2τ

− 1

ı̂kh
− τ 2

ı̂kh+ 2τ

1

ı̂kh
− τ 2

ı̂kh+ 2τ
+ τ


 .

2ψ̂j

(
1

ı̂kh
− τ 2

ı̂kh+ 2τ
+ τ

)
+ (ψ̂j−1 + ψ̂j+1)

(
− 1

ı̂kh
− τ 2

ı̂kh+ 2τ

)
= 0.

cos(khh)

(
1

ı̂kh
+ τ 2

ı̂kh+ 2τ

)
=

(
1

ı̂kh
− τ 2

ı̂kh+ 2τ
+ τ

)

(20)khh = cos−1

(
1− (kh)2

2+ ı̂kh(τ + τ−1)

)
.

(21)Im(kh) �= 0,

(22)khh− kh = − (τ 2 + 1)ı̂

4τ
(kh)2 + O((kh)3).
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of τ. In particular, we conclude that if we chooseτ = ±ı̂ , then the error khh− kh in both 
methods are of the same order O((kh)3).

Before concluding this discussion of the one-dimensional case, we note an alternate 
form of the dispersion relation suitable for comparison with later formulas. Using the 
half-angle formula, Eq. (20) can be rewritten as

where c = cos(khh/2).

Lowest order two‑dimensional case

In the 2D case, we use an infinite grid of square elements of side length h. The HDG ele-
ment matrix associated to the lowest order (p = 0) case of (2a, 2b, 2c) is now larger, but 
the Schur complement obtained after condensing out all interior degrees of freedom is 
only 4 × 4 because there is one degree of freedom per edge. Note that horizontal and ver-
tical edges represent two distinct types of degrees of freedom, as shown in Figure 3a, b. 
Hence there are two types of stencils.

For conducting dispersion analysis with multiple stencils, we follow the approach 
in Ref. [11] (described more generally in the next subsection). Accordingly, let C1 and C2 
denote the infinite set of stencil centers for the two types of stencils present in our case. 
Then, we get an infinite system of equations for the unknown solution (numerical trace) 

(23)c2 = 1−
(
(kh)2

2

)(
τ

ı̂kh(τ 2 + 1)+ 2τ

)
,

(a) (b) (c)

(d) (e) (f)
Figure 3 Stencils corresponding to the shaded node types. a, b Two node types of the lowest order (p = 0) 
method; c–f Four node types of the first order (p = 1) method.
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values ψ̂1,�p1 and ψ̂2,�p2 at all �p1 ∈ C1 and �p2 ∈ C2, respectively. We are interested in how 
this infinite system propagates plane wave solutions in every angle θ. Therefore, with the 
ansatz ψ̂j,�pj = aj exp(ı̂ �κh · �pj) for constants aj ( j = 1 and 2), where the discrete wave vec-
tor is given by

we proceed to find the relation between the discrete wavenumber kh and the exact 
wavenumber k.

Substituting the ansatz into the infinite system of equations and simplifying, we obtain 
a 2× 2 system F

[
a1
a2

]
= 0 where

and, for j = 1, 2,

Hence the 2D dispersion relation relating kh to k in the HDG method is

To formally compare this to the 1D dispersion relation, consider these two sufficient 
conditions for det(F) = 0 to hold:

where k1 = k cos θ and k2 = k sin θ. (Indeed, multiplying  (26) j by dj+1 ( j = 1) or dj−1 
( j = 2) and summing over j = 1, 2, one obtains a multiple of det(F).) The Equations 
in  (26) can be simplified to

which are relations that have a form similar to the 1D relation (23). Hence we use asymp-
totic expansions of arccosine for small kh, similar to the ones used in the 1D case, to 
obtain an expansion for khj , for j = 1, 2.

The final step in the calculation is the use of the simple identity

Simplifying the above-mentioned expansions for each term on the right hand side above, 
we obtain

�κh = kh
[
cos θ
sin θ

]

F =
[

2 khτ 2c1 c2 d1
(
4 τ + ı̂kh

)
+ 2 khτ 2c1

2

d2
(
4 τ + ı̂kh

)
+ 2 khτ 2c2

2 2 khτ 2c1c2

]

(24)cj = cos

(
1

2
hkhj

)
, dj = 2ı̂

(
1− c2j

)
− τkh, kh1 = kh cos θ , kh2 = kh sin θ .

