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Abstract

Friction stir welding process is a relatively recent welding process (patented in 1991).
FSW is a solid-state joining process during which materials to be joined are not melted.
During the FSW process, the behaviour of the material is at the interface between solid
mechanics and fluid mechanics. In this paper, a 3D numerical model of the FSW
process with a non-cylindrical tool based on a solid formulation is compared to another
one based on a fluid formulation. Both models use advanced numerical techniques
such as the Arbitrary Lagrangian Eulerian formulation, remeshing or the Orthogonal
Sub-Grid Scale method. It is shown that these two formulations essentially deliver the
same results.

Keywords: Friction stir welding (FSW), Finite element method, Remeshing, Arbitrary

Lagrangian Eulerian (ALE) formalism

Background

Friction stir welding (FSW) is a relatively recent welding process, which was developed at
the Welding Institute (UK) and patented in 1991 [1]. FSW is a solid-state joining process.
It means that during welding the materials to be joined are not melted. The joining is
constituted by mechanical intermixing of the two materials. A rotating non-consumable
tool is inserted between the two work-pieces and displaced along the welding direction
(see Fig. 1). The tool is composed of two parts: a pin and a shoulder. The pin is introduced
into the welded joint to mix deeply the two materials together. The aim of the shoulder
is to contain the material around the pin. The part of the welding joint where the velocity
of the tool and the advancing velocity add up is named the advancing side. The other
part, where the two velocities are in opposite directions, is called the retreating side. The
friction between the rotating tool and the work-pieces as well as the plastic deformation
in the neighbourhood of the tool increase the temperature in the welded zone and thus
soften the materials. But, during the process, the temperature is always smaller than
the melting temperature of the materials. So, the heat-affected zone is smaller and the
quality of the welding is higher than in more classical welding processes. In spite of the
important number of applications of FSW, the phenomena happening during welding are
still not very well understood. Therefore, the investigations on this process and especially
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Fig. 1 Scheme of the FSW process

regarding numerical simulations are still very active [2—8]. From the numerical modelling
point of view, a bibliography review is presented by He et al. [9], by Dialami et al. [10] and
by Bussetta et al. [11]. Recently, the FSW process has been used to weld different material
types, such as steel in Toumpis et al. [12], magnesium in He et al. [13] even polymers in
Simdes and Rodrigues [14]. The mechanical intermixing induces very high strains in the
material in the neighbourhood of the tool. Using a classical Lagrangian formulation as
it is generally the case in solid mechanics would thus inevitably lead to mesh distortion.
Consequently, classical numerical simulation techniques have to be extended in order to
track the correct material deformations. One of the possibilities is to use the Arbitrary
Lagrangian Eulerian (ALE) formulation [15-18]. This formulation is used to keep the mesh
motion under control regardless of the real material displacements. The ALE formulation
is also used to maintain a good mesh quality during the computation.

This paper deals with the extension to 3D of the works exposed in [11]. This article
presents and compares two different 3D numerical approaches of the FSW process. The
first model is based on a solid approach written in terms of nodal positions and nodal tem-
peratures. The second model is based on a fluid approach written in terms of the velocity,
the pressure and the temperature fields. Both models use advanced numerical techniques
such as remeshing and the ALE formulation. 2D models are useful to test and easily com-
pare both numerical formulations. Nevertheless, the FSW process is a fully 3D thermo-
mechanical process. The effect of the shoulder and the thermal boundary conditions have
a great influence on the FSW process, but they cannot be considered in the 2D models.

This article is split into three parts. First, both 3D numerical approaches are presented.
Secondly, the 3D models are compared and the differences with the 2D models are
exposed. Finally, some conclusions and explanations about the differences between the
results of both models are made.

3D numerical modelling of FSW process

To model this welding process, the displacement of the tool is split into an advancing
movement (actually assigned to the work-pieces but, in the opposite direction) and a
rotation (imposed to the tool). In other words, the centre of the pin is fixed and a constant
velocity is imposed to the plates (see Fig. 2).
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Fig.2 Scheme of the FSW model. A rotation is imposed to the pin (blue arrow) while the advancing velocity
of the pin is replaced by a velocity imposed to the plates in the opposite direction (red arrows)

