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Background
The buckling of thin cylinders under axial compression or external pressure has been 
studied for many years [1–20] and is now well-understood. Geometric imperfections 
play a major role in a shell’s resistance to axial compression and, generally, a lesser role 
in its resistance to external pressure [21–37]. Fewer works can be found in the literature 
regarding the effect of plasticity on buckling [38–45]: plasticity plays an important role 
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in the case of thicker cylinders and, coupled with initial imperfections, is often respon-
sible for the significant decrease in the critical loads observed experimentally. This 
type of structure is also sensitive to the care with which the boundary conditions are 
applied [19, 46]. The effect of the model used for the boundary condition on the criti-
cal load is also well-known, but it is more difficult to determine, in each practical case, 
the exact boundary condition which should be chosen. The literature on the buckling 
strength under combined axial compression and external pressure is less extensive [47]. 
The objective of this work is to propose a metallic shell which can be manufactured eas-
ily and which, on the one hand, avoids the high sensitivity to imperfections of ordinary 
shells under axial compression while, on the other hand, having a much better resistance 
to external pressure. This leads to an alternative to the shell defined in [48, 49] by opti-
mizing a NURBS surface. NURBS shells have better resistance to axial compression, but 
their resistance to external pressure has not been assessed. There is no theoretical study 
or experiment available for such shells when the material has the characteristic elastic-
plastic behavior of metals.

The paper is organized as follows: the first section describes the ASTER shell concept, 
the experiments and the results. The second section describes the numerical prediction 
of these experiments and compares the results with the experimental results. The third 
section explains how these shells can be optimized to achieve a high resistance to exter-
nal pressure and a good resistance to axial compression.

ASTER shells: concept and experiments 
This section presents the experimental buckling obtained with three types of shells sub-
jected to uniform external pressure, axial compression or a combination of the two. The 
shells were either smooth cylinders (the reference shells) or ASTER shells.

The ASTER shell concept

The ASTER shell concept derives from the observation of the evolution of the surface 
of cylindrical shells under external pressure loading and axial compression during lab 
tests. It has been known for many years that geometric imperfections have a decisive 
effect on the buckling load. However, it is imperative to know the type of imperfection, 
how it originates and then evolves during the loading, and its effect on the critical load 
in order to determine a “shape”, based on the cylindrical geometry of the shell, which 
would be less sensitive or more effective. The quality of the experiments on the buckling 
of cylindrical shells carried out at INSA Lyon [50–58] has led to the ability to obtain 
highly-reproducible experimental critical loads of over 85  % of the theoretical criti-
cal load under axial compression and 95 % of the theoretical critical load under exter-
nal pressure. It is possible to greatly reduce the presence of geometric manufacturing 
imperfections in the shell, for example by using the technique of metal electrodeposi-
tion on a machined support which, afterwards, can be discarded without affecting the 
shell. However, the development of geometric imperfections due to the application of 
boundary conditions is unavoidable. These systematic imperfections have a typical shape 
and are identical to those which result from the application of a circumferential mem-
brane stress. They lead to the development of a modal circumferential geometry which 
is distributed more or less homogeneously over the surface of the shell. In the best-case 
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scenario, the maximum amplitude of the imperfections thus generated is 10–20  % of 
the shell’s thickness. Subsequently, these initial imperfections cause the whole shell to 
buckle according to a perfect shell buckling circumferential mode (n) which corresponds 
to the mode under external pressure. The amplitude of these imperfections increases 
with the solicitation of this mode (n). The underlying idea of the ASTER shell, which has 
the same characteristic dimension (mean radius R, thickness h, height L) as the cylindri-
cal reference shell, consists, based on this cylindrical geometry, in developing a deliber-
ately “undulated” shape by means of p small vaults. One chooses p = 2n. These 2n small 
vaults all have a concavity which points inward in order to prevent the inception and 
then the amplification of the modal geometry. The choice of these outward vaults was an 
a priori choice driven by the observation that the curvature of an “incoming” imperfec-
tion (pointing toward the center of the shell) tends to be more active than the curvature 
of an “outgoing” imperfection. Figure 1 illustrates the ASTER shell concept.

The ASTER shell thus defined is designated as VM 2n because it consists of 2n vaults. 
Thus, if the perfect cylindrical shell buckles along mode 10, the corresponding ASTER 
shell is denoted ASTER VM20 because it has 20 vaults. A vault consists in a circular 
arc of radius r defined in relation to the height d of the vault with respect to the perfect 
cylinder. Figure 2 defines the parameters of the vault. This choice of a shape was made in 
order to facilitate the manufacturing of such a shell.

