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Abstract

Iodine-induced stress-corrosion cracking (ISCC), a known failure mode for nuclear fuel
cladding, occurs when iodine generated during the irradiation of a nuclear fuel pellet
escapes the pellet through diffusion or thermal cracking and chemically interacts
with the inner surface of the clad material, inducing a subsequent effect on the
cladding’s resistance to mechanical stress. To complement experimental investigations
of ISCC, a reactive force field (ReaxFF) compatible with the Zr-I chemical and materials
systems has been developed and applied to simulate the impact of iodine exposure on
the mechanical strength of the material. We show that the material’s resistance to
stress (as captured by the yield stress of a high-energy grain boundary) is related to
the surface coverage of iodine, with the implication that ISCC is the result of
adsorption-enhanced decohesion.
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Correspondence/Findings
Iodine-induced stress-corrosion cracking (ISCC) is a complex phenomenon with sig-

nificant interest to the nuclear industry. One of the major fission products of uranium

is iodine, which is corrosive to zirconium-based cladding. The van-Arkel process [1],

developed in 1925, catalogued the reaction between zirconium and iodine for use as a

method of metal purification, utilizing the volatility of the tetra-coordinated iodide,

ZrI4 [2]. Despite this known reactivity between zirconium and iodine, zirconium was

chosen as a cladding material due to its general corrosion resistance, good thermal

conductivity, and low cross-section to thermal neutrons [3,4]. There have been a sig-

nificant number of studies regarding the effects of iodine on Zr-based cladding mate-

rials and the pellet-cladding interactions (PCI) which occur on the inner surface of the

cladding, such as those by Lyons et al. [5] and Atrens et al. [6]. In work by Lyons et al.

[5], and others [7-11], fission products of interest to PCI corrosion have included

cesium and cadmium in addition to iodine, all of which have a weakening effect on the

mechanical strength of zirconium, as supported in theoretical work by Wimmer et al.

[12]. It can be difficult to collect reactor-relevant experimental data due to the irra-

diation damage, exposure to high-energy atom bombardment, and reactor conditions

the cladding is subjected to during its lifecycle. Much of the available experimental

data regarding ISCC has been in controlled conditions, utilizing halide-solutions, such

as the work of Francon [13], Goryachev [14], and Park [15]. However, it remains
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unknown how the stress-corrosion response initiates [14,16], since post-failure analysis

precludes examination of this critical first step.

ISCC can involve multiple, non-linear, and possibly parallel, reaction steps with

regards to the overall process. The complex nature of ISCC lies in the governing kine-

tics and potential pathways of the reaction. The cladding material itself is usually com-

prised of Zircaloy-4 or Zirlo. The general corrosion process of zirconium alloys has

been documented in previous experimental work by Farina [17-19], Francon [13] and

Kim [20], among others. Parallel reaction paths can arise due to the iodine decay chain,

introducing mechanical effects as iodide phases decompose to chemically inert xenon.

Considerations should also be given to the presence of the 8–10 μm thick passive oxide

layer that protects the inner surface of the cladding [18]. This oxide layer is the first

defense of the cladding material from ISCC, and the means via which it is compro-

mised during an ISCC event is unclear [21]. It is possible that synergistic interactions

with the electropositive fission products (Cs, Cd, Sr, among others) can chemically

modify and/or mechanically weaken the oxide, undermining its passivity. The signifi-

cance of grain-boundaries and triple-points was made apparent in recent investigations

by Park [15]. A fundamental approach to modeling ISCC, therefore, should involve a

deconstruction of these effects, to assess their individual contributions, prior to a final

integration.

In our previous work [22-24], several mechanisms were investigated to help construct

such a model. Beginning with the chemical interaction, the series of iodine interme-

diary states was examined, under the general scheme of iodine aggregation:

Zrþ 2I2 ↔ ZrI2 þ I2 ↔ ZrI3 þ 1
2
I2 ↔ ZrI4

In addition to molecular iodine aggregation, the properties of systems such as surface

adsorbates, dimers of molecules, and mixed crystal systems were also modeled as being

pertinent to the overall reaction scheme. The focus of the present work is now on the

integration of the molecular and crystallographic studies into a molecular dynamics

(MD) based model for simulating the interactions between zirconium and iodine. Al-

though the interactions between the oxide and Cs and I, as primary fission products,

are also of great interest, the challenges inherent to the development of interatomic po-

tentials for ternary systems and beyond necessitate that we begin with the Zr-I binary.

