Skip to main content

Table 2 Commutator table of the Lie algebra of Eq. (3.31)

From: Symmetry analysis and equivalence transformations for the construction and reduction of constitutive models

  \(\varvec{v}^1_2\) \(\varvec{v}^2_2\) \(\varvec{v}^3_2\) \(\varvec{v}^4_2\)
\(\varvec{v}^1_2\) 0 0 \((c+1)\varvec{v}^1_2\) \(2(c+1)\varvec{v}^1_2\)
\(\varvec{v}^2_2\) 0 0 \((c+1)\varvec{v}^2_2\) \((c+1)\varvec{v}^2_2\)
\(\varvec{v}^3_2\) \(-(c+1)\varvec{v}^1_2\) \(-(c+1)\varvec{v}^2_2\) 0 0
\(\varvec{v}^4_2\) \(-2(c+1)\varvec{v}^1_2\) \(-(c+1)\varvec{v}^2_2\) 0 0