Manufacturing of the specimens

The cylinders to be tested were produced by electrodeposition of electrolytic nickel onto 
a machined aluminum die (for the cylindrical shells) or an epoxy resin die in the desired 
shape (for the ASTER shell).

Fig. 1  The ASTER shell concept

Fig. 2  ASTER shell: definition of r and d
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The die was cast into a mold which consisted of two machined duralumin half shells, 
then unmolded (Fig. 3).

Thus, it is possible to manufacture many dies of complex shapes from a single mold. 
Then, the external surface of the die is made conductive by spraying a thin layer of 
graphite. The die thus coated is immersed into a nickel sulfamate bath and subjected to 
a current. The immersion time and current intensity are the parameters which condition 
the thickness of the deposit. To ensure uniform thickness, the die is rotated in the bath. 
In addition, masks whose geometry is adjusted by trial-and-error are applied to com-
plete the process. In order to extract the shell to be tested from the die without contact 
or mechanical actions which could create mechanical imperfections, the aluminum die 
is dissolved in caustic soda and the resin die is carved out from the inside and separated 
from the specimen. Finally, the ends are cut to shape by electroerosion to guarantee the 
quality of the supports and the perpendicularity with the axis of the shell. The thickness 
of the shell is quasi-constant, except that it is reduced by one-tenth along the vertical 
creases. It was assumed to be constant and equal to the average value for the purpose 
of the simulations. By design, these shells are very stiff with respect to circumferential 
modes 8–13: consequently, the roundness imperfections were negligible (less than one-
hundredth of the thickness). This procedure led to the manufacturing of “laboratory 
quality” shells.

The test rig

The shells were subjected to external pressure, axial compression or a combination of 
both. The experimental behavior was monitored throughout the experiment by a com-
puter which recorded and processed the desired readings. The axial compressive load 
and the external pressure were displacement-controlled. At times, the load was sus-
tained in order to allow the radial and axial deformations to be measured.

The global or partial geometry of the shell was measured in its initial state, at sev-
eral loading levels and, finally, in its post-critical state. In order to do that, a contactless 
sensor moving circumferentially and axially was used to measure the evolution of the 
radius of a point of the internal surface. In addition, the normal displacement of a point 

Fig. 3  The die manufacturing process
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of the shell was monitored continuously throughout the loading. The chosen point was 
that which experienced the largest “incoming” displacement during a preloading step 
at about 15 % of the expected critical pressure. This measurement was used to analyze 
the loading—radial displacement function and to anticipate the imminent occurrence of 
buckling.

The geometry of the cylindrical shells

The smooth shells studied were cylinders of average radius R = 75 mm and nominal 
length L = 120 mm. Their average nominal thickness was about 150 µm. The ASTER 
shells were all generated from the same reference smooth shell (same base radius R, 
same length L and same theoretical thickness h). Each specimen was measured. The 
thickness was measured by ultrasound at 30 regularly-spaced points on the surface. The 
thicknesses were quasi-uniform and so, from now on, we will refer only to the average 
thickness. The initial and post-critical geometries were obtained through the acquisition 
of 5000 points on the surface, taken along 34 regularly-spaced parallels. The variations 
in radius were measured along three parallels at one-degree intervals along the circum-
ference, for each specimen and several loading levels (which remained constant during 
the measurement). Then, the variations of the average radius were decomposed using 
Fourier series expansion. The maximum amplitude of the initial shape imperfection of 
all the smooth shells (measured on Fourier modes 9, 10, 11, 12, 13, which were close to 
buckling mode 11) did not exceed 20 % of the thickness. A typical post-critical geometry 
of a smooth shell under external pressure is shown in Fig. 4.

Material properties

The material properties were measured for each specimen. In order to do that, a ten-
sile test piece was cut out of scrap material from a specimen and used to determine the 
Young’s modulus and nonlinear properties (see Fig. 5).

Fig. 4  A typical post-buckling geometry



Page 6 of 27Combescure and Jullien ﻿Adv. Model. and Simul. 
in Eng. Sci.  (2015) 2:26 

One can observe that the material ceases to be linear after a very small strain (0.001), 
after which the tangent modulus diminishes very progressively. This type of behavior is 
characteristic of many austenitic steels. We will see further on that taking this effect into 
account is very important for an accurate prediction of buckling.

Experimental results

A number of shells were tested under external pressure alone and under axial compres-
sion alone. Then, we tested their buckling strength under combined loading. We will 
present the experimental results obtained with cylindrical shells and then with two types 
of ASTER shells. These shells are usually characterized by their Batdorf parameter Z 
(Z =

L2

Rh

√
1− ν2, where ν denotes Poisson’s coefficient).

