Skip to main content

Table 5 coefficients used to capture the solution with the finite element approximation for the linear patch test

From: On the construction of approximation space to model discontinuities and cracks with linear and quadratic extended finite elements

 

Sukumar [14]

Moës [27]

Belytchko [28]

Linear \(\phi (x)\) and linear F(x)

The analytical solution cannot be represented. Incompatible with blending elements.

\(\left\{ \begin{array}{ll} a_1 &{}= 0\\ a_2 &{}= \bar{u}\\ b_1 &{}= b_2 = \frac{(E_2 - E_1)\bar{u}}{2(E_1 L + (E_2 - E_1)x_0)}\end{array}\right. \)

The analytical solution cannot be represented. Incompatible with blending elements.

Quadratic \(\phi (x)\) and quadratic F(x)

The analytical solution cannot be represented. Incompatible with blending elements.

\(\bullet \) if \(L/2 \ge x_0 \left\{ \begin{array}{ll}a_1 &{}= 0\\ a_2 &{}= \frac{\bar{u}}{2} + \frac{(E_2 - E_1)x_0\bar{u}}{2(E_1 L + (E_2 - E_1)x_0)} \\ a_3 &{}= \bar{u} \\ b_1 &{}= b_2 = b_3 = \frac{(E_2 - E_1)\bar{u}}{2(E_1 L + (E_2 - E_1)x_0)} \end{array}\right. \)

The analytical solution cannot be represented. Incompatible with blending elements.

\(\bullet \) if \(L/2 \le x_0 \left\{ \begin{aligned} a_1&= 0\\ a_2&= \frac{\bar{u}}{2} + \frac{(E_2 - E_1)(L - x_0)\bar{u}}{2(E_1 L + (E_2 - E_1)x_0)} \\ a_3&= \bar{u} \\ b_1&= b_2 = b_3 = \frac{(E_2 - E_1)\bar{u}}{2(E_1 L + (E_2 - E_1)x_0)} \end{aligned} \right. \)

Quadratic \(\phi (x)\) and linear F(x)

The analytical solution cannot be represented. Incompatible with blending elements.

\(\left\{ \begin{aligned} a_1&= 0\\ a_2&= \frac{(E_2 - E_1)x_0\bar{u} + E_1L\bar{u}}{2(E_1 L + (E_2 - E_1)x_0)} = \frac{\bar{u}}{2}\\ a_3&= \frac{(E_2 - E_1)x_0\bar{u} + E_1L\bar{u}}{(E_1 L + (E_2 - E_1)x_0)}= \bar{u}\\ b_1&= b_2 = b_3 = \frac{(E_2 - E_1)\bar{u}}{2(E_1 L + (E_2 - E_1)x_0)} \end{aligned}\right. \)

The analytical solution cannot be represented. Incompatible with blending elements.