Skip to main content

Table 1 Thermally triggered necking of an anisotropic circular bar—material parameters

From: A computational approach for thermo-elasto-plastic frictional contact based on a monolithic formulation using non-smooth nonlinear complementarity functions

Shear modulus G \(80.2\;\mathrm {GPa}\)
Bulk modulus \(\kappa \) \(164.2\;\mathrm {GPa}\)
Initial yield stress \(y_0(T)\) \((1-\omega _0(T-T_0))\; 450\;\mathrm {MPa} \)
Anisotropy parameters \(y_{11}\) \(y_{11} = \{0.825 y_0,y_0\}\)
\(y_{22},y_{33},y_{12},y_{13},y_{23}\) \(y_{22}=y_{33}=y_{12}=y_{13}=y_{23}=y_0\)
Linear hardening modulus \(H^i(T)\) \((1-\omega _h(T-T_0))\;129.24\;\mathrm {MPa} \)
Saturation yield stress \(y_\infty (T)\) \((1-\omega _h(T-T_0))\;715\;\mathrm {MPa} \)
Hardening exponent \( \delta \) 16.93
Density \(\rho _0\) \(7.8\cdot 10^{-9}\;\frac{\mathrm {N}\,\mathrm {s}^2}{\mathrm {mm}^4}\)
Heat capacity \(C_v\) \(3.588\;\frac{\mathrm {N}}{\mathrm {mm}^2\,\mathrm {s}^2\,\mathrm {K}} \)
Heat conductivity \(k_0\) \(45\;\frac{\mathrm {N}}{\mathrm {s}\,\mathrm {K}}\)
Expansion coefficient \(\alpha _T\) \(10^{-5}\;\frac{1}{\mathrm {K}}\)
Yield stress softening \(\omega _0\) \(0.002\;\frac{1}{\mathrm {K}}\)
Hardening softening \(\omega _h\) \(0.002\;\frac{1}{\mathrm {K}}\)
Dissipation factor \(\beta \) 0.9
Initial temperature \(T_0\) \(293\;\mathrm {K}\)
surrounding temperature \(T_\infty \) \(293\;\mathrm {K}\)
Convection coefficient \(h_c\) \(17.5\;\frac{\mathrm {N}}{\mathrm {mm}\,\mathrm {s}\,\mathrm {K}}\)