For each shell studied, let us define a reference shell which is the smooth cylindrical 
shell of radius R = 75 mm, length L = 120 mm and thickness h equal to the thickness 
measured on the shell being considered. This shell has the same Young’s modulus as 
that measured on the specimen, is built-in at the base and has all its degrees of freedom 
(translation and rotation) along the upper circle set to zero, except for the axial displace-
ment. We carried out a Fourier series analysis of this reference cylinder using truncated 
conical finite elements [58] (a mesh of 40 truncated conical elements is more than suf-
ficient) in order to determine two reference critical loads: the critical elastic buckling 
pressure PE and the elastic buckling load under uniform axial compression FE. These two 
quantities were used systematically to normalize all the results.

The case of cylindrical shells

The characteristics of each shell and the test results for the various smooth shells sub-
jected to the simple load cases are given in Table 1.

The case of ASTER VM22 shells

The experimental observations showed that the critical circumferential mode was mainly 
mode 11. Therefore, we manufactured a VM22-type shell consisting of 22 vaults with their 

Fig. 5  A typical stress–strain curve
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concavity pointed inward. The depth d of the vaults was equal to 2.32 mm, which corre-
sponds to a radius of curvature r equal to 20 mm. Such an amplitude leads to a “hump” 
amplitude between 4 and 5 times the shell’s nominal thickness. Table 2 below summarizes 
the various tests and gives the buckling loads of the elementary loading cases. The loading 
cases are normalized to the linear elastic buckling load of the smooth cylinder with the 
same radius, height, thickness and material. We found that the ASTER VM22 shells were 
four times more resistant to external pressure than the corresponding smooth shells and 
that the theoretical critical load of the reference cylinder associated with the shell being 
studied could be reached thanks to the vaults. Thus, these vaults have a beneficial effect 
for all the loading cases and are very effective against external pressure.

Table 1  Characteristics of the cylinders and experimental buckling loads

External pressure A1 A2 A3 A4

h (µm) 150 150 154 158

R/h 500 500 487 475

Z 1220 1220 1190 1160

E (GPa) 162 155 158 152

Pexp Buckling pressure (MPa) 0.021 0.019 0.020 0.0223

PE (MPa) 0.0213 0.0204 0.0222 0.0227
Pexp
PE

0.986 0.931 0.900 0.982

Fourier mode n 11 10 11 11

Axial compression A5 A6

h (µm) 150 148

R/h 500 500

Z 1220 1933

E (GPa) 163 155

Fexp Buckling load (N) 11,000 9275

FE (N) 14,193 13,125
Fexp
FE

0.775 0.707

Fourier mode n 11 12

Table 2  ASTER VM22 shells: characteristics and experimental buckling loads

External pressure B1 B2 B3* B4*

h (µm) 152 155 150 150

R/h 493 484 500 500

E (GPa) 147 161 164 167.5

Pexp Buckling pressure (MPa) 0.091 0.092 0.070 0.072

PE (MPa) 0.0190 0.0230 0.0216 0.0220
Pexp
PE

4.57 4.00 3.24 3.27

Axial compression B5 B6

h (µm) 153 150

R/h 490 500

E (GPa) 162 163

Fexp Buckling Load (N) 14,400 13,200

FE (N) 14,200 14,067
Fexp
FE

1.01 0.94
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Remark the critical loads of shells B3 and B4 under external loading are marked with 
an * because these two shells were subjected to about ten external pressure cycles at 
two-thirds of the expected critical load prior to continuing all the way through failure 
by buckling. This pre-cycling reduces the critical load without cycling by about 25 %. We 
will return to this point in the discussion of the numerical simulation and explain this 
observation.

Figure 6 shows a post-critical geometry in the case of external pressure loading alone.

The case of ASTER VM14 shells

In order to study the effect of the choice of the ASTER geometry on the increase in the criti-
cal load, we also manufactured ASTER VM14 shells with p = 14 vaults along the circumfer-
ence. The depth d of these vaults was 2.35 mm, which corresponds to a radius of curvature 
r equal to 35 mm. These shells were tested only under simple loading. Table 3 summarizes 

Fig. 6  A typical VM22 post-buckled state

Table 3  ASTER VM14 shells: characteristics and experimental buckling loads

External pressure C1 C2

h (µm) 149 147

R/h 503 510

E (GPa) 154 143

Pexp Buckling pressure (MPa) 0.054 0.045

PE (MPa) 0.020 0.018
Pexp
PE

2.7 2.6

Axial compression C3 C4

h (µm) 150 148

R/h 500 507

E (GPa) 151 156.5

Fexp Buckling Load (N) 6200 5100

FE (N) 12937 13,012
Fexp
FE

0.48 0.39
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the experimental results. One can immediately see that this type of vault is less effective 
under external pressure and cuts the critical load under axial compression in half.

