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Abstract

Background: We present a robust method to obtain the displacement field of a
dislocation core, which is one of the building blocks for the development of a direct
multiscale method coupling an atomistic domain to a discrete dislocation dynamics
engine in 3D (e.g. CADD3D).

Methods: The core structure is achieved by modeling of a straight dislocation with an
arbitrary mixed angle using atomistic simulation. In order to validate the obtained
atomistic core structures, a variational Peierls-Nabarro method is extended to include
arbitrary characters.

Results: Both methods show comparable dislocation core structures for all studied
angles. We provide also the Peierls stress for a wide range of character angles.

Conclusions: The obtained displacement fields for the dislocation cores were fully
validated. These can consequently be employed to construct the described CADD3D
coupling scheme.

Keywords: CADD3D; Mixed dislocation; Character angle; Shockley partial; Variational
Peierls-Nabarro method; Peierls stress

Background
The understanding of the collective motion of line defects called dislocations is important
in order to predict plastic deformations of crystalline materials. This can be studied using
several computational tools, including discrete dislocation dynamics (DDD) [1–4]. In
DDD, a dislocation is simply represented as a set of nodes connected by straight segments
[5]. Due to this simple representation, this method can handle much larger simulation
sizes (order of microns) than atomistic simulations (MD), and yields results on sample
sizes which are comparable to in-situ TEM experiments [6]. DDD requires several param-
eters, which can be obtained from atomistic models, such as a dislocation core energy
and nodal mobility law [7]. With these parameters, dislocation dynamics are reasonably
well approximated. However, DDD has important limitations which require ad-hoc treat-
ments. For instance, dislocation nucleation is only possible by inserting nucleation seeds
such as frank-read sources [8–10]. On the other hand, MD describes naturally dislocation
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nucleation as it represents dislocations explicitly as crystalline line defects, although the
much larger computational cost is an important drawback. Therefore, it is attractive to
combine the advantages of both approaches within a multiscale framework.
Currently, several multiscale methods exist including quasi-continuum [11], bridging

domain [12] and finite element (FE) combined with atomistic modeling [13]. All these
methods couple energies or displacements between two different domains: MD and FE.
The authors are developing a 3D direct-coupling method between MD and DDD, which
is named CADD3D1 and is an extension of the CADD2D [14] approach. In this approach,
MD is used where dislocation nucleation are expected (and where DDD would require an
ad-hoc treatment), whereas in the remaining zones standard DDD is employed. The key
point of the CADD3D method is to deal with dislocations passing seamlessly between
these two different domains. One notable difficulty is that a dislocation line can cross the
interface between the coupled models. Then, the distinct representation of a dislocation,
being either an atomistic structure or a set of DDD segments should match perfectly at
the coupling interface. This can be achieved effectively by imposing respective boundary
conditions to both MD and DDD regions. In this paper, we focus on the MD boundary
conditions imposed by DDD: an adequate position and displacement field matching the
MD core structures has to be imposed to all boundary atoms within the influence region
of dislocations. The details of this approach, commonly called the core template tech-
nique will be described in Section “Coupled atomistic and discrete dislocations in 3D:
core template”. Because the dislocation structure is varying with its character angle2, the
core template of an arbitrary mixed angle has to be built.
We explain in Section “Coupled atomistic and discrete dislocations in 3D: core tem-

plate” the importance of the core template boundary condition for CADD3D to suc-
cessfully build the multiscale framework. In order to obtain this core template, we
provide comprehensive modeling techniques to create a dislocation with arbitrary char-
acter angles (Section “Method 1: Atomistic dislocation modeling”). We also provide an
extended variational Peierls-Nabarro (PN) method [15] to validate the obtained MD
core structures (Section “Method 2: Variational Peierls-Nabarro method”). Interestingly,
the extended PN method can be used to predict core structures of mixed dislocations
which cannot be obtained with MD simulations due to limitation of computational cost.
With the successful extension of PN method, we show favorable core structures when
compared to MD, and analyze the details of dislocation core structures of all the stud-
ied character angles (Section “Results 1: Comparison between the MD and PN mod-
els core structures”). We also measure Peierls stresses for various mixed dislocations
(Section “Results 2: Peierls stresses”), and show that Peierls stresses are largely influenced
by the atomistic structures of the dislocation core. Finally, the paper concludes with a
discussion on future work towards a fully working implementation of CADD3D.

Coupled atomistic and discrete dislocations in 3D: core template
The coupled atomistic and discrete dislocation (CADD) method [14] is a partitioned-
domain, concurrent multiscale coupling method that couples a molecular dynam-
ics or statics subdomain to a discrete dislocation dynamics subdomain and allows
dislocations to transition between them. This possibility of passing dislocations
between the subdomains makes CADD the only coupling method that, in principle,
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can handle the development of large dislocation networks at scalable computa-
tional cost.3

Even though only plane-strain two-dimensional implementations of CADD exist to
date, the method has been successfully used for the study of such problems as dislo-
cation emission from crack tips, void growth or nanoindentation in quasistatic (zero
temperature) problems [14], fully dynamic problems at finite temperature [16] and inter-
mediate problems where finite temperature atomistic is coupled to quasistatic discrete
dislocations [17].
The key impediment to a three-dimensional CADD method is the smooth transition

of dislocations across the coupling interface. The stress-strain fields around a dislocation
core can be split into a nonlinear core region, where continuummechanics fails to provide
an adequate description and a far-field region, where continuum solutions suffice, see
([5], Chapter 10) or ([18], Chapter 8). While MD simulations handle both the core and the
far-field correctly, the continuum with coupled FE and DDD modeling provides accurate
strains –and therefore displacements– only for the far-field. As a consequence, spurious
forces act on dislocation cores that approach the interface in coupled systems. When a
MD dislocation comes close to the interface (see Fig. 1), its (normally) nonlinear core
is intersected by the coupling interface. The continuum part of the core (dark gray area
in Fig. 1) is constrained to continuum elasticity instead of reacting highly nonlinearly
and therefore exhibits exaggerated stresses, leading to a repulsive spurious force on the
dislocation.
In order to avoid or at least reduce such spurious forces, we propose the use of so-

called core templates. The main idea of the dislocation core template is to correct the
linear displacement field in the core region by a precomputed empirical and nonlinear
displacement field. The exact core template ��̃uc(�x0) for an atom with original position �x0