The tool is described by a classical Lagrangian mesh. Due to high deformations in the
neighbourhood of the tool, the use of a Lagrangian formalism would lead very quickly to
mesh entanglement. Then, the plates are modelled using the ALE formulation. On top of
this, the ALE formulation allows the model to take into account tools with no rotational
symmetry. In relation with the distance from the rotation axis of the tool, the plates are
split in three zones. In the closest zone around the tool (red region in Fig. 3), the mesh has
the same rotational speed as the tool. In the model, this region is limited by the value of the
distance from the rotation axis of the tool equal to the value of the radius of the shoulder.
In the furthest zone from the tool, the grey zone in Fig. 3, the mesh is fixed and the material
is flowing through the mesh. The last zone is a transition zone, white region numbered 2
in Fig. 3. This zone connects the meshes of both other zones. Therefore, the quality of the

@)
<

Fig.3 Scheme of the different zones of the numerical model. The different zones of the model: ALE
formulation is used on the red region (7), the transition zone corresponds to the white region (2), and the
Eulerian formulation is applied on the grey region (3)
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mesh in this zone decreases with the simulation time. The numerical techniques used to
overcome this problem are explained in the section named “The transition zone”.

Thermomechanical formulation

The numerical models presented here are based on the finite element method. In this
paper, two numerical formulations are compared (for more information about these for-
mulations see [11]). The first one is based on a solid mechanics approach. It is written in
terms of nodal positions and temperatures. The second one is based on a fluid mechan-
ics approach. The equilibrium is written as a function of nodal velocities, pressures and
temperatures.

Solid approach

The position and temperature fields are computed at each node of the elements. The
mesh is composed of 21,980 linear hexahedral elements. The stresses and the internal
variables are computed at each quadrature point of the element (8 Gauss points). To
overcome the locking phenomenon, the pressure is considered constant over the element
and computed only at a central quadrature point. The thermomechanical equations are
splitinto a mechanical part and a thermal part. At each time step, the mechanical equations
are first solved using a constant temperature field. This temperature field is the one
obtained at the previous increment. Then, the thermal equations are solved on the frozen
resulting geometrical configuration that has just been obtained.

Fluid approach

The fluid approach is based on a stabilized mixed linear temperature-velocity-pressure
finite element formulation. This formulation is stabilized adopting the Orthogonal Sub-
Grid Scale method (OSS) [19-21] to solve both the pressure instability induced by the
incompressibility constraint and the instabilities coming from the convective term. A mesh
of 74,127 linear tetrahedral elements is used for the domain discretisation. The velocity,
the pressure and the temperature fields are computed at each node of the elements. The
deviatoric stresses and the other internal variables are computed at each quadrature point
of the element. Finally, the coupled thermomechanical problem is solved by means of a
staggered time-marching scheme where the thermal and mechanical sub-problems are
solved sequentially, within the framework of the classical fractional step methods [22,23].

The transition zone

Solid approach

In the solid approach, the transition zone is a ring with a finite thickness (region 2 in Fig. 3).
In this region, the evolution of the rotational speed of the mesh, which differs from the
material velocity, is linearly interpolated between the ALE region and the Eulerian zone.
As the mesh distortion grows with time, a remeshing operation is periodically required.
The remeshing operation can be divided into two steps. First, a better-suited mesh, called
the new mesh, is created. In this case, the simple geometry of this region allows an easy
generation of the new hexahedral mesh. Then, to carry on the computation over this new
mesh, the data are transferred from the old mesh to the new one (for more informations
about the data transfer see [24]).
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Fluid approach

In the fluid model the transition zone (region 2 in Fig. 3) is limited to a tube of zero wall
thickness. Each node of this zone is duplicated. One node is linked to the ALE region
(numbered 1) and the other one to the Eulerian region (numbered 3). The coupling
between both regions is performed using a specific node-to-node link approach. In this
case the ALE mesh would slide precisely from one Eulerian interface node to the next one
at each time step.

Thermomechanical constitutive model

In both models, the constitutive model of the tool is thermo-rigid. So, no mechanical
fields are computed over this material. However, from the point of view of the thermal
equations, the tool has a classical thermal behaviour as far as heat conduction is concerned.
In addition, the material behaviour of the plates is modelled as thermo-visco-plastic using
a Norton-Hoff constitutive model:

5 m(T)—1
szzu(T)B(«/% gﬁzﬁ) "

shoulder

shoulder

Fig.4 Scheme of the tool

L/control line

Fig.5 Scheme of the model with the initial position of the control point and the control line
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Fig. 7 |Initial tetrahedral mesh (74,127 elements) used in the fluid model. Global view and zoom around the

Fig. 6 Initial quadrangular mesh (21,980 elements) used in the solid model. Global view and zoom around
tool position

the tool position
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where m and p are the strain rate sensitivity and viscosity parameters respectively. Both
are temperature dependent. S is the Cauchy stress deviator tensor and D is the deviatoric

part of the strain-rate tensor.