A post-critical geometry under external pressure is shown in Fig. 7.

The effects of loading combinations on buckling

This section presents the effects of an interaction between loading cases on buckling 
for the first two shell types. In the case of combined loads, we increased the applied 
pressure and the axial compression load simultaneously. These two loading cases were 
apportioned to the reference linear buckling loads for the cylinder being considered. The 
results for smooth cylinders are given in Table 4.

The results for VM22 shells are given in Table 5.
These results will be interpreted later with the presentation of the calculation results.

Discussion of the experimental results

The sum of these experimental results shows the interest of ASTER type shells in 
increasing buckling strength. One can see that the choice of the number of vaults plays 
an important role in the quality of the buckling strength. This type of shell, which can 

Fig. 7  A typical VM14 post-buckled state

Table 4  Buckling under combined loading: characteristics of the cylinders and experimen‑
tal buckling loads

Specimen h (μm) E (GPa) Pexp (MPa) Pexp (N) PE (MPa) FE (N) Load ratio FPE
FEP

A1 150 163 0.021 0.000 0.0213 14,111 0

A7 142 150 0.015 2000 0.0173 11,718 4

A8 145 163 0.016 4500 0.0197 13,276 8

A9 138 159 0.0131 3900 0.0171 11,737 8

A10 148 155 0.012 6700 0.0197 13,150 16

A11 139 156 0.0075 6800 0.0171 11,681 26

A12 148 155 0.0078 7200 0.0197 13,150 26

A13 137 160 0.0045 7800 0.0169 11,643 50

A5 150 163 0.000 11,000 0.0214 14,193 ∞
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be manufactured easily, enables the resistance to buckling under external pressure to be 
quadrupled and makes the shell quasi-insensitive to imperfections under axial compres-
sion. This result is verified experimentally provided one chooses a number of vaults p 
equal to twice the critical number of circumferential waves in buckling (n). We will now 
attempt to understand why by means of a numerical simulation of these tests. Then, we 
will try to find a way to improve this design even further: in order to do that, we will 
attempt to predict the critical loads for a range of values of p through calculations. Thus, 
we will seek the existence of an optimum p for this type of shell subjected to combined 
load cases.

The finite element model
In this section, we undertake to model these tests using finite elements and compare the 
experimental results with these numerical simulations.

Perfect cylindrical shells and ASTER shells

First, we carried out two-node axisymmetric or quasi-axisymmetric finite element calcu-
lations of the smooth shells (using COMU axisymmetric elements with non-axisymmet-
ric modal imperfections), then 3D calculations of the ASTER shells using DKT elements. 
In the latter case, a half-shell was meshed for each calculation. The base was built-in and 
the top of the cylinder was left free to dilate vertically. The remaining degrees of freedom 
of the circle were fixed. All the calculations were performed using the nonlinear finite 
element code Stanlax [58].

The types of analyses performed

For each cylinder, we first performed an elastic buckling analysis. Then we carried out 
different analyses depending on the case. For the smooth cylinders, we performed 
incremental, geometrically nonlinear axisymmetric analyses with elastic or elastic-
plastic behavior. We tested the possible loss of stability of the equilibrium thus obtained 
through a plastic bifurcation analysis on the Fourier modes [58]. For the 3D shells, we 
simply carried out a linear stability analysis followed by incremental, geometrically non-
linear, elastic and elastic-plastic analyses. We also tested the stability after each step 
of the nonlinear calculations. For all these calculations, we performed a convergence 
analysis. We found that 40 axisymmetric elements are more than sufficient for the criti-
cal loads to converge, and that 40 elements along the axis and 20 elements along the 

Table 5  Buckling under combined loading: experimental buckling loads for VM22 ASTER 
shells

Specimen h (μm) E (GPa) Pexp (MPa) Fexp (N) PE (MPa) FE (N) Load ratio F
FE

PE
P

B2 150 161 0.0920 0 0.023 14,004 0

B7 142 160 0.0543 2500 0.0184 12,314 0.7

B8 140 148 0.0380 4500 0.0164 11,053 1.4

B9 140 160 0.0326 7900 0.0177 11,951 1.8

B10 152 163 0.0205 14,840 0.0221 14,337 3.5

B5 153 162 0.000 14,200 0.0224 14,200 ∞
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circumference are needed for the 3D calculation of each ASTER vault (which comes to 
1600 DKT elements for each vault). The choice of the model for the nonlinear traction 
curve was important. We chose the same yield stress σy = 150MPa for all the calcula-
tions. The elastic-plastic behavior was given by the reference curve of Fig. 5. The initial 
plastic strain was calculated by dividing the yield stress by the Young’s modulus. The 
base of the cylinder was built-in for all the calculations. All the degrees of freedom of the 
upper circle were fixed, except for the axial displacement. This choice is consistent with 
the control of the experiments which nullified the end load associated with the pressure.