Fig. 1 Dislocation in the vicinity of the interface: the nonlinear core region (schematically represented by the
gray area) interacts with the continuum across the interface. The continuum part of the core (dark gray) is
linear elastic while the atomistic part is nonlinear, leading to spurious forces. �A and �C denote the atomistic
and continuum subdomains. Figure from [19]
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is the error of the plastic contribution �̃u(�x0) of a dislocation network in a system without
elastic strain �̂u(�x0) = �0

��̃uc(�x0) = �uA(�x0) − �̃u(�x0), (1)

= �uA(�x0) −
∑
j

�̃uj(�x0), (2)

where �uA(�x0) is the exact atomistic solution and �̃uj(�x0) is the contribution of the j-th
discrete dislocation segment. The template is a corrective field for the DDD solution.
Assuming that the atomistic solution can be split into individual contributions from the
discrete dislocation segments as well

�uA(�x0) =
∑
j

�uA,j(�x0), (3)

the template can be expressed in terms of such contributions

��̃uc(�x0) =
∑
j

��̃uc,j(�x0) =
∑
j

[
�uA,j(�x0) − �̃uj(�x0)

]
. (4)

Far from any dislocation core, non-linear effects become negligible, and the small-strain
linear elasticity solution �̃u converges with the atomic solution �uA.
Figure 2 illustrates the application of the template: a dislocation line intersects the

interface. Without a template, pad atoms are regular points in a DDD domain and their
displacements are given by the superposition of the elastic solution �̂u and the solution
due to all dislocation segments �̃u, see [14]. In order to minimise spurious forces, we dis-
tinguish between pad atoms inside the nonlinear dislocation core (gray cylinder of radius
rc in the figure) and pad atoms in the linear elastic region.
The template correction field ��̃uc is added to the pad atoms within the core, suppress-

ing spurious forces. Amore detailed description of the template can be found in [19]. Two
limitations of the template approach are worth mentioning:

• Dislocation spacing: Implicit in the template definition (1) is the assumption that
dislocations lines in the pad are spaced far from one another, i.e. no two dislocation

Fig. 2 Schematic of dislocation core in the pad. For most of the pad, the liner elastic DDD displacement
solution is adequate, in the vicinity of the dislocation line, however, adding the core template ��̃uc is required
to minimize spurious forces. Figure from [19]
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cores overlap. If this assumption is violated and two dislocation lines approach one
another, there will be spurious forces acting on them in the pad.

• Accuracy and simplicity: The template is only useful if it can be precomputed and
looked up during the simulation. This means that the displacement field for
dislocation cores with arbitrary character angle and curvature needs to be accurately
interpolatable from a finite number of precomputed dislocation cores.

In this paper, we focus on the details of dislocation core structures with respect to the
character angle in order to build valid core templates. Consequently, this study starts
with a rigorous atomistic modeling of arbitrary mixed dislocations as explained in the
following section.

Method 1: Atomistic dislocationmodeling
A straight single dislocation can be constructed as shown in Fig. 3. A straight single dislo-
cation is inserted in the simulation box having periodic boundary conditions (PBC) both
in the dislocation gliding (z) and line (x) directions. As shown in Fig. 3(b), by setting the
character angle θ as an arbitrary value, we can model several mixed dislocations. For an
edge (respectively screw) dislocation, the dislocation line direction �d is defined as per-
pendicular (respectively parallel) to the slip direction (Burgers vector �b) on the same slip
plane. The edge (90°) and screw (180°) dislocations in FCC are modeled by choosing the
dislocation line direction as �d = [ 112̄] for edge and �d = [ 11̄0] for screw with the same
Burgers vector �b = 1

2 [ 11̄0]. Therefore, in order to create intermediate angle dislocations
(90°≤ θ ≤ 180°), one needs to choose the dislocation line direction �d accordingly. We
explain the detailed procedure to find a line direction �d for a specific angle dislocation as
shown in Fig. 4.
The empty/full circles in Fig. 4(a) are atomistic positions in the slip plane (111). The

full circles represent atoms contained in a chosen periodic unit cell, and its replications
in x and z directions generates the other atoms as empty circles. We select one atom in
the unit cell as a reference point O. Then, one of the neighboring atoms of O indicated
by the orange color arrow is chosen as shown in Fig. 4(a), which can be used to con-
struct the direction z′ = [ 31̄2̄] by connecting it to O. The cross product of the y[ 111]
and z′[ 31̄2̄] directions gives the remaining lattice coordinate x′[ 1̄54̄] indicated by another
orange arrow. Atomistic positions constructed using the new lattice coordinate system
(x′, y and z′) are shown in Fig. 4(b). By choosing the dislocation line in x′ direction with

