Skip to main content

Table 3 BTD models for 0/90/0, \(\hbox {R/a} = 5\), \(\hbox {a/h} = 10\)

From: Best theory diagrams for multilayered structures via shell finite elements

DOF \({\varvec{u}}_{x1}\) \({\varvec{u}}_{y1}\) \({\varvec{u}}_{z1}\) \({\varvec{u}}_{x2}\) \({\varvec{u}}_{y2}\) \({\varvec{u}}_{z2}\) \({\varvec{u}}_{x3}\) \({\varvec{u}}_{y3}\) \({\varvec{u}}_{z3}\) \({\varvec{u}}_{x4}\) \({\varvec{u}}_{y4}\) \({\varvec{u}}_{z4}\) \({\varvec{u}}_{x5}\) \({\varvec{u}}_{y5}\) \({\varvec{u}}_{z5}\)
15 \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \)
14 \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\vartriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \)
13 \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\vartriangle \) \(\vartriangle \)
12 \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\vartriangle \) \(\vartriangle \) \(\blacktriangle \) \(\vartriangle \)
11 \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\vartriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\vartriangle \) \(\vartriangle \) \(\blacktriangle \) \(\vartriangle \)
10 \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\vartriangle \) \(\blacktriangle \) \(\vartriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\vartriangle \) \(\vartriangle \) \(\vartriangle \)
9 \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\vartriangle \) \(\vartriangle \) \(\vartriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\vartriangle \) \(\vartriangle \) \(\vartriangle \)
8 \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\vartriangle \) \(\vartriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\vartriangle \) \(\vartriangle \) \(\vartriangle \) \(\vartriangle \) \(\vartriangle \)
7 \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\vartriangle \) \(\vartriangle \) \(\vartriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\vartriangle \) \(\vartriangle \) \(\vartriangle \) \(\vartriangle \) \(\vartriangle \)
6 \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\vartriangle \) \(\vartriangle \) \(\vartriangle \) \(\vartriangle \) \(\blacktriangle \) \(\vartriangle \) \(\vartriangle \) \(\vartriangle \) \(\vartriangle \) \(\vartriangle \)
5 \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\blacktriangle \) \(\vartriangle \) \(\vartriangle \) \(\vartriangle \) \(\vartriangle \) \(\vartriangle \) \(\vartriangle \) \(\vartriangle \) \(\vartriangle \) \(\vartriangle \) \(\vartriangle \)
  \(\hbox {RF}_0 = 1.00\) \(\hbox {RF}_1 = 0.82\) \(\hbox {RF}_2 = 0.58\) \(\hbox {RF}_3 = 0.67\) \(\hbox {RF}_4 = 0.27\)