Results of the calculations and comparison with the experimental results
This section presents the results of the simulations and compares them to the experi-
mental results.

Cylindrical shells

Let Pexp and Fexp be respectively the experimental buckling pressure in MPa and the 
experimental axial buckling load in N. PE and FE denote respectively the calculated lin-
ear elastic buckling pressure (taking into account the following forces and the axial com-
pression load leading to Euler buckling). PNL and PNLP denote respectively the nonlinear 
elastic and nonlinear plastic buckling pressure. F is the axial compression load. The plas-
tic buckling loads were calculated using the tangent modulus theory.

The case of perfect shells

This section concerns simple external pressure or axial compression loading. The results 
of the calculations for perfect structures are compared to the experimental results for 
smooth cylinders A1–A6 in Table 6.

First, let us analyze the buckling pressure predictions. The linear buckling calculations 
predicted the experimental critical loads with less than 10 % error in all cases. In two 

Table 6  Perfect cylinders: experimental and calculated buckling loads

External pressure A1 A2 A3 A4

Pexp 0.021 0.019 0.020 0.0223

Fourier mode nexp 11 10 11 11
Pexp
PE

0.986 0.931 0.900 0.982

Fourier mode nE 11 11 11 11
Pexp
PNL

0.991 0.920 0.900 0.982

Pexp
PNLP

0.991 0.920 0.900 0.982

Axial compression A5 A6

Fexp 11,000 9275

Fourier mode nexp 11 12
Fexp
FE

0.775 0.707

Fourier mode nE 2–15 2–15
Fexp
FNL

0.648 0.708

Fexp
PNLP

1.01 0.919
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cases, the experimental load was predicted within less than 3 %. Buckling occurred in 
the elastic domain. There was no nonlinear pre-buckling effect.

The buckling calculations under axial compression clearly establish that plasticity is 
responsible for the experimental load being 30 % less than the Euler load. In the case 
of pure axial compression, we found the same results as in the literature: a large num-
ber of Fourier modes correspond to the same critical load. The buckling modes for Fou-
rier modes 0 and 11 are given in Fig. 8. Under uniform axial compression, the cylinder 
always buckles on mode 11. The corresponding shape is shown in Fig. 9.

Influence of initial imperfections

One can also consider the influence of initial imperfections on the critical load. In order 
to do that, we added an initial imperfection to the perfect geometry in the shape of the 
elastic buckling mode with amplitude δ. Three cases were calculated (δh = 0.2, 0.1 and 
0.01). The largest amplitude corresponds to the maximum imperfection measured on 
the specimens tested. The calculations were performed with COMU elements, which 
are specifically adapted to this approach [59]: the imperfection was monomodal on 
Fourier mode 11, and the response was decomposed according to Fourier modes 0, 11, 
22 and 33. Plasticity was evaluated at 21 points along the circumference. Table 7 sum-
marizes the results of the geometric and material nonlinear calculations for the three 

Fig. 8  Buckling modes under axial compression
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imperfection amplitudes. Plasticity was not activated in the case of pressure loading, but 
only for axial compression.

These results show that with an amplitude of initial modal imperfections less than 
20 % of the thickness (which is consistent with our experiments) the calculations match 
the experimental results.

Load interaction diagrams

Let us now address the interactions between loading cases. In order to do that, we con-
sider a reference shell with Young’s modulus 160,000 Mpa and thickness 150 μm. With 
this cylinder, elastic buckling occurs at an external pressure PE equal to 0.02103 MPa, 
and at an axial compression load equal to 13,961 N. We calculated the linear, elastic non-
linear and elastic-plastic nonlinear critical loads for six loading combinations. We also 
calculated the elastic-plastic nonlinear response with a modal imperfection parallel to 
the buckling mode shape under external pressure and an amplitude equal to 10 or 1 % 
of the thickness for each case. Very similar results were obtained with a imperfection of 
the same amplitude, but parallel to the buckling mode under axial compression. Table 8 
summarizes all the calculations. In this Table, �E is the multiplying coefficient of the 