In the FSW process, the heat is mostly generated by the mechanical dissipation, which

is computed as a function of the plastic strain rate and the deviatoric stresses as:

D

Dyech = vS :

where y ~ 0.9 is the fraction of the total plastic energy converted into heat.

it is

]

KdV'. In addition, with

Hoff constitutive model with a

dp) is computed thanks to

(

:dp

With this kind of constitutive model

the value of the variation of the pressure

)

elasto-visco-plastic one, see e.g. [25].

In the fluid model, the material is assumed to be incompressible and this constraint is

the variation of the volume (dV') and the bulk modulus (K):
the solid approach, it is possible to replace the Norton
possible to compute the residual stresses.

incorporated into the equations to be solved.

Solid approach
In the solid model
Fluid approach

thermo
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Fig. 8 Evolution of the pressure and the temperature computed by the two models at the control point 1
9 p p p Yy p
(rotating with the tool). The rotation speed of the tool is 40 RPM and the initial position of this point is defined
inFig.5

Thermomechanical contact

A perfect sticking thermomechanical contact is considered between the tool and the
work-piece. It means that the temperature field and the displacement field are continuous
through the interface between the tool and the work-piece. Like some authors [26-28],
we assume that the heat produced by the friction between the tool and the work-piece is
negligible versus the heat generated by plastic deformations.

Comparison of numerical results

In this paper, the numerical results of the solid approach are compared with the already
validated model based on the fluid approach (see [2,6,10,15]). In this example, the section
of the pin is an equilateral triangle (Figs. 4, 5). The dimensions of the tool are presented
in Fig. 4. The width of the two plates is 50 mm, the thickness is 4.7 mm and the simulated
length is 100 mm. The rotation axis of the tool is located at the centre of the simulated
region (see Fig. 5).
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Fig.9 Evolution of the pressure and the temperature computed by the two models at the control point 2
(rotating with the tool). The rotation speed of the tool is 40 RPM and the initial position of this point is defined
inFig. 5

The most important parameters of the considered FSW process are the rotation speed
(40 RPM or 100 RPM) and the welding speed (400 mm min~!). The thermomechanical
properties of the plates are the following:

« density: 2700 kg m 3

« bulk modulus: 69 GPa (used only with the solid approach)

«+ thermomechanical Norton-Hoff law (presented in the page 4) with © = 100 MPa,
m=0.12,

« heat conductivity: 120 W m~1 K~!

« thermal expansion coefficient: 1 x 1076 K~!

+ heat capacity: 875 J kg7! K1

The thermomechanical properties of the tool are the following:

« density: 7800 kg m~3;
+ heat conductivity: 43 W m~! K=1;

Page 8 of 19
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Fig. 10 Evolution of the pressure and the temperature computed by the two models at the control point 3
(fixed in space). The rotation speed of the tool is 40 RPM and the initial position of this point is defined in Fig. 5

+ heat capacity: 460 J kg~! K~1.

During all the computation, the room temperature is considered constant at 20 °C. The
thermal boundary conditions of this problem are the following (heat transfer is neglected

along the external perimeter of the two plates):

« Conduction on the lower side of both plates (approximation of the thermal behaviour
of the backing plate), exchange coefficient: 4500 W m~—2 K~1;

« Convection and radiation on the free upper side of both plates (except the part in
contact with the tool), convection coefficient: 10 W m~2 K~!, emissivity coefficient:
0.2.

With the rotation speed of 40 RPM, the total time of the simulation is 15 s which cor-
responds to 10 revolutions for the tool. With the rotation speed of 100 RPM, the solu-
tion is computed for 20 revolutions for the tool (i.e. the total time of the simulation is
12 s).



