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available at the end of the article Methods: In this paper, a similar indirect approach is applied to the three-dimensional
case, i.e, a method to recombine tetrahedra into hexahedra. Contrary to the 2D case, a
100% recombination rate is seldom attained in 3D. Instead, part of the remaining
tetrahedra are combined into prisms and pyramids, eventually yielding a mixed mesh.
We show that the percentage of recombined hexahedra strongly depends on the
location of the vertices in the initial 3D mesh. If the vertices are placed at random, less
than 50% of the tetrahedra will be combined into hexahedra. In order to reach larger
ratios, the vertices of the initial mesh need to be anticipatively organized into a
lattice-like structure. This can be achieved with a frontal algorithm, which is applicable
to both the two- and three-dimensional cases. The quality of the vertex alignment
inside the volumes relies on the quality of the alignment on the surfaces. Once the
vertex placement process is completed, the region is tetrahedralized with a Delaunay
kernel. A maximum number of tetrahedra are then merged into hexahedra using the
algorithm of Yamakawa-Shimada.

finite element calculations can be generated for arbitrary two-dimensional geometries.

Results: Non-uniform mixed meshes obtained following our approach show a
volumic percentage of hexahedra that usually exceeds 80%.

Conclusions: The execution times are reasonable. However, non-conformal
quadrilateral faces adjacent to triangular faces are present in the final meshes.

Keywords: Advancing front methods; Tetrahedra recombination; Mixed hexahedral
meshes

Background

Whether hex-meshing or tet-meshing is better for finite element computations is a long-
standing controversy. This paper does not aim at deciding on that issue. Yet, it is a fact
that a large number of finite element users would highly appreciate having automatic
hex-meshing procedures for general 3D domains. A number of arguments can indeed be
stated in favor of hex-meshing. For the same number of vertices, hex meshes have fewer
elements, which speeds up the matrix/residual assembly. In solid mechanics, hexahedra
exhibit higher accuracy than tetrahedra [1], which are plagued by locking problems [2].
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In fluid dynamics, boundary layers made of hexahedra are effective for capturing large
gradients and resolving viscous flows near the boundary, and semi-structured boundary-
layer meshes attract significant interest (see, e.g. [3-5]).

Hexahedral mesh generation is still an ongoing research [6], and a major conclusion so
far is that the generation of full-hex conforming meshes on arbitrary domains is beyond
our reach nowadays. Relaxing a bit the requirements, hex-dominant meshes [7], in con-
trast with full-hex meshes, are allowed to aggregate a mixture of hexahedra, prisms,
pyramids and tetrahedra. The goal of hex-dominant meshing is to generate meshes where
hexahedral elements dominate, both in number and volume. This paper presents such
an algorithm to automatically generate non-uniform isotropic hex-dominant meshes in
arbitrary geometries. However, quadrilateral faces adjacent to triangular faces are usually
found in the resulting meshes. Such non-conformities represent an additional compli-
cation for finite element methods. Various attempts at palliating the impact of these
non-conformities have been discussed in the literature [8].

The proposed approach relies on an indirect strategy. The tetrahedra of an initial mesh
are combined into hexahedra using Yamakawa-Shimada’s algorithm [9], which works
basically as follows: (i) All tetrahedra of an initial mesh are considered one after the other.
(ii) The neighbors of each tetrahedron are visited in order to identify potential hexahedra.
Candidate hexahedra are stored in an array and sorted with respect to their geometri-
cal quality. (iii) The algorithm then iterates through this array, starting from the highest
quality hexahedron, in order to effectively generate the hexahedral elements. Hexahedra
that are composed of available tetrahedra (not marked for deletion) and that preserve
hexahedral conformity are successively added to the mesh.

However, meshes obtained by applying a recombination algorithm to an arbitrary tetra-
hedral mesh fail to be hex-dominant. As an illustration, a mesh (depicted on Figure 1) was
created using Yamakawa-Shimada’s recombination algorithm from a tetrahedral mesh
generated with the Delaunay refinement algorithm [10] of Gmsh [11]. The number of
hexahedra in this mesh represents only 12.34% of the total number of elements.This low
percentage of hexahedra results from the fact that the mesh vertices were not placed so
as to favor recombination. In order to obtain higher ratios of good quality hexahedra, ver-
tices need to be anticipatively aligned into a lattice-like structure that respects the user
prescribed mesh size and the preferred directions of the mesh. This is what we are going
to do with a specific frontal algorithm.

In a perfect hexahedral mesh, each interior vertex is linked with six other vertices: left-
right, above-below, front-back (four vertices in case of a perfect quadrangular mesh). The
main idea of our vertex placement algorithm is based on that observation. Knowing the
prescribed local mesh size and the local preferred mesh directions, each interior vertex
attempts to spawn six new vertices. A prospective vertex, however, is effectively created
only if it lays inside the domain and if it is not too close to an existing vertex. This algo-
rithm is applied to the boundaries of the geometry, prior to the volumes. When done, the
vertices are tetrahedralized and Yamakawa-Shimada’s algorithm can be applied.