Fig. 3 (a) Schematic modeling of a straight dislocation with arbitrary character angle. (b) Top view of the slip
plane. Lattice coordinate of y axis is [111], while the coordinates of x and z axes vary with the character angle
θ as shown in Table 1
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Fig. 4 (a) Procedure to find lattice coordinates for a mixed dislocation based on the atomistic representation
used for edge dislocation (x = [ 112̄], y = [ 111] and z = [ 11̄0]). (b) A result of the procedure (x′[ 1̄54̄],
y = [ 111] and z′ = [ 31̄2̄]). The 130.893° mixed dislocation can be created by choosing x′ as dislocation line
direction. The full black circles are the minimal number of atoms under the given coordinate system, and
empty black circles are the result of replications

Burgers vector (�b = 1
2 [110]), a mixed (130.893°) dislocation can bemodeled. Other neigh-

boring atoms, defining other z′ axes, provide lattice coordinates and associated angles for
other mixed dislocations. In this study, we have chosen eight representative cases which
are presented in Table 1. It shows that the sizes of minimum periodic unit cells vary with
the character angles. For example, the 90° (edge) dislocation has the periodic unit cell with
dimensions DX = √

6a, DY = √
3a and DZ = √

2a, while the size of the unit cell of the
130.893° (mixed) dislocation isDX = √

42a,DY = √
3a andDZ = √

14awith a = 4.056Å
(the lattice constant). Therefore, the number of replicas need to be carefully chosen to
balance evenly the number of atoms and the length of the simulation box with respect to
the desired character angle.

Table 1 Selected eight angles, lattice coordinates, number of replicas and atoms of each simulation
box

θ (◦) x y z Replicas (x, y, z) Atoms

90 (edge) [ 112̄] [ 111] [ 11̄0] (6, 10, 60) 86040

109.107 [ 145̄] [ 111] [ 32̄1̄] (2, 10, 20) 66900

120 [ 011̄] [ 111] [ 21̄1̄] (10,10, 30) 71700

130.893 [ 1̄54̄] [ 111] [ 31̄2̄] (2 ,10, 20) 66960

139.107 [ 1̄32̄] [ 111] [ 51̄4̄] (4 ,10, 12) 80400

150 [ 1̄21̄] [ 111] [ 101̄] (6, 10, 60) 86220

160.893 [ 2̄31̄] [ 111] [ 415̄] (4, 10, 12) 80520

180 (screw) [ 1̄10] [ 111] [ 112̄] (10,10, 30) 72000
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In order to insert a dislocation with a Burgers vector �b = 1
2 [ 11̄0], we employ the edge

and screw Volterra displacement fields (u0x, u0y and u0z ) given by [18]

u0x(z, y) = |�b|
2π

arctan
y
z
,

u0y(z, y) = − |�b|
2π

(
1 − 2ν
4(1 − ν)

ln(z2 + y2) + z2 − y2

4(1 − ν)(z2 + y2)

)
,

u0z(z, y) = |�b|
2π

(
arctan

y
z

+ zy
2(1 − ν)(z2 + y2)

)
(5)

where ν is Poisson’s ratio of the material. For a mixed dislocation, the displacements (u0x,
u0y and u0z ) are rotated by the character angle θ as

�utotal(z, y) = (ux,uy,uz) with

ux(z, y) = u0x(z, y) cos θ ,

uy(z, y) = u0y(z, y) sin θ ,

uz(z, y) = u0z(z, y) sin θ .

(6)

The rotated total displacement �utotal is imposed on the perfect crystal. Figure 5 shows the
change of simulation box after imposing the displacement. The boxes before and after
imposing the fields are represented by the gray dot and black solid (dashed) lines respec-
tively. In order to create a straight boundary on the left side of the simulation box in
direction z, image dislocations are inserted additionally on the other side of z direction.
The right side of the simulation box violates the PBC in direction z. This violation can be
simply fixed by two additional geometric treatments.
First, the step created by the edge displacement fields (uy and uz) can be avoided by

removing the extra plane (a slab of length �b sin θ ). Second, as seen in Fig. 5(b), the oppo-
site boundaries in direction z mismatch each other by half of the screw Burgers vector
�b/2 cos θ . The dashed black lines are the boundaries of the bottom surface. This mis-
match created by the screw displacement field (uz) is fixed by tilting the simulation box
with respect to the y axis in the x direction by half of the corresponding screw component
−�b/2 cos θ . Consequently, the PBC in the z direction is satisfied without any change of

Fig. 5 Variation of the simulation box after imposing the Volterra fields. (a) front view and (b) top view. The
initial box is denoted by the gray dot lines, and the box after inserting the dislocation is described with the
black solid lines. The dashed black lines in (b) are the boundary of the bottom side in the y direction
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the original elastic displacement field. Finally, the surfaces in the y direction remain free
boundaries.
In order to find the equilibrium state of dislocation core structures, the simulation box

has to be relaxed.We choose the latest Aluminum EAMpotential (Mendelev et al. [20]) to
evaluate the inter-atomic forces. The comparison of this potential with other EAM ones
will be described in Section “Method 2: Variational Peierls-Nabarro method”. We relax
by using a quenching process which is stopped when a norm of forces of all the atoms is
below 10−10 eV/Å.
Atomistic structures resulting from the relaxation are shown in Fig. 6 for the cases of

90° and 130.893° dislocations. The atoms are colored by the y coordinates (normal to the
slip plane). The initial dislocation line is dissociated into two partial dislocations. After
the dissociation, the regions far away from the dislocation core show the black (A) → →
dark gray (B) → gray (C) → white (A) color sequence while the area around the disloca-
tion core shows the black (A)→ dark gray (B)→white (A)4 color sequence. Themodified
stacking sequence is known as a stacking fault between two Shockley partial dislocations
[18] (indicated by the black arrows in the right side of Fig. 6). These partials have dissoci-
ated from a perfect dislocation (�b = 1

2 [ 11̄0]= �b1 +�b2 with �b1 = 1
6 [12̄1] and �b2 = 1

6 [21̄1̄])
due to the energy landscape of the FCC structure.We can see that the stacking fault width
for the 130.893° dislocation is smaller than for the 90◦ (edge) dislocation. Furthermore,
the two partials are symmetric in the case of the edge dislocation, but not for inter-
mediate (130.893°) dislocations. In order to understand and validate these relaxed core
structures, the variational Peierls-Nabarro model, describing dislocation core structures
with a continuum representation, is used in the next section.

