# Table 3 1D truss: influence of the adaptive parameters $$N_p$$ and $$p_0$$ using the same relation ($$N_p \cdot p_0 = 10$$) in the adaptive design point estimation using the analytic limit state function (50 runs with $$N=5000$$)
$$\varvec{N_{p}}$$$$\varvec{p}_{\mathbf{0}}$$$$\varvec{N}_{\mathbf{total}}$$$${\frac{|\overline{\mathbf{P}_\mathbf{f }}-\mathbf{P }_{\mathbf{f }_\mathbf{ref }}|}{\mathbf{P }_{\mathbf{f}_\mathbf{ref }}}}$$$$\mathbf{std (\mathbf{P }_\mathbf{f })}$$$${\overline{\sqrt{(\mathbf{V} \mathbf{ar} (\mathbf{P }_\mathbf{f })}}}$$
500.254642.34$$\cdot 10^{-3}$$5.93$$\cdot 10^{-8}$$6.04$$\cdot 10^{-8}$$
1000.156463.25$$\cdot 10^{-3}$$6.97$$\cdot 10^{-8}$$6.05$$\cdot 10^{-8}$$
2005$$\cdot 10^{-2}$$60007.56$$\cdot 10^{-3}$$5.84$$\cdot 10^{-8}$$5.63$$\cdot 10^{-8}$$
10001$$\cdot 10^{-2}$$80002.79$$\cdot 10^{-3}$$4.61$$\cdot 10^{-8}$$5.26$$\cdot 10^{-8}$$
1. The failure probability is given with respect to $$P_{f_{ref}}=1.18 \times 10^{-6}$$ computed with $$N_p=1000$$, $$p_0=0.1$$ and $$N=25,600$$ in 50 runs