Bussetta et al. Adv. Model. and Simul. in Eng. Sci.(2015)2:27 Page 10 of 19

Pressure along the line
™
"
Lt N
- - Solid
100} " 1
Ba - - -Fluid
T
w v
3 aoat
F  sof N 1
- 2
= mmimm K ]
5 I
o of __---7T pmimmmmmnn ]
=] -~ i A
2 v
[0) u 1
a had [emT T T TS
-50 A 1
L
[
o
T |
—100} Rt 1
W
[\]
-50 0 50
position (mm)
Temperature along the line
23
[IANN
220y NS - - Solid|
200} ] " - - =Fluid ]
g .
B 1801 ' . 1
[0 U [
O 160f § ! 1
3 ; f‘
£ 140p 4 y 1
o i '
é 120f / : 1
S 100t ‘ H ]
b4 G Y
G [
£ 80 4 . i
& R )
601 R X ]
s W
40f=~ \/ |
N
-50 0 50
position (mm)
Fig. 11 Final values of the pressure and the temperature computed by the two models along the control
line (i.e. after 15 s). The rotation speed of the tool is 40 RPM and the considered line is defined in Fig. 5

Figures 6 and 7 expose respectively the mesh of the solid model and the one of the fluid
model. Figures 8, 9, 10 and 11 show the evolution of the pressure and the evolution of
the temperature computed by the two models with the rotation speed of 40 RPM at the
control points and along the control line defined in Fig. 5. Figures 12, 13, 14 and 15 present
the same comparison with the rotation speed of 100 RPM. Points 1 and 2 have the same
rotational speed as the tool (these points move according to the mesh). Point 3 is fixed in
space.

After a transient phase which depends on the numerical strategy adopted for each
approach the results of both models are very similar for the two values of the rotation
speed of the tool (see Figs. 8, 9, 10, 12, 13, 14). The difference of frequency between the
pressure at point 3 and the pressure and the temperature at points 1 and 2 is explained by
the fact that point 3 is fixed in space while points 1 and 2 have the same rotational velocity

as the tool. On the one hand, the pressure at point 3 is affected by the three corners of the
pin. On the other hand, the frequency of the pressure and the temperature at points 1 and
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Fig. 12 Evolution of the pressure and the temperature computed by the two models at the control point 1
(rotating with the tool). The rotation speed of the tool is 100 RPM and the initial position of this point is
defined in Fig. 5

2 are controlled by the rotation speed of the tool. Consequently, the pressure frequency
at point 3 is three times higher than the frequency of the pressure or the temperature at
points 1 or 2.

In addition, the temperature field is a good indicator of the mechanical intermixing of
the material. The small differences between the values of the temperature fields along the
control line (Figs. 11, 15) show that the two models essentially deliver the same results.
The good agreement between the temperature field is confirmed thanks to the value of
the temperature field on the top of the plates (see Figs. 16, 17 for a rotation speed of 40
RPM and Figs. 18, 19 for a rotation speed of 100). The small gap between the temperature
fields can be explained by the differences between the element types used by both models.
Moreover, the value of the pressure field is similar around the tool (see Figs. 11, 15). The
difference between both formulations can explain an important part of the gap between
the pressure field of both models. Indeed, the pressure is computed directly at the nodes
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defined in Fig. 5
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Fig. 13 Evolution of the pressure and the temperature computed by the two models at the control point 2
(rotating with the tool). The rotation speed of the tool is 100 RPM and the initial position of this point is

with the fluid model and is evaluated at the location of the quadrature points with the
solid model. Those values are then extrapolated to the nodes. These comparisons with two
values of the rotation speed of the tool prove that the solid and the fluid models essentially
deliver the same results as far as the temperature field and the pressure field prediction
during welding are concerned. Nevertheless, from the point of view of CPU time, the fluid
model is faster than the solid one (see Table 1). On the other hand, in the solid model
the behaviour of the work-pieces can be modelled by a thermo-elasto-visco-plastic law.
Then, the solid model is able to compute directly the residual stress. Figure 20 presents
the value of the temperature and the von Mises stress over the control line of Fig. 21 with
yield stress equal to 280 MPa and a rotation speed of 40 RPM at the end of the simulation
(i.e. after 15 s). After a cooling period, the residual stresses are directly computed (see
Fig. 22). The shape of the computed residual stresses corresponds to the classical shape

observed after such a process [29,30].
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Fig. 14 Evolution of the pressure and the temperature computed by the two models at the control point 3
(fixed in space). The rotation speed of the tool is 100 RPM and the initial position of this point is defined in Fig.
5

