Skip to main content

Table 3 Loading frequency F, wavelength ratios (\({{\bar{\lambda }}}_1\), \({{\bar{\lambda }}}_2\), \({{\bar{\lambda }}}_3\)) and relaxation time \(\kappa \) ([A], [B], [C]) considered for benchmark examples

From: Enriched homogenized model for viscoelastic plane wave propagation in periodic layered composites

Meta-mat\({\mathbf {Loading~frequency,~F}}\)Relaxation time, \(\varvec{\kappa }\) (\(\mathbf {s}\))
\(\varvec{{\bar{\lambda }}}_{\mathbf 1}{}^{{\mathbf{a}}}\), \(\varvec{{\bar{\lambda }}}_{\mathbf 2}^{{\mathbf{b}}}\), \(\varvec{{\bar{\lambda }}}_{\mathbf 3}^{{\mathbf{c}}}\)\(\varvec{{\bar{\lambda }}}_{\mathbf 1}\) , \(\varvec{{\bar{\lambda }}}_{\mathbf 2}\), \(\varvec{{\bar{\lambda }}}_{\mathbf 3}\)[A][B][C]
 501000   
112800, 76, 3751640, 3.8, 188\(\infty \)0.2560.0255
 50010,000   
22309, 211, 108116, 10.5, 5.4\(\infty \)0.0260.0026
  1. \({}^{\mathrm{a}}\)  \({{\bar{\lambda }}}_1=2c_1/fDF\)
  2. \({}^{\mathrm{b}}\)  \({{\bar{\lambda }}}_2=2c_2/gDF\)
  3. \({}^{\mathrm{c}}\)  \({{\bar{\lambda }}}_3=c_3/hDF\)