(25)det(F) = 0.

(26)2(kh)2τ 2c2j + dj

(
2τkh+ ı̂(kjh)

2
)
= 0, for j = 1, 2,

(27)c2j = 1− (kjh)
2

2ı̂

(
kh τ

(kjh)2 + (kh)2 τ 2 − 2 ı̂ kh τ

)
, j = 1, 2,

(28)kh =
((

kh1

)2
+

(
kh2

)2)1/2

.

(29)khh− kh = ı̂(cos(4 θ)+ 3+ 4 τ 2)

16 τ
(kh)2 + O((kh)3)



Page 17 of 24Gopalakrishnan et al. Adv. Model. and Simul. in Eng. Sci.  (2015) 2:13 

as kh → 0. Thus, we conclude that if we want dispersion errors to be O((kh)3), then we 
must choose

a prescription that is not very useful in practice because it depends on the propagation 
angle θ. However, we can obtain a more practically useful condition by setting τ to be the 
constant value that best approximates ± 1

2 ı̂
√
cos(4θ)+ 3 for all 0 ≤ θ ≤ π/2, namely

These values of τ asymptotically minimize errors in discrete wavenumber over all angles 
for the lowest order 2D HDG method. Note that for any purely imaginary τ, (27) implies 
that khj  is real if kh is sufficiently small, so

thus eliminating artificial dissipation.
We now report results of numerical computation of kh = kh(θ) by directly applying a 

nonlinear solver to the 2D dispersion relation (25) (for a set of propagation angles θ). The 
obtained values of the real part Rekh(θ) are plotted in Figure 3a, for a few fixed values 
of τ. The discrepancy between the exact and discrete curves quantifies the difference in 
the wave speeds for the computed and the exact wave. Next, analyzing the computed 
kh(θ) for values of τ on a uniform grid in the complex plane, we found that the values of 
τ that minimize |kh− kh(θ)h| are purely imaginary. As shown in Figure 4, these τ-values 
approach the asymptotic values determined analytically in Eq. (30). A second validation 
of our analysis is performed by considering the maximum error over all θ for each value 
of τ and then determining the practically optimal value of τ. The results, given in Table 2, 
show that the optimal τ values do approach the analytically determined value [see (31)] 
of ±ı̂

√
3
2 ≈ ±0.866ı̂ . Further numerical results for the p = 0 case are presented together 

with a higher order case in the next subsection.

(30)τ = ±1

2
ı̂

√
cos(4θ)+ 3,

(31)τ = ±ı̂

√
3

2
.

(32)Im(kh) = 0,

0 π/4 π/2
0.4

0.6

0.8

1

Angle θ

(I
m

 τ
)2

τ 0

kh=π/4
kh=π/16
kh=π/64
(cos(4θ)+3)/4 

0 π/4 π/2

0.6

0.8

1

1.2

Angle θ

(I
m

 τ
)2

(a) Im (b) Im τ 0
Figure 4 The values of τ that locally minimize |kh− khh| are purely imaginary. Here, (Im(τ ))2 is compared 
with asymptotic values (dashed lines).
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Higher order case

To go beyond the p = 0 case, we extend a technique of  [11] (as in [12]). Using a higher 
order HDG stencil, we want to obtain an analogue of  (25), which can be numerically 
solved for the discrete wavenumber kh = kh(θ). The accompanying dispersive, dissipative, 
and total errors are defined respectively by