Our approach has some similarities with the advancing front method. The vertices are
created layer by layer toward the center of the geometry. However, contrary to the advanc-
ing front method, our algorithm does not construct a mesh topology along the way. All
tetrahedra are built at the end. Figure 2 illustrates the various steps of our approach. The
basic input is a CAD geometry file readable by the Gmsh free software.
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Figure 1 A mixed mesh obtained from an arbitrary tetrahedral mesh. Hexahedra are displayed in purple,
prisms in dark blue, pyramids in pink and tetrahedra in light blue. (2) is a cutaway view of (1).

The Methods section first examines more closely a number of data structures, tools
and concepts that contribute to make the algorithm more efficient. It then describes
the two- and three-dimensional versions of the frontal algorithm. Finally, it discusses
Yamakawa-Shimada’s algorithm and the issue of finite element conformity. The Results
and discussion section presents a number of application examples, including mesh
statistics and execution times.

Previous work
A large variety of procedures for hexahedral meshing have been proposed over the years.
This section reviews a certain number of them, focusing on the automatic ones.

Several techniques extract hexahedral meshes from octree data structures [12]. These
methods can generate non-uniform full-hex meshes in arbitrary geometries. The hexa-
hedra orientation is defined by the octree root, which is a cube englobing the geometry.
Boundary hexahedra perpendicular to the boundary surface can be achieved by project-
ing buffer layers [13,14]. The main limitations of octree-based approaches is that the
generated hexahedra cannot be oriented flexibly, and that the quality of the hexahedra
near boundaries is degraded [15].

Certain parametrization methods have been able to mesh complex three-dimensional
domains [16,17]. These methods start by computing a three-dimensional direction field.
The singularities of the direction field are then identified. Later on, the domain is
cut in order to place all singularities on the boundary and to reduce the genus to 0
[18]. A parametrization minimizing the difference between the hexahedra orientation
and the three-dimensional direction field is selected [19]. The supplementary cutting
required to place all singularities on the boundary is necessary because it leads to a bet-
ter parametrization [16]. Full hexahedral meshes of very good quality can be obtained
for complicated domains. However, a variable mesh size cannot be prescribed [20].
Parametrization methods are very diverse. For example, a few algorithms capable of
deforming a three-dimensional domain into a polycube model have been developed [21].
The polycube model is meshed and re-deformed back into its original shape.

Graph theory can be applied to the problem of creating hexahedra by recombin-
ing tetrahedra [22]. The starting point of the method is a tetrahedral mesh, which can
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(1) surface frame field (2) size field
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(3) vertices cloud (4) tetrahedralization of
the vertices

(5) mixed hexahedral
mesh generated by
Yamakawa-Shimada's
algorithm (it contains 163
elements, of which 123
are hexahedra)

Figure 2 An overview of the steps necessary to generate a hex-dominant mesh.

be viewed as a graph. The method consists in searching through the mesh to identify
subgraphs yielding hexahedra. There are six particular subgraphs to look for. Potential
hexahedra can be constructed immediately or after classification along various criteri-
ons. This approach can be applied to prisms and pyramids as well. The recombination
algorithm used throughout this article has been devised by Yamakawa and Shimada [9].
These authors have also designed an iterative procedure to align vertices in three dimen-
sions. The first step of the procedure consists of filling the domain with crystal cells. Each
crystal cell has the shape of a cube: there is one atom at the center and eight atoms in
the corners. Crystal cells exert force on each other via their atoms. A set of equations of
motion govern the cells positions. Throughout the process, cells can be added or removed
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depending on the local density. Once cells velocities have sufficiently decrease, the center
of each crystal cell becomes a mesh vertex.

To improve the spatial distribution of the set of vertices (which has a large impact on the
effectiveness of such graph-based approaches), several techniques have been proposed,
such as a modified version of Lloyd’s algorithm. Lloyd’s algorithm repeatedly moves ver-
tices to the centroid of their Voronoi cell [23]. As the number of iterations increases, the
Voronoi cells take the shape of perfect hexagons. In fact, it has been proven that Lloyd’s
algorithm minimizes an energy functional equal to the sum of the moments of inertia of
the Voronoi cells [24]. Lévy-Liu’s algorithm consists of minimizing higher order moments
of inertia: the Voronoi cells then become squarely instead of hexagonal, which has the
effect of aligning vertices in precise directions. Tetrahedral meshes smoothed by Lévy-
Liu’s algorithm make excellent candidates for recombination. When used in conjunction
with the graph method discussed above, Lévy-Liu’s algorithm can generate mixed meshes
with high hexahedra percentages [24]. However, the method presented in this article is
frontal, not iterative. The vertices are created layer by layer.

Methods

We have pointed out above the importance of having the mesh vertices pre-aligned to
ensure a good recombination rate. It is the purpose of the vertex placement algorithm
to achieve this. This algorithm, however, relies on a number of data structures and
geometrical concepts that are first introduced and developed below.

First, the vertex placement algorithm needs to know, at each point of the domain, the
prescribed local mesh size and the local preferred mesh directions. In practice, those geo-
metrical quantities are conjointly obtained by evaluating a specific field structure called
cross field. The generation of direction fields was extensively studied in [25].

