Skip to main content

Table 5 \(\hbox {Four phases, straight and curved interfaces: Material properties}\)

From: Phase-inherent linear visco-elasticity model for infinitesimal deformations in the multiphase-field context

\(\phi \) \(\alpha \) \(\beta \) \(\gamma \) \(\delta \)
\(K^0\) \(3.00\,\hbox {GPa}\) \(13.00\,\hbox {GPa}\) \(0.50\,\hbox {GPa}\) \(70.00\,\hbox {GPa}\)
\(G^0\) \(1.00\,\hbox {GPa}\) \(4.00\,\hbox {GPa}\) \(0.35\,\hbox {GPa}\) \(10.00\,\hbox {GPa}\)
\(K^1\) \(1.25 \times K^{\alpha , 0}\) \(0.50 \times K^{\beta , 0}\) \(1.15 \times K^{\gamma , 0}\)
\(G^1\) \(1.25 \times G^{\alpha , 0}\) \(0.50 \times G^{\beta , 0}\) \(1.15 \times G^{\gamma , 0}\)
\(\eta ^1\) \(2.50 \times 1.0\,\hbox {GPa s}\) \(1.75 \times 1.5\,\hbox {GPa s}\) \(2.00 \times 0.5\,\hbox {GPa s}\)
\(K^2\) \(1.25^2 \times K^{\alpha , 0}\) \(0.50^2 \times K^{\beta , 0}\) \(1.15^2 \times K^{\gamma , 0}\)
\(G^2\) \(1.25^2 \times G^{\alpha , 0}\) \(0.50^2 \times G^{\beta , 0}\) \(1.15^2 \times G^{\gamma , 0}\)
\(\eta ^2\) \(2.50^2 \times \eta ^{\alpha ,1}\) \(1.75^2 \times \eta ^{\beta ,1}\) \(2.00 \times \eta ^{\gamma ,1}\)
\(K^3\) \(1.25^3 \times K^{\alpha , 0}\) \(1.15^3 \times K^{\gamma , 0}\)
\(G^3\) \(1.25^3 \times G^{\alpha , 0}\) \(1.15^3 \times G^{\gamma , 0}\)
\(\eta ^3\) \(2.50^2 \times \eta ^{\alpha ,1}\) \(2.00 \times \eta ^{\gamma ,1}\)
\(K^4\) \(1.15^4 \times K^{\gamma , 0}\)
\(G^4\) \(1.15^4 \times G^{\gamma , 0}\)
\(\eta ^4\) \(2.00 \times \eta ^{\gamma ,1}\)