Method 2: Variational Peierls-Nabarromethod
Continuum theory of linear elasticity provides useful analytic solutions for disloca-
tion problems because the theory offers quite accurate dislocation structures when far
from the core. However, this theory cannot be employed anymore near the dislocation
center, where one finds highly distorted atomistic structures. These nonlinear atomic

Fig. 6 Atomistic structure of the edge (90°) and mixed (130.893°) dislocation in FCC Al. (a) compact core
structures after imposing the Volterra field/before the relaxation. (b) core structures after relaxations. The
atoms are colored by coordinates of the y axis. Black, dark gray, gray, and white atoms are placed on top, 2nd,
3rd and 4th layers in the y axis from the slip plane. The initial compact dislocation lines dissociate into two
Shockley partial dislocation lines indicated by the black arrows
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interactions can be naturally captured by an atomistic model. For these reasons, simula-
tions combining the continuum and atomistic models can be useful not only for the far
field but also for the dislocation center. One of the available tools combining the contin-
uum and atomistic models is the variational Peierls-Nabarro (PN) method [21, 22], which
generally has been used to calculate dislocation core structures by minimizing the total
energy of the system. More precisely, the energy in the far field is captured by the energy
formulation of continuum linear elasticity theory, while the energy in the core region is
obtained by using the crystalline misfit energy and a spread displacement field on the slip
plane. The total energy is the sum of both these energy formulations, and the optimal dis-
location core structures are found when the total energy is minimum. The PN model is
known as a tool providing good descriptions of dislocation core structures in comparison
with MD results [5, 15, 23–25].
The original PN formulation starts from the total energy Etot:

Etot = Eel + Emsft,

where Eel is the elastic energy, and Emsft is the misfit energy. Because the original Volterra
displacement field �u is singular on the dislocation core, the original energy formulation
is ill-posed. Therefore �u has to be spread, which can be performed in two ways. In a first
approach, the displacements are divided into edge uz and screw ux components using
several arc-tangent functions [5, 15, 23]. A second method called phase field (PF) method
is distributing the displacement �u into all possible slip directions u1 = [ 01̄1], u2 = [ 101̄]
and u3 = [ 1̄10] using scalar functions ζ(z) recording the amount of slips [24, 26–28]. In
this article, we choose the first approach without comparisons between the two meth-
ods because the both methods are known to provide sufficiently good dislocation core
structures confirming the obtained atomistic simulation results. The two arc-tangent
functional forms for both edge u0z and screw u0x displacements as described in [5]:

u0z = A1 arctan
z − z1
c1

+ A2 arctan
z − z2
c2

− b
2
,

u0x = A3 arctan
z − z1
c3

+ A4 arctan
z − z4
c4

(7)

whereAk , ck and zk are the parameters obtained throughminimization. By the principle of
superposition, we rotate u0z and u0x by the character angle θ to have slip and line directions
in z and x axes respectively:

uz = b
π

(
u0z sin θ − u0x cos θ

) − b
2
,

ux = b
π

(
u0x cos θ + u0z sin θ

)
.

(8)

With the arc-tangent shape of displacements in hand (uz and ux), we can construct
analytically the elastic energy Eel:

Eel = − Kedge

∞∫
−∞

∞∫
−∞

duz
dz

duz
dz′

ln |z − z′|dzdz′

− Kscrew

∞∫
−∞

∞∫
−∞

dux
dz

dux
dz′

ln |z − z′|dzdz′
(9)

where Kedge = μ/(4π(1 − ν)), Kscrew = μ/4π .



Cho et al. AdvancedModeling and Simulation in Engineering Sciences  (2015) 2:12 Page 10 of 17

The misfit energy Emsft can be constructed by using Equation (10) with the misfit
potentials γ (uz,ux) obtained from independentMD simulations. Themisfit potentials are
computed by constant and rigid shifting of two crystals on the glide plane (111) against
each other [29]. The results of misfit potentials of Mendelev et al. [20] potential is shown
in Fig. 7(a).

Emsft = −
∞∫

−∞
γ (uz(z),ux(z))dz (10)

For a dislocation in FCC materials, the generalized stacking fault (GSF) energy curve
in x = 〈

112̄
〉
directions is important to understand dislocation slip behaviors. The GSF

energy curve was first suggested by Vitek [30] to be composed of an intrinsic stacking fault
energy γI (ISF) and an unstable stacking fault energy γU (USF) [24, 31]. The ISF energy
is the local energy minimum of partial dislocations, and the USF energy is the minimum
energy required in order to translate partials. The obtained GSF energy curve in x = 〈

112̄
〉

is given in Fig. 7(b) with γU = 243.3mJ/m2 and γI = 128.6mJ/m2. When compared DFT
computations and Mishin & Farkas, our selected Mendelev et al. potential provides an
accurate description of γU and γI .
After constructing the total energy formulation, one can see that the only difference

between the arbitrary character angles is the amount of elastic energy Eel given by the
terms Kedge and Kscrew (see Equation 9), which differ by 1/(1 − ν): the dislocations close
to edge have larger elastic energies than the dislocations around screw. The total energy
Etot is minimized numerically to get the optimal shape of the displacement fields �u over
the slip plane.