Secondly, the notion of distance itself represents another degree of freedom of the
method. We shall show that it is particularly appropriate when dealing with hex-meshing,
to compute distances with the infinity norm, instead of the standard Euclidean norm.

Finally, the algorithm is characterized by a large number of spatial searches, in order to
check whether or not a prospective vertices is too close to any already existing vertex. To
optimize the efficiency of this operation, an R-tree data structure is employed [26,27].

Cross fields

At each point of a region Q2 C R3, the frame field (d1, dy, d3) represents the three local
orthogonal preferred directions of the hexahedral mesh. Frame fields are usually required
to satisfy many constraints [16,28]. On the geometrical edges of €2, one of the three direc-
tions should be tangent to the edge itself [9]. On the surfaces of €2, one of the three
directions should be perpendicular to the surface [9,16]. A last requirement is that the
frame field should be as smooth as possible.

On the other hand, at each point of €2, the size field represents the prescribed local
mesh size value. Mesh sizes /1, h, h3 are defined for every point of the volume in each
of the directions dj, dy, ds. In this paper, the mesh size field at a point x is isotropic, i.e.
h(x) = h1(x) = ha(x) = h3(x). The extension to anisotropic meshing will be done in a
forthcoming work.

The user fixes the mesh size at the geometrical vertices of the model. One-dimensional
size fields are then computed along the geometrical edges. Because the surfaces are
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Figure 3 Surface parametrization and construction of the frame field (in blue).

bounded by geometrical edges, Dirichlet conditions can be imposed on the surfaces
boundaries. A Laplace equation is used to obtain the size field over the surfaces. The size
field over the volume is calculated in a similar manner. Continuous finite elements of the
first order are employed in each case. The final size field is therefore a three-dimensional
piecewise continuous field. The Laplace equation was chosen because it leads to smooth
and gradual solutions.

The cross field (h1di, hady, h3d3), now, combines both information into a single field.
At each vertex of the mesh, the cross field evaluates into a symmetric real 3 by 3 tensor
whose columns are the three orthogonal vectors parallel to the local preferred directions
of the hexahedral mesh. Moreover, the norm of the vectors represent the local mesh size;
the three norms are identical in case of an isotropic mesh (which is the case considered
in this paper), but they may differ in case of an anisotropic mesh.

The construction of a frame field on a region Q belongs to the category of elliptic
problems. Boundary conditions must be imposed on the boundary 9Q2. We thus pro-
ceed logically by explaining first how the frame field is constructed on surfaces, and deal
afterwards with the prolongation into the volumes.

Let

u={uv} €S Cc R’ x(n) = {x,9,2) € S C RS, (1)

Figure 4 Cross fields on the surfaces of a mechanical part.
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be a smooth parametrization of the surface S (see [29-31] for a review of parametriza-

tion techniques for surface remeshing). It should be noted that the parametrization does

not need to be conformal, i.e the angles do not need to be conserved, for the algorithms

presented in this paper. (This is a nice feature because guaranteed one-to-one confor-

mal maps are more difficult to compute than bijective harmonic mapping.) For example,

Figure 3 shows a harmonic parametrization of an arbitrary surface S onto a unit disk.
Consider the two tangent vectors

0x 0x
ti=— and t, = —,
ou av

which are the images in S of the basis vectors t'; = (1,0) and t'y = (0, 1) of the parameter
plane &’. Because they are not parallel for any point of S’, one can build the unit normal
vector n = t; X tp/||t; X tz]|. Each vector t tangent to S can be expressed as t = ut; + vty
with (u,v) the covariant coordinates of t. The tangent vector t is thus the image of a
vector t' = (i, v) in the parameter plane. It is easy to compute covariant coordinates of
any tangent vector t using the metric tensor of the parametrization. By definition, t =
ut; +vty. Then, t-t; = ut; -t + vty -t and t - ty = uty - ty + vty - ty, which reads in
matrix form

(b)
Figure 5 The mesh (a) was used to create the frame field (a) and the mesh (b) was used to create the
frame field (b).
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Figure 6 Unit circles and unit spheres in the L, and Ly, norms.

t1-t1 t1-t u t-t
= 2)
th-t; th-t v t-ty
[N —;
M

where M is the metric tensor, invertible for any smooth parametrization.

For defining our frame field, a local orthonormal frame (s;, sz, n) is first constructed at
all points x of S with s = t;/|[t1], s2 = n x t;/||n X t;||. Next, the direction d; of the
frame field is computed at the points x,, of the boundaries of surface S: d; is the tangent
vector to the boundary. The local orientation of the frame field 6 at the boundary can
then be computed as the oriented angle between s; and dj. Then, an elliptic boundary
value problem is used to propagate the complex number z(u) = a(u) + ib(n) = X0 jn
the parametric domain. More specifically, two Laplace equations with Dirichlet boundary
conditions are solved in the parametric space S’ in order to compute the real part a(u) =
cos 40 and the imaginary part b(u) = sin 40 of z:

e

e

| NS
e OSSO
‘."‘"““
TS A

| -
eSS

e

e

|
"
S
-—

SOSCTU
OO

“‘““““

S
A

N
)

““"“
N
““““‘

‘-—-""“’
S
el ww
OSSO

N\
“““““‘

S

““‘

=
(N

S

Figure 7 A mixed mesh created with the frontal algorithm using the L, norm. The percentage of
hexahedra by number is equal to 76.03% for L, and 71.25% for L.
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Figure 8 Two examples of bounding boxes intersections: a) x; can be inserted in the cloud because x
is outside the red dotted square b) x; cannot be inserted in the cloud because x is inside the red
dotted square.