Again, we consider an infinite lattice of h× h square elements with the ansatz that the 
HDG degrees of freedom interpolate a plane wave traveling in the θ direction with 
wavenumber kh. The lowest order and next higher order HDG stencils are compared 
in Figure 3. Note that the figure only shows the interactions of the degrees of freedom 
corresponding to the φ̂ variable—the only degrees of freedom involved after elimination 
of the �u and φ degrees of freedom via static condensation. The lowest order method has 
two node types (shown in Figure 3a, b), while the first order method has four node types 
(shown in Figure  3c–f). For a method with S distinct node types, denote the solution 
value at a node of the sth type, 1 ≤ s ≤ S, located at �lh ∈ R2, by ψ

s,�l. With our ansatz that 
these solution values interpolate a plane wave, we have

for some constants as.
Now, to develop notation to express each stencil’s equation, we fix a stencil within the 

lattice. Suppose that it corresponds to a node of the tth type, 1 ≤ t ≤ S, that is located at 
�h. For 1 ≤ s ≤ S, define Jt,s = {�l ∈ R2 : a node of type s is located at ( � +�l)h} and, for 
�l ∈ Jt,s, denote the stencil coefficient of the node at location ( � +�l)h by D

t,s,�l. The stencil 
coefficient is the linear combination of the condensed local matrix entries that would 
likewise appear in the global matrix of Eq.  (17). Both it and the set Jt,s are translation 
invariant, i.e., independent of � . Since plane waves are exact solutions to the Helmholtz 
equation with zero sources, the stencil’s equation is

(33)
ǫdisp = max

θ
|Re(kh(θ))− k|, ǫdissip = max

θ
|Im(kh(θ))|,

ǫtotal = max
θ

|kh(θ)− k|.

ψ
s,�l = ase

ı̂
�kh·�lh,

S∑

s=1

∑

l∈Jt,s
D
t,s,�l ψs, �+�l = 0.

Table 2 Numerically found values of τ that minimize |kh− kh(θ)h| for all θ in the p = 0 case

kh Optimal τ, Optimal τ,
Im(τ) > 0 Im(τ) < 0

π/4 0.807ı̂ −0.931ı̂

π/8 0.837ı̂ −0.898ı̂

π/16 0.851ı̂ −0.882ı̂

π/32 0.859ı̂ −0.874ı̂

π/64 0.863ı̂ −0.871ı̂

π/128 0.865ı̂ −0.868ı̂

π/256 0.866ı̂ −0.867ı̂
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Finally, we remove all dependence on �  in this equation by dividing by eı̂ �kh· �h, so there 
are S equations in total, with the tth equation given by

Defining the S × S matrix F(kh) by

we observe that non-trivial coefficients {as} exist if and only if kh is such that

This is the equation that we solve to determine kh for a given θ for any order (cf. 25).
Results of the dispersion analysis are shown in Figures 5 and 6. These figures combine 

the results from previously discussed p = 0 case and the p = 1 cases to facilitate com-
parison. Here, we set k = 1 and h = π/4, i.e., 8 elements per wavelength. Figure 6 shows 
the dispersive, dissipative, and total errors for various values of τ ∈ C. For both the low-
est order and first order cases, although the dispersive error is minimized at a value of 
τ having nonzero real part, the total error is minimized at a purely imaginary value of τ . 
This is attributed to the small dissipative errors for such τ. Specifically, the total error is 
minimized when τ = 0.87ı̂  in the p = 1 case. This is close to the optimal value of τ found 
(both analytically and numerically) for p = 0. This value of τ reduces the total wavenum-
ber error by 90% in the p = 1 case, relative to the total error when using τ = 1.

Comparison with dispersion relation for the Hybrid Raviart–Thomas method

The HRT (Hybrid Raviart–Thomas) method is a classical mixed method [14–16] which has 
a similar stencil pattern, but uses different spaces. Namely, the HRT method for the Helm-
holtz equation is defined by exactly the same equations as (2a, 2b, 2c) with τ set to zero, 
but with these choices of spaces on square elements: V (K ) = Qp+1,p(K )×Qp,p+1(K ), 
W (K ) = Qp(K ), and M(F) = Pp(F). Here Ql,m(K ) denotes the space of polynomials 

(34)

S∑

s=1

as
∑

l∈Jt,s
D
t,s,�l e

ı̂
�kh·�lh = 0.

t,s =
∑

l∈Jt,s
D
t,s,�l e

ı̂kh[cos θ ,sin θ ]·�lh,

(35)det(F(kh)) = 0.
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which are of degree at most l in the first coordinate and of degree at most m in the second 
coordinate. The general method of dispersion analysis described in the previous subsec-
tion can be applied for the HRT method. We proceed to describe our new findings, which 
in the lowest order case includes an exact dispersion relation for the HRT method.