Results 1: Comparison between theMD and PNmodels core structures
By dumping the displacements of all atoms located on the upper and lower slip planes in
the MD simulation, we can compare the displacements �u = (ux,uz) with the PN results

Fig. 7 (a) Periodic misfit potential in the x and z directions of the Mendelev et al. EAM potential [20]. (b) GSF
energy curves in 〈112〉 direction of several Al EAM potentials [32, 42–44] and DFT computations [45] (figure
was taken with agreement of copyright by author [29, 46] and IOP publishing). The blue curve shows results
obtained with the Mendelev et al. potential [20]. We reproduce one of author’s results shown by the red
curve with Mishin and Farkas potential [32]
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as shown in Fig. 8. The MD results are represented with markers while the PN results
are described by lines. Clearly, the PN model predicts well the atomistic dislocation core
structures. The edge (90°) dislocation is decomposed into the two symmetric Shockley
edge and screw partial dislocations. As the angle increases, the partial displacements are
no longer symmetric to each other, and finally become symmetric again at the angle of
screw dislocation (180°).
The mapping of PN results onto the perfect atoms located on the slip plane is shown

in Fig. 9 with blue crosses in the case of 130.893° dislocations. The equilibrium state of
atomistic core structures is represented in red circles. Again, both results are in good
agreement in the core region.
Next, we compare the strains with respect to z coordinates (d�u/dz) as shown in Fig. 10.

While the strains for the PN results can be derived analytically since the displacements are
represented by the two arc-tan functions, the strains for the MD results are obtained by
computing the slope between two neighboring points without any line interpolation. We
define the stacking fault width as the distance between the strain extremes, thus providing
a way to measure the widths as function of the different angles (see Fig. 11). The width for
the edge dislocation is l = 3.4 Burgers, and it is in reasonable range (2.8 ≤ l ≤ 13.4) when
compared to results obtained from other simulations and potentials [32–35]. As the angle
increases to screw dislocation (180°), the width decreases smoothly. It can be understood
due to the decrease of the elastic energy with increasing angle.
We see that the extended PN method produces dislocation core structures, at much

cheaper computational costs, that compare reasonably well with the atomistic core struc-
tures. Therefore, we can employ the PN method to predict core structures of mixed
dislocations which cannot be obtained by atomistic simulations when the sizes of unit
cells become large enough to exclude an atomistic calculation.

Results 2: Peierls stresses
The Peierls stress is defined as the minimum stress required to translate a dislocation
at zero temperature [18], and it is known to be influenced by core structures [35–39].

Fig. 8 The displacements uz (edge direction), ux (screw direction) over the z coordinate, which are
normalized by Burgers vector, obtained from MD and PN methods for different character angles (some MD
atoms are excluded for better visibility)



Cho et al. AdvancedModeling and Simulation in Engineering Sciences  (2015) 2:12 Page 12 of 17

Fig. 9 Comparison between MD with PN results with atomistic representation on the slip plane (130.893°
mixed dislocation)

Because we have obtained the details of the dislocation core structures e.g., lattice orien-
tation and stacking fault widths, the influences of the core structures on the Peierls stress
can be studied in this section. Several articles [35, 37, 38] have been published regard-
ing the Peierls stresses of FCC Aluminum, measured using direct atomistic simulations.
A wide range of results (from 1MPa to 13MPa for an edge and from 1MPa to 82MPa for
a screw) is observed. Shin and Carter [38] found that a dislocation dissociated into par-
tials has a smaller Peierls stress than a compact dislocation. Olmsted et al. [37] studied
Peierls stresses for mixed dislocations (120° and 150°) including the edge and screw char-
acter angles. They found that the screw and 120° dislocations are required to overcome a
higher Peierls energy barrier than the edge and 150° dislocations. They argued that such
results are due to the density of atoms in the motion direction (Simmons et al. [39] ini-
tially suggested this idea). To the best of our knowledge, Peierls stresses have been studied
only for the four character angles (90°, 120°, 150° and 180°), whereas we selected other
new character angles.
In Section “Method 1: Atomistic dislocation modeling”, we constructed the dislocations

based on the corresponding Volterra displacement fields followed by relaxations. These

Fig. 10 The strains (duz/dz and dux/dz) over z axis, which are normalized by Burgers vector, measured by
MD and PN for the representative seven angles



Cho et al. AdvancedModeling and Simulation in Engineering Sciences  (2015) 2:12 Page 13 of 17

Fig. 11 Variation of stacking fault widths for several angles

relaxed fields are only valid when dislocations locate at initial positions. As the disloca-
tions change their positions on the gliding plane, the following stresses are polluted by the
artificial image stresses from the unmatched dislocation surrounding fields [37]. In order
to avoid the unwanted effects from the boundaries, we imposed linear displacement fields
(ux,lin, uy,lin and uz,lin) on the atoms in the top and bottom surfaces instead of the Volterra
elasticity solution. By introducing these linear fields, the boundary conditions are invari-
ant with respect to the dislocation position. The linear displacement fields for the top and
bottom surfaces are chosen as follows:

u0x,lin(z, y) = −sign(y)bscrew/2
LZ

(
z + LZ

2

)
,

u0y,lin(z, y) = 0.0,

u0z,lin(z, y) = −sign(y)bedge/2
LZ

(
z + LZ

2

)
.