Via=0, V’b=0o0on &,

] i / 3)
a=a(a), b=>b(u) on 3§’

After solving those two PDEs, the frame field can be represented in the whole domain by
the angle

f(u) = iatanZ(b(u), a(u)).

The choice 46 as the argument of z is motivated by symmetry arguments: frame fields
are equivalent when they are rotated around n by any angle that is a multiple of 7 /2.
Details of that procedure are given in [32]. Finally, the frame field (d;,dy,d3) can be
computed on the whole surface S as follows:

d; =s;3cos0 +s3sin0, dy = —s;sinf +sycosf, d3 =d; x dy, (4)

where 0 is the solution of the elliptic boundary value problem (3).
As an example, Figure 4 presents the frame field computed on surfaces of a mechanical
part. Figure 5 shows two triangular meshes of different coarseness and their resulting

frame fields. Linear interpolation of the 2 and b components discussed earlier was used in

Figure 9 View of the different parameters of the point insertion scheme.
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Cross field on one model face

Surface Mesh

Figure 10 Different stages of the vertex insertion process. Left figure shows the cross field on one of the
model faces of the car model. The right figure shows the quadrangular surface mesh that has been done
using the points in the 3D space.

order to obtain the same number of frames regardless of the mesh density. As seen from
the figure, the frame field (a) is not entirely radial and contains defects because the mesh
(a) is too coarse.

The frame field at any point inside the volume is then chosen to be equal to the frame
field at the closest surface vertex [24]. (ANN nearest neighbor library is employed for the
queries [33].)

These frame fields are not going to be smooth whenever the distance function to the
walls is not itself smooth. Recently, two methods capable of generating smooth frame
fields have been developed [16,17]. Both of these methods employ LBEGS optimization
to minimize energy functionals.

Measuring distances

For inserting a new mesh vertex in our frontal algorithm, the distance between a prospec-
tive vertex x; and any already existing vertex x must be smaller than k%, where /4 is the
local mesh size and k a free parameter of the algorithm ranging from 0 to 1. Parameter k
absolutely needs to be inferior to one. If not, too many valid vertices will be missing from
the cloud. In the implementation described in this work, k is equal to 0.7.

| I
[ Il
11 |/
A
VAN S moma:
7o 1 Je | \e] le]]e
y/4 0NN 1 1 1141
U LELELT

Figure 11 Vertex insertion process during the frontal packing of parallelograms algorithm. The figure
shows points in the parametric uv-space with their respective exclusion parallelograms. Note that each
parallelogram contains exactly one point.
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The way distances between vertices are calculated is however a degree of freedom of
the method. When dealing with hex-meshing, it turns out to be advantageous to compute
distances in the infinity norm, instead of in the Euclidean norm:

lx = yll2 = y/lx1 = 3112 + 2 — 22 + 13 — 312 (5)
[1X = Ylloo = max(lx1 — y1l, [x2 — y2l, [x3 — y3)). (6)

In the infinity norm, the unit sphere is actually a cube, which reduces to a square in two
dimensions (see Figure 6). The exclusion area around each prospective vertex is therefore
a cube, resp. a square, which precisely matches the shape of the elements one wishes to
build.

Contrary to the Euclidean norm, the infinity norm is not isotropic and, consequently,
it has an orientation which is given by the frame field. In the parameter plane, due to the
change of coordinates (1), the exclusion area is the parallelogram determined by

dem(x,y) = ||Mx(x = ¥)|loo < kh. 7)

where My is the Jacobian matrix of (1), evaluated at x.
The infinity distance is not a differentiable function [24]. However, this is not an issue,
because the frontal algorithm does not require the computation of distance derivatives.
Using the infinity distance instead of the Euclidean distance can increase the hexahedra
percentage. The quarter cylinder illustrated on Figure 7 provides an example where an
improvement by 5% of the ratio of hexahedra is observed, by simply using the Lo, norm
instead of the L, norm in the R-tree spatial search algorithm described in the next section.

y
X

Figure 12 In three dimensions, vertex Q try to create six vertices: Py, P2, P3, P4, P5 and Ps.
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Figure 13 3D point insertion algorithm: (a) view of the surface mesh of a quarter cylinder, (b) top
view of the quarter cylinder during the point insertion algorithm.

Using R-trees for spatial searches

As said before, a prospective vertex is effectively created only if there is enough unoccu-
pied space around it. The size of this exclusion area or volume depends on the local mesh
size. According to the dimension and the chosen norm, the shape of the exclusion region
can be a parallelogram or an ellipse (in 2D), and a cube or a sphere (in 3D).