Fig. 9  Buckling modes of a cylinder under external pressure

Table 7  Imperfect cylinders: experimental and calculated buckling loads

External pressure A1 A2 A3 A4

Pexp
PNLP

0.991 0.920 0.900 0.982

Pexp
PNLPCOMU

;
δ

h
= 0.01 0.986 0.879 0.920 1.00

Pexp
PNLPCOMU

;
δ

h
= 0.1 1.06 0.937 0.985 1.069

Pexp
PNLPCOMU

;
δ

h
= 0.2 1.15 0.994 1.04 1.129

Axial compression A5 A6

Fexp
PNLP

1.01 0.919

Fexp
FNLPCOMU

;
δ

h
= 0.01 1.076 0.922

Fexp
FNLPCOMU

;
δ

h
= 0.1 1.080 0.988

Fexp
FNLPCOMU

;
δ

h
= 0.2 1.087 0.996
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applied loading combination which leads to Euler buckling. Similarly, �NL and �NLP are 
the multiplying coefficients which lead to elastic and plastic nonlinear buckling, respec-
tively. Coefficients �defa=0.01 and �defa=0.1 are the multiplying coefficients leading to the 
elastic-plastic buckling load for an initial imperfection of amplitude 0.01 and 0.1 % of 
the thickness, respectively. These are compared with the experimental results obtained 
for shells A1, A5 and A7–A13. All these results are normalized to the Euler pressure in 
abscissa and the Euler axial compression load in ordinate. Table 9 gives the normalized 
experimental results. Figure  10 shows a comparison between the interaction diagram 
obtained from the calculations and the experimental data.

This figure shows good agreement between calculations and experimental results con-
cerning the interaction diagram. In the case of significant axial compression loads, as 
noted previously, plasticity plays an important role. Conversely, it does not affect exter-
nal pressure loading. All the interaction curves are convex. Therefore, a linear interac-
tion is conservative, provided the critical load reduction effects on axial compression 
(plasticity) and on external pressure (geometric imperfections) are taken into account. 
For these tests, the calculations with an amplitude of initial modal imperfection equal to 
10 % of the thickness lead to a good estimate of the experimental critical load in all the 
cases.

The case of ASTER VM22 shells

In this section, we focus on the prediction of the critical load for ASTER VM22 shells (22 
outward vaults). The results of the calculations for the “perfect” structure under simple 

Table 8  Buckling under  combined loading: calculated ratios under  various modeling 
assumptions

Pressure load ratio Axial load ratio �E �NL �NLP �δ = 0.01 �δ = 0.1

0.0 1.0 1.00 0.994 0.756 0.724 0.71

0.2 0.8 1.17 1.171 0.944 0.960 0.895

0.4 0.6 1.18 1.186 1.186 1.161 1.06

0.6 0.4 1.14 1.146 1.146 1.107 1.102

0.8 0.2 1.07 1.078 1.078 1.042 0.97

1.0 0.0 1.00 1.01 1.01 0.99 0.92

Table 9  Buckling under combined loading: Euler loads and experimental ratios

Specimen PE (MPa) FE (N) Pexp
PE

Fexp
FE

A1 0.0210 14,111 0.99 0.021

A7 0.01725 11,718 0.87 0.17

A8 0.01972 13,276 0.81 0.34

A9 0.01707 11,737 0.76 0.33

A10 0.01971 13,150 0.61 0.51

A11 0.01704 11,680 0.44 0.58

A12 0.01971 13,150 0.40 0.55

A13 0.0169 11,643 0.27 0.67

A5 0.0214 14,193 0.00 0.77
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pressure loading for shells B1 and B2 and under uniform axial compression for shell B5 
are compared to the experimental results in Table 10.

The calculated predictions match the experimental results very well when plasticity 
is taken into account. The nonlinear elastic calculations systematically overestimate the 
critical loads. Two calculated buckling deformed shapes (under axial compression and 
under external pressure) are presented in Fig. 11. Now let us address combined loading. 
These cases concern the experiments on shells B1, B2, B7, B8, B9, B10 and B5. The theo-
retical loads are normalized to the Euler loads of the corresponding perfect cylindrical 
shells. The theoretical critical loads under combined loading were calculated with the 
same properties as the reference shell (Young’s modulus 160,000 Mpa and thickness 150 
μm, as in the case of smooth cylinders) and divided by the elastic buckling loads of the 
same shell (Table 11).

The calculation results are given in Table 12.
The results of the various calculations are compared with the experimental results in 

Fig. 12.