(11)

with LZ the length of the simulation box in direction z. On the top surface, the nega-
tive Burgers (−bedge and −bscrew) vectors are used, and the positive Burgers (+bedge and
+bscrew) are employed for the bottom surface. In order to consider the mixed character
angles, the linear displacements are rotated by the given character angle θ (Equation 6).
The remaining atoms are subjected to the Volterra fields, and are also rotated by θ as
we described in Section “Method 1: Atomistic dislocation modeling”. After imposing the
various displacement fields on the atoms in each region, we relax the simulation box,
and measure the Peierls stress through quasi-static loading. Specifically, we translate the
atoms on the top surface along the Burgers direction in small steps, while we fix the atoms
on the bottom surface. After each translation, we minimize the bulk of atoms and moni-
tor the final energy value when the minimization finishes. Therefore, we can observe the
energy variation of the system as the dislocation moves to different positions along the
gliding direction.
Figure 12(a) shows the dislocation displacement udis in the gliding direction z with

respect to the displacements of the top surface utop in the Burgers direction �b, and the
corresponding potential energy variations �Epot of the system are given in Fig. 12(b).
The dislocations slowly change their position, and suddenly jump to the next positions

as the quasi-loading is incremented. The jump magnitudes of the edge dislocation are
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Fig. 12 a Dislocation displacements and (b) energy variations with respect to top surface displacement of
the edge (90°) and mixed (139.893°) dislocation

larger than the mixed (139.893°) dislocation. Consequently, the edge dislocation requires
higher energy accumulations (and reliefs) before (and after) jumps(respectively) as shown
in Fig. 12(b) than the mixed dislocation. We call each energy relief and peak point Elpot
and Eupot respectively. The Peierls stress is computed as follows [40]:

σp = �Emax
pot

bhzLx
=

max
{(

Eu,n−1
pot − El,npot

)
|n ∈[ 1..N]

}
bhzLx

(12)

where Lx is the length of the simulation box in dislocation line direction x and �Emax
pot is

the maximum energy release among N events, hz is the displacement of the dislocation
in z direction occurred by one Burgers �b slip. Cai [40] defined hz as the repeat distance
for which the system is translation invariant, and argued that hz can be defined geomet-
rically with respect to Dz (length of a primitive unit cell in gliding direction). Since the
90°, 120°, 150° and 180° dislocations were built based on the FCC primitive unit cells, hz
can be defined as hz = Dz(90°)/4 in the case of FCC crystals. For example, hz is |�b|/2 for
90° and 150° dislocations, and

√
3|�b| for 120° and 180° dislocations. These distances are

represented in the energy variation curves (Fig. 12) as follows. The energy of the simu-
lation box containing a edge (90°) dislocation varies with a period hz = |�b|/2 = 1.43Å.
Particularly, the other mixed dislocations (109.107°, 130.873°, 139.107° and 160.893°) are
constructed based on the periodic unit cells where several primitive unit cells exist (see
Fig. 4). The repeat distances hz for those angles cannot be defined with respect to the
primitive unit cell. Since there are 28 atoms in the given periodic unit cells meaning that
28 energy accumulation-release events happen as a dislocation moves across an entire
unit cell. As shown in Fig. 12, the energy of 139.107° dislocation varies periodically by hz =
Dz(139.107°)/28 = 0.935Å. Using the corresponding value of hz (Dz(θ)/4 or Dz(θ)/28),
the Peierls stresses of all the character angles can be measured with Equation 12. The
measured Peierls stresses are shown in Fig. 13 with respect to the density of atoms in the
gliding direction.
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Fig. 13 Variation of Peierls stresses for the several angles with respect to the density of atoms in the gliding
direction. The corresponding Peierls stress value and the character angle are denoted next to each marker

We can first compare Peierls stresses of the dislocations constructed with an equivalent
lattice orientation (but with a different character angle). As shown in Table 1, the edge and
150°, 109.109° and 130.893°, 139.109° and 160.893°, 120° and screw dislocations are mod-
eled based on the same lattice orientation. For each lattice orientation, the Peierls stress
decreases low as the character angle decreases. These observations were confirmed by
Simmons et al. [39], and it can be understood with the magnitudes of dislocation dissoci-
ation [38]. As seen in the variation of stacking fault widths in Fig. 11, the dislocations are
dissociated into larger stacking fault widths when their character angles become small.
Consequently, the Peierls stress decreases as the character angle reduces. In the case of
139.109° and 160.893° dislocations, the above argument is not valid, and we have not
found any reasons for the discrepancy.
Second, we confirm qualitatively the Peierls stresses of the dislocations between the

different lattice orientations as follows. The two dislocations (120° and 180°) based on the
lattice orientation x =< 1̄10 >, y =< 111 > and z =< 112̄ > have higher Peierls stresses
than the other dislocations. It can be understood with the density of atoms in the gliding
direction. We see in Fig. 13 that the densities vary with the lattice orientations of the
slip plane. Therefore, the dislocations built within the same family of lattice orientation
having small density have high Peierls stresses. Consequently, the 109.107° and 130.893°
dislocations have small Peierls stresses compared to the other dislocations.