The computation of the distance between the prospective vertex and all the other ver-
tices would have a quadratic complexity in time and would therefore be prohibitive in
terms of computation time. The number of computations required to ensure the exclu-
sions can however be considerably decreased if the exclusion cube of each vertex is

enclosed in a bounding box whose edges are parallel to the coordinate axis. An R-tree

Figure 14 A mixed mesh containing hexahedra (white), prisms (yellow), pyramids (red) and
tetrahedra (blue).
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Figure 15 Non-conformities between two hexahedra sharing three vertices.

data structure [26,27] can efficiently determine bounding boxes intersections and, then,
it is enough to compute the distance between pairs of vertices whose boxes intersect each
other.

We now illustrate with a 2D example of a planar surface how to decide wether a prospec-
tive vertex can be inserted or not. For this example, we have chosen the infinity norm for
computing distances. In Figure 8(a), x; is the prospective vertex and x is an existing mesh
vertex. The dotted square around x; is the oriented exclusion area of vertex xj, that is
computed from the surface cross field (/;d;, #1dy) that has a uniform mesh size field 4;.
The solid box surrounding the prospective vertex is the bounding box of the exclusion
area that is parallel to the xy-coordinate axis. This bounding box should always include
the oriented exclusion square of side 2k/. This condition is satisfied in 2D if the box is of
side 24/2kh and in 3D if the cube is of side 2/3kk. Even if the boxes intersect each other
in Figure 8(a), the distance between x; and x is sufficiently large. Thus, x; can be inserted
in the cloud and added to the queue.

Figure 8(b) shows the same two vertices. Again, the boxes intersect each other. This
time, however, x; is too close to x and x; cannot be added to the cloud or to the queue.

It should be noted that on Figures 8(a) and 8(b), dggie” (x1,X) is not necessarily equal
to dggie" (x,X1). The local mesh sizes at x; and x can also be different as illustrated in
Figure 8(a). However, if x is outside the dotted square of x;, it is considered sufficient.

For non-planar surfaces, the surfaces need to be parametrized. As the parametrization
is not necessarily conformal, i.e. the angles between d; and d are not conserved, the dot-
ted squares (exclusion area) of Figure 8 become parallelograms in the parametric space.
As far as the bounding boxes are concerned, they are computed in the same manner and
are then parallel to the uv-coordinate axis of the parametric space.

Let’s assume that on surfaces, each vertex attempts to create four vertices in the four
cardinal directions. If the surface normal is not constant, these prospective vertices may

/ % \ T
P \ ] —
T ) 7 ) ——— /TI/ /
=T . T
| \ \ /
\ ‘ / / / I\ f
[/ S/
| ‘ | / / / _Ii L \
|/ P S Sl »/ “‘
Figure 16 Non-conformities between two hexahedra sharing two vertices.
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Figure 17 Non-conformities between one hexahedra and one prism sharing three vertices.

]

not rest on the surface. The next section describes a scheme capable of solving this issue

by intersecting surfaces with circle arcs.

Surface meshing: the packing of parallelograms algorithm

The quadrilateral mesh algorithm presented here is a simpler variant of [32] that we
call packing of parallelograms. Consider one vertex located at point u = (u,v) of the
parameter plane &’ which correspond to point x(u, v) in the 3D space (see Figure 9).
The cross field at this point of the surface is (h1dy, ipdy, hiyn), in terms of the three
orthonormal preferred mesh directions, {d;, dy, n}, and the three corresponding mesh
sizes, {h1, ho, hy},.

7
1/

Figure 18 Non-conformities between one hexahedra and one prism sharing two vertices.
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Figure 19 The arrow indicates a non-conformal face between a hexahedron and two pyramids.
Tetrahedra are not shown to facilitate visibility.

In a perfect quad mesh, each vertex is connected to four neighboring vertices forming
a cross parallel to the cross field. In our approach, four prospective pointsx;, i = 1,...,4
are constructed in the neighborhood of point x with the aim of generating the perfect
situation.

Points x; and x; are constructed as the intersection of the surface S with a circle of
radius /11, centered on x and situated in the plane IT of normal d; (see Figure 9). Points
x3 and x4 are constructed as the intersection of the surface S with a circle of radius /s,
centered on x and situated in the plane of normal d; (not in the figure for clarity).

Numerical difficulties associated with the surface-curve intersection are overcome by
choosing a good initial guess for the intersection. If we approximate the surface by its
tangent plane at x, point x; is situated at x; = x + /1d;. A good initial guess in the
parameter plane is u; = u + du; where du; = (du;, dv;) is computed using (2) i.e.

duy mhd; -t
M = .
(dvl) (hldl-tz)

This also gives uy = u — duy, duz = (duz, dvs)

dus hody -t
M = .
(dV3) (hgdg-tz)

uz = u + duz and ug = u — dus.
The algorithm works as follows. Each vertex of the boundary is inserted in a fifo queue.
Then, the vertex x at the head of the queue is removed and its four prospective neighbors

Figure 20 A supplementary pyramid was created by Owen-Canann-Saigal’s algorithm to fix the
non-conformity.
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Table 1 Mesh data