Specifically, we perform molecular dynamic simulations for the interactions of iodine

with the 0001 (basal) plane of zirconium, which is known to provide the greatest re-

sistance to ISCC.

While density-functional theory (DFT) was previously utilized to examine the mo-

lecular, solid state, and gaseous interactions pertinent to the Zr-I system, [22-24] the

approach is computationally expensive and thus impractical for the study of the inter-

action of I with grain-boundaries that intersect the surface, and its effect on the stress–

strain response. ReaxFF, a reactive force field developed by van Duin et al. [25], enables

simulation of large systems (i.e. >104 atoms), based on a training set created by molecu-

lar and solid-state DFT calculations. ReaxFF MD simulations can predict chemical reac-

tions (including changes in bonding) and diffusion pathways and materials properties

while remaining computationally tractable. The specific details of computational

models used have been published previously [22-24], and were used in the training set
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for the ReaxFF force field parameters [26]. The Large-scale Atomic/Molecular

Massively Parallel Simulator, LAMMPS [27,28], was used to perform the ReaxFF-MD

[29] simulations described herein.

Given that ISCC is a joint chemical–mechanical effect, it is critical to explore the role

iodine plays in modifying the mechanical response of zirconium metal. Since ISCC pri-

marily occurs in the intergranular mode, we consider the resistance of a tilt grain-

boundary that intersects the (0001) surface plane to a systematically applied strain rate

during molecular dynamics simulation. In order to select the grain boundary most sus-

ceptible to this kind of effect, we compare the unrelaxed grain-boundary energies for

the slab bicrystals as a function of θ, the angle of rotation about the (0001) axis,

Figure 1. Here we compare the grain-boundary energies by scaling the simulations to

the equivalent energy per atom (hence units eV/atom):

γ∝
Egb−Egb;θ¼0∘

Ngb

Due to symmetry the energies are periodic every 60°, with reflective symmetry and a
local minimum about 30°, at which angle every other plane parallel to the surface is co-

incident. Based on the relations in Figure 1, we selected a grain boundary with 15° tilt

angle, as this creates a high-energy grain boundary that would be anticipated to be the

most vulnerable to reaction with iodine [30]. Since the scope of this study is to demon-

strate the utility of Reax-MD simulations to explore the synergies between chemical

and mechanical effects, we defer systematic study of other grain boundary systems for

future work.
Figure 1 Relative grain boundary energy as a function of tilt angle about the (0001) axis calculated
via ReaxFF. The error bars indicate the standard deviation.
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Reax-MD simulations were then performed by introducing varying amounts of iodine

into the vacuum space between the periodic slabs of the Zr(0001)-oriented bicrystals.

Each simulation contained 31,500 Zr atoms divided into two single crystals 20 atomic

layers thick, separated by the grain-boundary. An energy minimization was performed

and then the volume and atom positions in the simulation supercell were equilibrated

to 500°C and 0 MPa in the plane of the bicrystal. Due to the heavy mass of the atoms,

a large step size could be used for the MD of 10 fs/timestep. Given the equilibrium cell

volume and the number of iodine atoms introduced, the effective partial pressure of

iodine was determined. Iodine was introduced in the atomic state, simulating radiolytic

release. Iodine may also be present in other chemical states: molecular I2, cesium

iodide, or zirconium iodide vapors, but these were not treated within this study. Since

it is known that molecular iodine adsorbs onto zirconium metal surfaces without a bar-

rier, it is expected that atomic iodine should behave similarly to molecular iodine [31].

Following this step, MD simulations were performed under conditions of constant

strain rate and at a constant temperature of 500°C. The temperature was selected to be

representative of fission gas environments encountered during fuel pellet power cycles.

The strain was applied in the direction perpendicular to the grain boundary at a rate of

108/s, or 10% over the 1 ns simulation. The stress in this direction was computed and

normalized to the slab cross-sectional area to obtain the effective stress corresponding

to the strain every 50 time steps. Subsequently, the stress–strain curve for the bicrystal

was obtained for a range of iodine partial pressures ranging from 0–12 MPa. Pressures

in this range are representative of the fission gas environment within the fuel-pellet

gap. Stress–strain data is available directly as an excel file in the Additional file 1.