Conclusion
In this article, we presented one part of the coupled atomistic discrete dislocation formu-
lation for the three dimensional case. This important part, the so-called core template,
deals with dislocations traversing the coupling interface in order to impose a matching
boundary condition to the MD. This template is defined by the core atomistic positions
which depend on the character angle. These positions can be obtained by modeling a
straight mixed dislocation via an atomistic simulation. The detailed setup of such simu-
lations has been extensively described in this paper. Furthermore, based on the extensive
modeling results, Peierls stresses have been measured.
As expected, the core size of the modeled straight dislocations varied with the char-

acter angle. More specifically, the fault widths between the two partials are decreasing
when the character angles increase. This can be understood by considering the variation
of the elastic energy. Also, the MD core structures were confirmed by using the varia-
tional PN model, which was extended to consider arbitrary angles. The comparison of
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the core structures obtained from both methods showed good agreements. The extended
PN method can predict displacement fields for any angle, including these that are diffi-
cult to obtain with periodic and finite size MD simulations. Furthermore, the measured
Peierls stresses were qualitatively confirmed, and we found that the magnitude of disso-
ciation and the density of atoms in the gliding direction decide the Peierls stress of the
dislocation.
As we already mentioned, these results are directly applicable to the CADD3D imple-

mentation to provide matching boundary conditions. However, another important com-
ponent of CADD3D deals with the dynamic motion of dislocations. Moving dislocations -
partially MD and partially DDD - need to have comparable speeds in order to avoid
non-physical spurious forces at the interface. The presented core structures can straight-
forwardly be employed as a starting point for simulating MD dislocation motion under
shear stress and thus to carry out mobility laws for arbitrary mixed angle.

Endnotes
1Swiss national science foundation project conducted by three principal investigators,

William Curtin, Jean-François Molinari and Guillaume Anciaux.
2Due to plane-strain restrictions, two-dimensional CADD can only handle edge

dislocations.
3Another method, AtoDis [41] has similar properties, but it has not been shown to be

operational in the presence of more than a single dislocation line.
4The stacking falut sequence of the dislocation core region (A→B→A) allows us to

see the second layer of A atoms. These atoms are not seen in the stacking sequence of
perfect FCC crystal systems (A→B→C→A).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JC implemented the simulations, and drafted the manuscript. TJ, JFM and GA contributed in the direction of the study
and edited the manuscript. All authors read and approved the final manuscript.

Acknowledgments
This work is supported by the Swiss National Science Foundation (grant no. 200021-140506/1).

Received: 29 December 2014 Accepted: 5 May 2015

References
1. Ghoniem N, Tong S, Sun L (2000) Parametric dislocation dynamics: A thermodynamics-based approach to

investigations of mesoscopic plastic deformation. Phys Rev B 61:913–927
2. Zbib H, Rubia T (2002) A multiscale model of plasticity. Int J Plast 18(9):1133–1163
3. Verdier M, Fivel M, Groma I (1998) Mesoscopic scale simulation of dislocation dynamics in FCC metals: Principles and

applications. Modell Simul Mater Sci Eng 6(6):755
4. Kubin L, Canova G, Condat M, Devincre B, Pontikis V, Bréchet Y (1992) Dislocation structures and plastic flow: a 3D

simulation. Solid State Phenomena 23(24):455–472
5. Bulatov V, Cai W (2006) Computer simulations of dislocations. Oxford University Press, Oxford, New York. http://opac.

inria.fr/record=b1131935
6. Greer J, Weinberger C, Cai W (2008) Comparing the strength of FCC and BCC sub-micrometer pillars: Compression

experiments and dislocation dynamics simulations. Mater Sci Eng A 493(1-2):21–25. Mechanical Behavior of
Nanostructured Materials, a Symposium Held in Honor of Carl Koch at the {TMS} Annual Meeting 2007, Orlando,
Florida

7. Martínez E, Marian J, Arsenlis A, Victoria M, Perlado J (2008) Atomistically informed dislocation dynamics in FCC
crystals. J Mech Phys Solids 56(3):869–895

8. Fivel M, Robertson C, Canova G, Boulanger L (1998) Three-dimensional modeling of indent-induced plastic zone at a
mesoscale. Acta Materialia 46(17):6183–6194

9. Robertson C, Fivel M (1999) A study of the submicron indent-induced plastic deformation. J Mater Res 14:2251–2258
10. Chang H, Fivel M, Rodney D, Verdier M (2010) Multiscale modelling of indentation in FCC metals: From atomic to

continuum. Comptes Rendus Physique 11(3-4):285–292. Computational metallurgy and scale transitions Métallurgie
numérique et changements d’échelle

http://opac.inria.fr/record=b1131935
http://opac.inria.fr/record=b1131935


Cho et al. AdvancedModeling and Simulation in Engineering Sciences  (2015) 2:12 Page 17 of 17

11. Tadmor E, Ortiz M, Phillips R (1996) Quasicontinuum analysis of defects in solids. Philos Mag A 73(6):1529–1563
12. Xiao S, Belytschko T (2004) A bridging domain method for coupling continua with molecular dynamics. Comput

Methods Appl Mech Eng 193(17-20):1645–1669. Multiple Scale Methods for Nanoscale Mechanics and Materials
13. Kohlhoff S, Gumbsch P, Fischmeister H (1991) Crack propagation in BCC crystals studied with a combined

finite-element and atomistic model. Philos Mag A 64(4):851–878
14. Shilkrot L, Ronald E, Curtin W (2004) Multiscale plasticity modeling: coupled atomistics and discrete dislocation

mechanics. J Mech Phys Solids 52(4):755–787
15. Bulatov V, Kaxiras E (1997) Semidiscrete variational peierls framework for dislocation core properties. Phys Rev Lett