Figure # vertices Hppr Hyol Q CPU (s) NC
21 126,922 62.91% 85.70% 0.95 488s. 7.19%
23 42,263 7542% 92.85% 0.96 164 s. 3.97%
26 11,648 58.16% 82.68% 0.94 112s. 7.70%
27 2737 60.23% 83.02% 0.94 45s. 8.04%
28 6006 84.54% 94.10% 0.96 80s. 2.25%
32 19,284 86.19% 94.93% 0.98 51s. 1.81%

Lévy-Liu's algorithm [24,36] was used for Figures 26, 27 and 28.

x; are computed. A new vertex X; is inserted at the tail of the queue if the following con-
ditions are satisfied: (i) vertex x; is inside the domain and (if) vertex x; is not too close to
any of the vertices that have already been inserted.

As for the first condition, it is enough to check if the preimage w; € S’ of x; is inside the
bounds of the parameter domain. Concerning the second condition, the distances on the
surface S should theoretically be measured in terms of geodesics, This is however clearly
overkill from a mesh generation point of view. We define an exclusion zone for every ver-
tex that has already been inserted (this includes boundary vertices). This exclusion zone
is a parallelogram in the parameter plane (see the yellow parallelogram of Figure 9). This
parallelogram is scaled down by a factor k = 0.7 in order to allow the insertion of (at least)
points x;. The different stages of the procedure for a non planar surface are presented
on Figure 10 and Figure 11. Then, the surfaces are triangulated in the parameter plane

Figure 21 A mechanical piece.
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using an anisotropic Delaunay kernel and the triangles are subsequently recombined into
quadrilaterals using the Blossom-Quad algorithm [34].

As shown on Figure 11, exclusion areas can become anisotropic parallelograms in the
parametric plane. However, they always correspond to squares in the three-dimensional
space. The vertices are triangulated in the parametric plane. Anisotropic triangulation is
therefore necessary in order to obtain the expected arrangement of right triangles.

Volume meshing: the 3D point insertion algorithm

Volume meshing proceeds in the same way as surface meshing. The procedure starts from
a 2D triangular mesh that has been created using surfacic frame fields. A frontal algorithm
is used to create well aligned vertices inside the volume, starting from surface points. The
3D point insertion algorithm works in the same manner as the one used for surfaces.

All boundary mesh vertices are initially pushed into a queue. The vertices are popped in
order: each vertex Q popped out of the queue attempts to create six neighboring vertices
in the six cardinal directions Py o = Q+t/hd;, P34 = Qthdy, P5g = Q=+ hds at a distance
h from itself (see Figure 12).

A prospective vertex is added to the vertices cloud and to the queue only if it satisfies
the two following conditions:

1. Itisinside the domain.
2. Itis not too close to an existing mesh vertex, i.e. if the distance is smaller than kh.

Surface Potential hexahedra
meshing: 5.73 % ™ pattern #1: 14.72 %

Y
Potential hexahedra
pattern #2: 1.30 %

y
Potential hexahedra
pattern #3: 1.80 %

y
Potential hexahedra
insertion: 22.65 %

4
Prisms creation:
6.49 %

Y
Pyramids creation:
0.62 %

Figure 22 Global algorithm flowchart and execution time percentages.
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Figure 23 A NACA airfoil.

An octree data structure is again employed to efficiently determine if a vertex is inside
the domain [11].

Eventually, no more prospective vertices can be added to the cloud without being too
close to existing ones. The process then stops and the cloud is tetrahedralized with a
Delaunay procedure [35].

The frontal algorithm was applied to the quarter cylinder starting from the surface mesh
shown in Figure 13(a). In Figure 13(b), lines are traced between each vertex and its parent
in order to observe the progression of the 3D point insertion algorithm.

The quality of the alignment inside the geometry is very dependent on the quality of
the alignment on the boundaries. If the triangles on the boundaries are far from being
right-angled, then the vertices inside the geometry will not be well aligned. Various algo-
rithms are capable of generating sets of aligned vertices on surfaces, such as the Delquad

Figure 24 A zoom of the airfoil.
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Figure 25 A zoom of the trailing edge.

algorithm [32] or Lévy-Liu’s algorithm [24,36]. However, for the majority of the exam-
ples presented in this article, a two-dimensional version of the frontal algorithm was
employed.

As explained earlier, each vertex attempts to create six other vertices at a distance d = &
from itself. For smoother size transitions, d can instead be an average between the local
mesh size at the parent vertex and the local mesh size at the prospective vertex.

Figure 26 A cylinder. The blue lines illustrate the cylinder geometry.
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Figure 27 An hollow eighth of ball with a constant mesh size.

Volume meshing: Yamakawa-Shimada’s algorithm and finite element conformity
This section briefly describes Yamakawa-Shimada’s recombination algorithm. It then
discusses the problem of finite element conformity in the case of mixed hex meshes.
Yamakawa-Shimada’s algorithm begins by iterating through the tetrahedra of the ini-
tial mesh. For each tetrahedron, it attempts to find neighboring tetrahedra with which to
construct a hexahedron. Five, six or seven tetrahedra are required to construct one hex-
ahedron. Three patterns of assembly are considered. Two out of these three patterns are
described in [9]. When a potential hexahedron is found, it is added to an array. However,

27 7L
’l.,"., (B
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Figure 28 An hollow eighth of ball with a variable mesh size.
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the hexahedron will not necessarily be part of the final mesh. Once all tetrahedra have
been visited, the array is sorted by hex quality.