Fig. 10  Cylinders under combined loading (experiments and calculations): interaction diagram

Table 10  ASTER VM22 shells: comparison of  the calculated and  experimental buckling 
loads

Specimen Loading type Experimental buckling load �exp

�E

�exp

�NL

�exp

�NLP

B1 Pressure 0.091 MPa 4.57 0.58 1.01

B2 Pressure 0.092 MPa 4.00 0.512 0.98

B5 Axial load 14,200 N 0.99 0.84 1.03
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One can observe that in most cases a calculation based on linear elastic analysis is not 
predictive. The comparison with geometrically nonlinear calculations is even worse: in 
this case, the geometric nonlinearities have a stiffening effect. The only predictive cal-
culation is the one which takes plasticity into account. This effect is drastic in almost all 
the cases: plasticity reduces the critical load by about one-third. In this type of stiffening 
effect, plasticity always plays an important role.

Fig. 11  ASTER VM22 buckling modes

Table 11  ASTER VM22 shells: experimental buckling loads under combined loading

Specimen PE (MPa) FE (N) Pcrexp
PE

Fcrexp
FE

B1 0.0199 13,171 4.57 0.00

B2 0.023 14,972 4.00 0.00

B7 0.0184 12,315 2.95 0.20

B8 0.0164 11,053 2.32 0.41

B9 0.0177 11,951 1.84 0.66

B10 0.0221 14,337 0.93 1.04

B5 0.021 14,400 0 1.01

B6 0.021 14,119 0 0.99
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The case of ASTER VM14 shells

In this section, we focus on the numerical prediction of the tests for 14-vaulted shells. 
The results of the 3D calculations are compared to the experimental results in Table 13. 
Figure 13 shows the two elastic buckling modes. In this case in which the vaults lead to a 
less significant gain in critical load, the geometrically nonlinear predictions are good for 
the first three shells. The addition of plasticity slightly improves the results. For shell C4, 

Table 12  ASTER VM22 shell buckling under  combined loading: calculated ratios 
under various modeling assumptions

Pressure load ratio Axial load ratio �E �NL �NLP

0.0 1.0 1.60 0.95 0.84

0.1 0.9 1.79 1.65 1.29

0.2 0.8 2.03 1.80 1.36

0.3 0.7 2.33 1.98 1.45

0.4 0.6 2.75 2.27 1.57

0.5 0.5 2.95 2.48 1.74

0.6 0.4 3.06 2.83 1.95

0.7 0.3 3.12 3.31 2.23

0.8 0.2 3.16 3.92 2.60

0.9 0.1 3.29 5.00 3.08

1.0 0.0 3.31 5.95 4.01

Fig. 12  ASTER VM22 shell under combined loading (experiments and predictions): interaction diagram
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which is subjected to axial compression, the predictions exceed the experimental critical 
load by 20 %.

Influence of imperfections

The previous results concerned multi-vaulted shells without imperfections. The next 
question is that of the influence of possible shape imperfections on the critical load. 
We performed a series of calculations to evaluate the influence of initial imperfections 
on buckling. In order to do that, we created an imperfect shell by adding to the initial 
perfect (multi-vaulted) geometry an imperfection, parallel to the elastic buckling mode 
under external pressure, with an amplitude of 10 % of the thickness. Then we calculated 
the elastic-plastic nonlinear critical loads under uniform axial compression and under 

Fig. 13  ASTER VM14 buckling modes

Table 13  ASTER VM14 shells: comparison of  the calculated and  experimental buckling 
loads

Specimen Loading type Experimental buckling load �exp

�E

�exp

�NL

�exp

�NLP

C1 Pressure 0.054 MPa 2.7 0.99 0.93

C2 Pressure 0.046 MPa 2.6 0.85 0.87

C3 Axial load 6200 N 0.48 0.97 1.0

C4 Axial load 5100 N 0.39 0.78 0.83
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uniform external pressure for shells VM14 and VM22. The reductions observed in the 
critical loads did not exceed 3 %. We obtained similar results with an imperfection paral-
lel to the buckling mode under axial compression. This led to the conclusion that these 
shells are relatively insensitive to initial imperfections, both in the case of axial compres-
sion and in the case of external pressure.

Discussion

We found that vaults lead to a significant increase in the buckling strength under uni-
form external pressure and also improve the resistance to axial compression. This type of 
shell is relatively insensitive to initial imperfections. The choice of the number of vaults 
also plays a role. The effect becomes significant once the number of vaults equals twice 
the Fourier buckling mode of the smooth cylinder under external pressure. The question 
then arises of the optimal choice of the number and depth of the vaults with regard to 
buckling strength under combined loading. This is the subject of the next section.

The optimization procedure
We carried out a systematic study of the effect of the number and depth of the vaults on 
the buckling strength under external pressure alone, under axial compression alone and, 
finally, under combined loading with 50 % of the critical axial compression and 50 % of 
the critical external pressure. In order to do that, we first assumed a constant vault depth 
d. We used the reference shell (Young’s modulus 160,000 MPa and thickness 150 μm).