During our simulations, the maximum yield stress was obtained around 4% applied

strain. The maximum yield stress was captured for each concentration of iodine and

the results are plotted in Figure 2 (left axis). The results indicate a rapid fall-off of the

grain-boundary resistance to applied stress up to 20% of the yield stress without iodine,

when iodine pressures up to 0.5 MPa are applied. Following this point, the reduction
Figure 2 Relative yield stress compared to the iodine-free case (left axis) and the chemisorbed
iodine surface coverage (right axis) plotted against the iodine gas pressure (iodine as I2 molecules).
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becomes more gradual, with up to 80% reduction in grain boundary yield stress at

11 MPa.

The MD trajectories were then examined to explore the mechanisms for this non-

linear behavior. In the low-pressure region (<0.5 MPa) it was observed that the small

number of iodine atoms introduced into the vapor space are almost entirely chemi-

sorbed onto the surface, a process that interferes with the ability to accurately equili-

brate the pressure in the gas phase. We use the term chemisorption because it is

known that molecular iodine dissociates without a barrier onto the zirconium surface,

and so the bonding relation between the undercoordinated Zr and I is stronger than

the covalent I2 bond [31]. As seen in Figure 2 (right axis) the surface chemisorption fol-

lows a similar non-linear response as a function of pressure, indicating that there is a

direct connection between the surface chemisorption phenomena and the reduction in

the applied stress. We, therefore, chose to discard pressure as a significant variable for

pressures <0.5 MPa and evaluated the relative yield stress as a function of chemisorbed

iodine surface coverage. When the data is presented in this way (Figure 3) the relation

becomes strongly linear, indicating that the extent to which the monolayer iodide film

is allowed to form has a significant impact on the stress required to initiate materials

failure at the point of the grain-boundary.

Examination of the molecular dynamics trajectory about the yield point (Figure 4) in-

dicates that yielding is initiated by the creation of excess surface area at the point where

the grain boundary intersects the surface (i.e. crack initiation). In both of the cases

shown in Figure 4, the formation of that yield point is accompanied by ingress of iodine
Figure 3 The relative maximum yield stress obtained from the constant strain rate molecular
dynamics simulation plotted against the chemisorbed iodine surface coverage, calculated as the
number of chemisorbed iodine atoms per surface zirconium atoms.



Figure 4 Snapshots taken from the molecular dynamics simulation at three different values of
strain that span the yield point, which occurs at around 4.5% strain. The snapshots are shown for
0.53 MPa and 1.7 MPa iodine exposure.
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into the crack region. The ability for iodine to migrate rapidly across the surface, [31]

in addition to its propensity to form multicoordinate bonds to the freshly exposed Zr

atoms [22] lowers the surface energy, and, consequently, the energy penalty associated

with the yield phenomenon. In essence, this is similar to the enhanced decohesion

mechanism of hydrogen-induced cracking [32].

A further distinction noted in Figure 4 relates to the change in iodine film structure

between 0.53 MPa and 1.7 MPa: In the lower pressure case, the iodide film constitutes

a partial monolayer, at the higher pressure, a phase transformation has occurred in the

surface phase, resulting in the intermingling of surface Zr and I atoms, according to

the agglomeration pathway outlined above [2]. The reorganization of the surface layers

that accompanies the surface transformation provides an additional impetus for initia-

ting the crack-opening at the grain-boundary/surface intersection, although the me-

chanistic aspects associated with this should be explored more thoroughly in future

work. While very little direct incorporation of iodine into the grain boundary was ob-

served, it has been speculated that grain boundaries facilitate diffusion of iodine into

the material due to their excess volume. Relative to the chemisorption effect, however,

this mechanism is slow and the material weakening observed herein is a consequence

of the iodide film formation and subsequent disorder that it introduces into the surface

layers of the material, which result in overall weakening and enhanced susceptibility to

mechanical deformation.

In summary, the reactive force field simulations demonstrate that iodine chemisorp-

tion leads to a reduction in the resistance of a high-energy grain-boundary in zirconium

metal to applied stress, and undergoes a chemisorption mediated reaction to form a zir-

conium iodide film. The extent to which the relative yield stress is lowered is linearly

related to the surface coverage of adsorbed iodine. The methodology demonstrated in

this work can now be extended to explore the mechanistic interactions between iodine,

iodide-films and stress states at the intersection between the grain-boundary and the

surface, as well as the volatilization of zirconium iodide under reactor conditions.
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Additional file

Additional file 1: Stress–strain data and relevant computations based on the raw data and the
stress–strain figures are presented in this additional excel file.
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