The quality Q is defined as follows:

Vi1 - (Vi X Vi
Q = min i1 - (Vi2 X vi3) ’ ®)
i=1.8 | [|via | [viz| ||vis|

where i is the vertex number. For a hexahedron, i goes from 1 to 8; vi1, vi2 and vjg are the
three vectors parallel to the three edges connected to vertex i. Q is in fact the modulus
of the minimum scaled Jacobian [9]. Evidently, Q is meaningless for invalid hexahedra.
Invalid hexahedra are characterized by a null or negative Jacobian determinant, which
renders the mesh improper for calculations.

Starting from the highest quality hexahedron, the algorithm then iterates through the
array. Potential hexahedra composed of tetrahedra not yet marked for deletion are added
to the mesh. The tetrahedra of the added hexahedron are then marked for deletion. It is
to be noted that only a small fraction of potential hexahedra appear in the final mesh.

Prisms can later be added by following a similar procedure [9]. All prisms are composed
of three tetrahedra. There is only one pattern of construction for prisms [9].

Figure 14 shows a mixed mesh created with Yamakawa-Shimada’s algorithm.
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Figure 29 In this mesh, the front was initiated only from the lower and upper disks. The collision is
visible in the middle of the cylinder.
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Figure 30 A mixed hexahedral mesh of the anc101 mechanical part.

Let’s assume that finite elements of the first order are employed. The tetrahedral shape
functions are therefore linear, while the hexahedral shape functions are trilinear [37]. On
triangular faces, the interpolation is linear and takes into account three degrees of liberty.
On quadrilateral faces, the interpolation is bilinear and takes into account four degrees of
liberty [8,9]. If a nonplanar quadrilateral face is adjacent to a triangular face, there will be
a gap or overlap [9]. The elements are not going to be a perfect partition of the domain
anymore, which goes against the basic assumptions of the finite element method. Gaps
or overlaps can also be created by several configurations of neighboring hexahedra or
prisms. Figures 15 and 16 show four cases of non-conformities between hexahedra [9].

Figures 17 and 18 show six cases of non-conformities between one hexahedron and one
prism. Non-conformities resulting from neighboring prisms can be deduced from these
six cases.

Yamakawa-Shimada’s algorithm should therefore avoid creating the configurations
illustrated on Figures 15, 16, 17 and 18 while iterating through the sorted arrays of poten-
tial hexahedra and prisms. Non-conformities can be efficiently identified by employing
hashing techniques.

Figure 31 A cutaway view of the anc101 mesh.
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Figure 32 One of the mesh used for the convergence analysis. The mesh size is equal to h = 1.0.

After the creation of hexahedra and prisms, some tetrahedra are recombined into pyra-
mids. Every pair of tetrahedra resting on a quadrilateral face is merged to form a pyramid.
This step can fix many non-conformities. However, it does not resolve them all. As shown
on Figure 19, many quadrilateral faces can still be adjacent to triangular faces belonging
to either tetrahedra or pyramids.

These non-conformities can be fixed by Owen-Canann-Saigal’s algorithm [38]. Owen-
Canann-Saigal’s algorithm first creates a flat pyramid on each non-conformal quadrilat-
eral face. The apex of the pyramid is not initially present in the mesh, but it is added by the
algorithm. Surrounding tetrahedra and pyramids need to be subdivided to accommodate
this new vertex. The pyramid is then raised so it does not have a null volume. Figure 20
illustrates the pyramid constructed to correct the non-conformity on Figure 19.

Owen-Canann-Saigal’s algorithm can render a mixed hexahedral mesh completely
conformal. However, it has a drawback. It increases the number of tetrahedra and
pyramids, which lowers the percentage of hexahedra by number. As a consequence,
Owen-Canann-Saigal’s algorithm was not used for the results presented below.

Some quadrilateral faces will be adjacent to one or two triangles. Finite element solvers
capable of handling these type of non-conformities are required.

Results and discussion

This section presents several mixed hex meshes created with the frontal algorithm and
Yamakawa-Shimada’s algorithm. Three quantities are used to evaluate the quality of the
meshes: the percentage of hexahedra by number H,;,, the percentage of hexahedra by
volume H,,; and the average hex quality Q defined in Eq. 8. In general, H,,; is higher than
H,;,,. CPU designates the total execution time (in s) on a 2010 laptop computer. All the
data is compiled in Table 1. The following convention is used throughout this section: the
hexahedra are white, the prisms are yellow, the pyramids are red and the tetrahedra are

Table 2 Mesh convergence analysis (credits: Gaétan Compeére)

Mesh size First frequency (Hz) Second frequency (Hz)
20 770.11 1950.65
1.0 760.46 1928.52
0.5 757.55 1921.77

struct. 757.76 192193




Carrier Baudouin et al. Advanced Modeling and Simulation in Engineering Sciences 2014, 1:8 Page 24 of 30
http://www.amses-journal.com/content/1/1/8

Figure 33 A motorcycle hub.

blue. The variable NC represents the percentage of non-conformal interior quadrilateral
faces.