The solutions with a rotation speed of 40 RPM are the extension in 3D of the results
computed in 2D (see in [11]). The results computed by the 3D models are very different
from the ones given by the 2D ones. The maximal temperature at points 1, 2 and 3
are respectively about 230 °C, 250 °C and 200 °C for the 3D models versus 140 °C,
110 °C and 105 °C in the case of the 2D models. These differences are explained by the
approximations of the 2D models, like the effects of the shoulder and the thermal boundary
conditions. Indeed, the shoulder that cannot be modelled in 2D has an important effect on
the mechanical intermixing of the two materials, as well as on the value of the temperature
field. The deformation rates in the neighbourhood of the shoulder are more important
than the ones around the pin. Therefore, the main part of the heat generated during the
ESW process is produced in the neighbourhood of the shoulder. Consequently, the heat
generated by the shoulder explains that the values of the temperature fields computed
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Fig. 15 Final values of the pressure and the temperature computed by the two models along the control
line (i.e. after 12 s). The rotation speed of the tool is 100 RPM and the considered line is defined in Fig. 5

with 3D models are more important than the ones of 2D models. So it is clear that a 3D
model is more relevant than a 2D model.

Conclusion

The phenomena happening during the friction stir welding (FSW) process are at the
interface between solid mechanics and fluid mechanics. In this paper, two different for-
mulations are presented to simulate the FSW process numerically. One 3D model is based
on a solid approach which computes the position and the temperature fields and another
one is based on a fluid approach written in terms of velocity, pressure and temperature
fields. Both models use advanced numerical techniques such as the Arbitrary Lagrangian
Eulerian formalism or remeshing operations or an advanced stabilization algorithm. These
advanced numerical techniques allow the simulation of the FSW process with a tool with
no rotational symmetry. The aim of the paper is to compare two computational models
based respectively on a solid and a fluid approach for the solution of FSW process. Based
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Fig. 16 Value of the temperature field computed by the solid model on the top of the plates at the end of
the simulation (i.e. after 15 s). The rotation speed of the tool is 40 RPM
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Fig. 17 Value of the temperature field computed by the fluid model on the top of the plates at the end of
the simulation (i.e. after 15 s). The rotation speed of the tool is 40 RPM

on the authors’ point of view, being able to simulate a process using a solid model and
at the same time a fluid model, is numerically very interesting and represents a further
verification of the implementation in both approaches. The presented example (with a
triangular pin) shows that the two formulations essentially deliver the same results. Nev-
ertheless, each model has its specificities. The computation of the next time step with
the fluid model only requires the nodal values. The history of the internal variables is
not necessary. This specificity allows the fluid model to use less CPU-intensive numerical
techniques. Thus, the fluid model is more efficient from a computational point of view.
The downside is that this model is limited to a thermo-visco-plastic constitutive model.
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Fig. 18 Value of the temperature field computed by the solid model on the top of the plates at the end of
the simulation (i.e. after 12 s). The rotation speed of the tool is 100 RPM
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Fig. 19 Value of the temperature field computed by the fluid model on the top of the plates at the end of
the simulation (i.e. after 12 s). The rotation speed of the tool is 100 RPM

Table 1 CPU time in hours versus the model type

Rotation speed Solid model Fluid model
40 RPM 59 37
100 RPM 131 79

On the other hand, the model based on the solid approach has the advantage that it can be
used with any thermo-elasto-visco-plastic constitutive model. Therefore, the solid model
can be used to predict the FSW process and to also compute the residual stresses after the
end of the process.
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Fig.20 Final values of the temperature and the von Mises stress computed by the solid models along the
control line (i.e. after 15 s). The behaviour of the work-pieces is modelled by a thermo-elasto-visco-plastic law
and the considered line is defined in Fig. 21
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Fig. 21 Mesh of the solid model with the position of the control line used to plot the residual stress




Bussetta et al. Adv. Model. and Simul. in Eng. Sci.(2015)2:27 Page 18 of 19

1001

901

60

50r

Temperature (in °C)

400

20

-50 0 50
x position (in mm)

350

300

250

200

150

von Mises stress (in MPa)

100

5
—%O 0 50

x position (in mm)

Fig.22 Final values after cooling of the temperature and the von Mises stress computed by the solid models
along the control line. The behaviour of the work-pieces is modelled by a thermo-elasto-visco-plastic law and
the considered line is defined in Fig. 21
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