Skip to main content

Table 2 Material and simulation parameters for three-dimensional examples

From: A simple yet consistent constitutive law and mortar-based layer coupling schemes for thermomechanical macroscale simulations of metal additive manufacturing processes

Quantity

Description

Value

Unit

\(E_s\)

Young’s modulus in solid

200

GPa

\(E_p,E_m\)

(Artificial) Young’s modulus in powder and melt

2

GPa

\(\nu \)

Poisson ratio

0.3

–

\(\alpha _T\)

Coefficient of thermal expansion

\(15\times 10^{-6}\)

K\(^{-1}\)

\(c_s\)

Volumetric specific heat, solid

4.25

\(\hbox {M J m}^{-3}\hbox { K}^{-1}\)

\(c_p\)

Volumetric specific heat, powder

2.98

\(\hbox {M J m}^{-3}\hbox { K}^{-1}\)

\(c_m\)

Volumetric specific heat, melt

5.95

\(\hbox {M J m}^{-3}\hbox { K}^{-1}\)

\(k_s,k_m\)

Conductivity in solid and melt

20

\(\hbox {W m}^{-1}\hbox { K}^{-1}\)

\(k_p\)

Conductivity in powder

0.2@200, 0.3@1600

\(\hbox {W m}^{-1}\hbox { K}^{-1}\)@K

\(h_m\)

Latent heat of fusion

2.18

\(\hbox {GJ m}^{-3}\)

\(T_0\)

Initial/reference temperature

303

K

\(T_s\)

Solidus temperature

1500

K

\(T_l\)

Liquidus temperature

1900

K

\(\rho _h\)

Hemispherical reflectivity

0.7

–

\(\beta _h\)

Extinction coefficient

60

\(\hbox {mm}^{-1}\)

\(h_p\)

Powder layer thickness

50

\(\upmu \hbox {m}\)

\(W_e\)

Effective laser power

30

W

R

Effective laser radius

0.08

mm

\(v_\text {scan}\)

Laser scan speed

100

mm/ sec