Figure 21 shows a mesh containing 142,466 elements. The mesh size is constant
throughout the domain. The CAD model is composed of 250 geometrical faces of various
sizes. In order to avoid altering the geometrical edges, hexahedra or prisms whose facets
lie on two different geometrical faces are not created.

Each module described in this article shares a certain percentage of the total execu-
tion time. These percentages are detailed in Figure 22. The mesh illustrated on Figure 21
was used for the analysis. The blue modules refer to tetrahedra recombination. They are

Figure 34 A marine propeller.
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Figure 35 A filter mount.

the most time-consuming. The green and yellow modules pertain to volume and surface
mesh vertices generation.

In Figure 23, a rectangular parallelepiped surrounding a NACA airfoil is meshed with
43,094 elements. Figures 24 and 25 are zoomed images of Figure 23.

Figure 26 is a cutaway view of the mixed mesh inside a cylinder. The mesh size is
constant and the cardinal directions are radial.

Choosing a size field consistent with the geometry can improve the hexahedra percent-
age. For the spherical model shown on Figures 27 and 28, a mesh size proportional to the
radius is more suitable than a constant one.

A mixed hexahedral mesh of a cylinder is displayed on Figure 29. However, this time
the front was initiated only from the lower and upper disks, not from the curved face.
In other words, the vertices on the curved face were not allowed to create prospective
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Figure 36 A submarine model.
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Figure 37 A cutaway view of the motorcycle hub.

vertices. The mesh has the following statistics: H,,;, = 81.88%, H,,; = 91.44% and Q = 0.97.
Because of the regularity of the curved face mesh, the hexahedra percentages are much
higher than those of the previous cylinder.

Figures 30 and 31 show a mixed hexahedral mesh of the anc101 mechanical part. The
mesh was generated in 194 seconds and contains 92,282 elements. It has a H,;,, of 59.39%.
The anc101 part was designed by Computer Aided Manufacturing Inc. [39] and is com-
monly used in mesh generation literature, in particular in Lévy and Liu’s article. For
approximately the same mesh size, they obtain a H,;, of 77.14% and an execution time of
12 minutes. Pyramid recombination was not employed in both case.

Figure 38 A cutaway view of the marine propeller.
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Figure 39 A cutaway view of the filter mount.

A mesh convergence analysis was performed on the mechanical piece displayed on
Figure 32. The mechanical piece is made of steel and one of its extremities is fixed.
The first and second frequencies are computed, as shown on Table 2. Mixed hexahedral
meshes of various densities are employed. According to a similar finite element calcula-
tion performed on a structured mesh, the first frequency is equal to 757.76 Hz and the
second one is equal to 1921.93 Hz. The results appear to converge.

Figures 33, 34, 35 and 36 present additional examples of mixed hexahedral meshes.
Figures 37, 38, 39 and 40 show cutaway views of these meshes. Table 3 contains the corre-
sponding mesh data. The CAD models of these meshes come from an online repository
[40-42].

A frequency-domain computational acoustic simulation was performed on the subma-
rine model SUB of Table 3, under plane wave incidence. Figure 41 shows a cutaway view

Figure 40 A cutaway view of the submarine model.
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Table 3 Mesh data

Figure # vertices Hyol CPU (s)
33 133,436 89.74% 247 s.
34 133,678 83.65% 268s.
35 102,946 78.55% 225s.
36 598,514 90.28% 1287 s.

The execution times were measured on a 2012 laptop computer.

of the iso-surfaces of the diffracted pressure field. Again, the simulations were shown to
converge with mesh refinement.

Surfaces and volumes are meshed sequentially. The two surface meshes bounding a thin
region may also not be identical. As a consequence, many non-hexahedral elements can
be created. The algorithm is usually less effective for geometrical models featuring many
thin regions.

Conclusion

A method capable of generating mixed hexahedral meshes has been presented. The first
step consists of covering geometrical boundaries with aligned vertices using a frontal pro-
cess. The interior is treated in a similar fashion. Vertices creation are guided by a direction
field and a size field. The interior vertices are eventually tetrahedralized with a Delau-
nay procedure. All tetrahedra combinations yielding hexahedra are identified. They are
sorted by quality and the highest quality hexahedra are created first. The same approach
is applied to prisms. The final mesh contains hexahedra, prisms, pyramids and remaining
tetrahedra.

u (011)

163 0.132 1.89 b"[

Figure 41 Diffracted acoustic waves around the submarine model.
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The method has obvious drawbacks. First, there are no guarantees regarding the hexa-
hedra percentage. It can be higher for certain geometries and lower for others. Secondly,
the hexahedra are not anisotropic. For many geometries, well chosen anisotropy could
increase the number of hexahedra. Finally, the resulting meshes are useful only to solvers
capable of handling a certain number of non-conformal faces.
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