78:4221–4224
16. Shiari B, Miller R, Curtin W (2005) Coupled atomistic/discrete dislocation simulations of nanoindentation at finite

temperature. J Eng Mater Technol Trans ASME 127(4):358–368
17. Qu S, Shastry V, Curtin W, Miller R (2005) A finite-temperature dynamic coupled atomistic/discrete dislocation

method. Modell Simul Mater Sci Eng 13(7):1101–1118
18. Hirth J, Lothe J (1992) Theory of Dislocations. Krieger Publishing Company
19. Junge T (2014) Modelling Plasticity in Nanoscale Contact. PhD thesis, ENAC, Lausanne
20. Mendelev M, Kramer M, Becker C, Asta M (2008) Analysis of semi-empirical interatomic potentials appropriate for

simulation of crystalline and liquid Al and Cu. Philos Mag 88(12):1723–1750
21. Burgers J (1940) Geometrical considerations concerning the structural irregularities to be assumed in a crystal. Proc

Phys Soc 52(1):23
22. Nabarro F (1947) Dislocations in a simple cubic lattice. Proc Phys Soc 59(2):256
23. Schoeck G (2012) The core structure and peierls potential of dislocations in Al. Mater Sci Eng A 558(0):162–169
24. Hunter A, Beyerlein I, Germann T, Koslowski M (2011) Influence of the stacking fault energy surface on partial

dislocations in FCC metals with a three-dimensional phase field dislocations dynamics model. Phys Rev B 84:144108
25. Ngan A (1997) A generalized Peierls-Nabarro model for nonplanar screw dislocation cores. J Mech Phys Solids

45(6):903–921
26. Denoual C (2007) Modeling dislocation by coupling Peierls-Nabarro and element-free Galerkin methods. Comput

Methods Appl Mech Eng 196(13-16):1915–1923
27. Shen C, Wang Y (2003) Phase field model of dislocation networks. Acta Materialia 51(9):2595–2610
28. Shen C, Wang Y (2004) Incorporation of γ -surface to phase field model of dislocations: simulating dislocation

dissociation in FCC crystals. Acta Materialia 52(3):683–691
29. Zimmerman J, Gao H, Abraham F (2000) Generalized stacking fault energies for embedded atom FCC metals. Modell

Simul Mater Sci Eng 8(2):103
30. Vitek V (1968) Intrinsic stacking faults in body-centred cubic crystals. Philos Mag 18(154):773–786
31. Swygenhoven H, Derlet P, Frøseth A (2004) Stacking fault energies and slip in nanocrystalline metals. Nat Mater 3:399
32. Mishin Y, Farkas D, Mehl M, Papaconstantopoulos D (1999) Interatomic potentials for monoatomic metals from

experimental data and ab initio calculations. Phys Rev B 59:3393–3407
33. Hunter A, Zhang R, Beyerlein I, Germann T, Koslowski M (2013) Dependence of equilibrium stacking fault width in

FCC metals on the γ -surface. Modell Simul Mater Sci Eng 21(2):025015
34. Kuksin A, Stegailov V, Yanilkin A (2008) Molecular-dynamics simulation of edge-dislocation dynamics in aluminum.

Doklady Phys 53(6):287–291
35. Srinivasan S, Liao X, Baskes M, McCabe R, Zhao Y, Zhu Y (2005) Compact and dissociated dislocations in aluminum:

implications for deformation. Phys Rev Lett 94:125502
36. Cai W, Bulatov V, Chang J, Li J, Yip S (2004) Dislocation core effects on mobility. In: Nabarro FRN, Hirth J (eds).

Dislocations in Solids, vol. 12. North-Holland, Amsterdam
37. Olmsted D, Hardikar K, Phillips R (2001) Lattice resistance and Peierls stress in finite size atomistic dislocation

simulations. Modell Simul Mater Sci Eng 9(3):215
38. Shin I, Carter E (2013) Possible origin of the discrepancy in Peierls stresses of FCC metals: First-principles simulations

of dislocation mobility in aluminum. Phys Rev B 88:064106
39. Simmons J, Rao S, Dimiduk D (1997) Atomistics simulations of structures and properties of 1

2 (110) dislocations using
three different embedded-atom method potentials fit to γ -TiAl. Philos Mag A 75(5):1299–1328

40. Cai W (2001) Atomistic and Mesoscale Modeling of Dislocation Mobility. http://dspace.mit.edu/bitstream/handle/
1721.1/8682/49725239-MIT.pdf

41. Brinckmann S, Mahajan D, Hartmaier A (2012) A scheme to combine molecular dynamics and dislocation dynamics.
Modelling Simul Mater Sci Eng 20(4):045001

42. Angelo J, Moody N, Baskes M (1995) Trapping of hydrogen to lattice defects in nickel. Modell Simul Mater Sci Eng
3(3):289

43. Voter A, Chen S (1987) Accurate interatomic potentials for Ni, Al and Ni3Al. Proc MRS Fall Symp 82:175–80
44. Oh D, Johnson R (1988) Simple embedded atom method model for FCC and HCP metals. J Mater Res 3:471–478
45. Hartford J, Sydow B, Wahnstroem G, Lundqvist B (1998) Peierls barriers and stresses for edge dislocations in Pd and

Al calculated from first principles. Phys Rev B 58:2487–2496
46. Ercolessi F, Adams J (1994) Interatomic potentials from first-principles calculations: the force-matching method. EPL

(Europhys Lett) 26(8):583

http://dspace.mit.edu/bitstream/handle/1721.1/8682/49725239-MIT.pdf
http://dspace.mit.edu/bitstream/handle/1721.1/8682/49725239-MIT.pdf

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Coupled atomistic and discrete dislocations in 3D: core template
	Method 1: Atomistic dislocation modeling
	Method 2: Variational Peierls-Nabarro method
	Results 1: Comparison between the MD and PN models core structures
	Results 2: Peierls stresses
	Conclusion
	Endnotes
	Competing interests
	Authors' contributions
	Acknowledgments
	References