In the p = 0 case, after statically condensing the element matrices and following the 
procedure leading to (25), we find that the discrete wavenumber kh for the HRT method 
satisfies the 2D dispersion relation

(36)
(
c21 + c22

)(
2(hk)2 − 12

)
+ c21c

2
2

(
4(hk)2 + 48

)
+ (hk)2 − 24 = 0,
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where cj, as defined in (24), depends on khj , which in turn depends on kh. Similar to the 
HDG case, we now observe that the two equations

are sufficient conditions for  (36) to hold. Indeed, if lj is the left hand side above, then 
l1(2c

2
2 + 1)+ l2(2c

2
1 + 1) equals the left hand side of  (36). The equations of  (37) can 

immediately be solved:

Hence, using (28) and simplifying using the same type of asymptotic expansions as the 
ones we previously used, we obtain

as kh → 0. Comparing with (29), we find that in the lowest order case, the HRT method 
has an error in wavenumber that is asymptotically one order smaller than the HDG 
method for any propagation angle, irrespective of the value of τ.

To conclude this discussion, we report the results from numerically solving the non-
linear solution  (36) for kh(θ) for an equidistributed set of propagation angles θ. We 
have also calculated the analogue of  (36) for the p = 1 case (following the procedure 
described in the previous subsection). Recall the dispersive, dissipative, and total errors 
in the wavenumbers, as defined in Eq. (33). After scaling by the mesh size h, these errors 
for both the HDG and the HRT methods are graphed in Figure 7 for p = 0 and p = 1. 
We find that the dispersive errors decrease at the same order for the HRT method and 
the HDG method with τ = 1. While (38) suggests that the dissipative errors for the HRT 
method should be of higher order, our numerical results found them to be zero (up to 
machine accuracy). The dissipative errors also quickly fell to machine zero for the HDG 
method with the previously discussed “best” value of τ = ı̂

√
3/2, as seen from Figure 7.

Conclusions
These are the findings in this paper:

1. There are values of stabilization parameters τ that will cause the HDG method to 
fail in time-harmonic electromagnetic and acoustic simulations using complex wave-
numbers. [See Eq. (5) et seq.]

2. If the wavenumber k is complex, then choosing τ so that Re(τ )Im(k) ≤ 0 guarantees 
that the HDG method is uniquely solvable. (See Theorem 1.)

3. If the wavenumber k is real, then even when the exact wave problem is not well-
posed (such as at a resonance), the HDG method remains uniquely solvable when 
Re(τ ) �= 0. However, in such cases, we found the discrete stability to be tenuous. (See 
Figure 2 and accompanying discussion.)

(37)
(
2(hkj)

2 + 12
)
c2j + (hkj)

2 − 12 = 0, j = 1, 2,

hkhj = 2 cos−1

(
12− (hkj)

2

2 (hkj)2 + 12

)1/2

(38)khh− kh = −cos(4 θ)+ 3

96
(kh)3 + O((kh)5)
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4. For real wavenumbers k, we found that the HDG method introduces small amounts 
of artificial dissipation [see Eq. (21)] in general. The artificial dissipation is eliminated 
[see Eq. (32)] when Re(τ ) = 0 and kh is sufficiently small, but note that in this case, 
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Theorem  1 no longer guarantees unique solvability. In 1D, the optimal values of τ 
that asymptotically minimize the total error in the wavenumber (that quantifies dis-
sipative and dispersive errors together) are τ = ±ı̂  [see Eq. (22)].

5. In 2D, for real wavenumbers k, the best values of τ are dependent on the propaga-
tion angle. Overall, values of τ that asymptotically minimize the error in the discrete 
wavenumber (considering all angles) is τ = ±ı̂

√
3/2 [per Eq. (31)]. While dispersive 

errors dominate the total error for τ = ı̂

√
3/2, dissipative errors dominate when 

τ = 1 (see Figure 7).
6. The HRT method, in both the numerical results and the theoretical asymptotic 

expansions, gave a total error in the discrete wavenumber that is asymptotically one 
order smaller than the HDG method. [See (38) and Figure 7.]
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