Influence of the number of vaults p

Under external pressure alone

The results of the linear elastic, nonlinear elastic and elastic-plastic calculations are 
given in Fig.  14. One can observe that the critical loads increase very rapidly beyond 
mode 10 (which corresponds to 20 vaults) and reach a factor 4. Then, they continue to 
increase progressively with the number of vaults to reach a factor greater than 10 for 60 
vaults. Let us note that, in this case, the nonlinear elastic estimates are very optimistic. 
Plasticity plays a significant role once the number of vaults exceeds 20. Beyond 50 vaults, 
the critical load reaches a maximum of 10 times the Euler load.

Under axial compression alone

The results of the calculations are given in Fig. 15.
ASTER shells are less effective in terms of resisting axial compression. Nevertheless, 

beyond 20 vaults, the critical load is multiplied by two. Then it increases progressively 
with the number of vaults and reaches the Euler load for 80 vaults. In this case, taking 
nonlinearities into account leads to a significant decrease in the predicted critical load. 
Plasticity reduces it by about another 10 %.

Under combined loading (50 % axial compression, 50 % external pressure)

The results of the calculations are given in Fig. 16.
For this loading combination, the linear and nonlinear elastic predictions are 

quite similar, but very optimistic. Taking plasticity into account plays a decisive role. 
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Fig. 14  ASTER VM shells: influence of the number of vaults on the buckling pressure

Fig. 15  ASTER VM shells: influence of the number of vaults on the axial compression buckling load
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However, one can observe that beyond 20 vaults the critical load is multiplied by two, 
then decreases by a maximum of 20 %.

Influence of the vault depth d

In this section, we study how the vault depth affects the improvement brought about by 
outward vaults. This presentation is limited to ASTER VM22 shells. We considered sev-
eral ratios of the vault depth to the thickness of the shell. The evolution of the radius of 
curvature of the vault as a function of this ratio is shown in Fig. 17.

The calculation results for external pressure loading alone are given in Fig.  18. One 
can observe an improvement factor between 5 and 6 when the ratio d/h becomes greater 
than 7.5. First, the nonlinear critical loads are greater than the linear critical loads. Plas-
ticity limits the effectiveness of the shell when the ratio exceeds 10.

Figures 19 and 20 show similar tendencies for axial loading and combined 50 % exter-
nal pressure and 50 % axial compression loading. The nonlinear elastic and elastic-plas-
tic critical loads become less than the Euler load when the vault depth exceeds 10 times 
the thickness.

Based on these results, we can conclude that the recommended vault depth is about 10 
times the thickness.

Fig. 16  ASTER VM shells: influence of the number of vaults on buckling under combined loading
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Fig. 17  ASTER VM22 shells: the relative vault depth as a function of the vault radius r

Fig. 18  ASTER VM22 shells: influence of the relative vault depth on the buckling load under external pressure
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Fig. 19  ASTER VM22 shells: influence of the relative vault depth on the buckling load under axial compres‑
sion

Fig. 20  ASTER VM22 shells: influence of the relative vault depth on the buckling load under combined load‑
ing
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ASTER VM‑22 shells: investigation of inward vaults
In this section, we compare VM22 shells and shells defined with inverted vaults (i.e. with 
the concavity turned outwards) of the same depth d or radius of curvature r. These new 
shells are designated as ASTER VM-22. The deformed buckling shape under axial com-
pression is shown in Fig. 21.

The calculated buckling loads are compared in Table 14.
One can observe that if one keeps the vault depth constant the outward vaults are 

more effective against buckling. Conversely, if one keeps the radius of curvature r con-
stant, the inward vaults are slightly better, especially in the axial compression case.

Conclusions
In summary, we developed shells which are relatively insensitive to imperfections and 
which resist buckling under external pressure much better than smooth cylindrical 

Fig. 21  ASTER VM-22: buckling mode under axial compression

Table 14  Comparison of the calculated buckling loads of ASTER VM22 and VM-22 shells

Shell name d/h r (mm) �E

PE

�NL

PE

�NLP

PE

External pressure

 VM 22 15.47 20 3.35 7.5 4.47

 VM -22 15.47 20 4.96 3.5 4.6

 VM -22 22.7 30 7.19 5.9 4.15

Shell name d/h r (mm) �E

PFE

�NL

PFE

�NLP

PFE

50 % external pressure 50 % axial compression

 VM 22 15.47 20 1.22 1.43 0.97

 VM -22 15.47 20 1.25 1.03 0.76

 VM -22 22.7 30 2.12 1.53 0.90

Shell name d/h r (mm) �E

FE

�NL

FE

�NLP

FE

Axial compression

 VM 22 15.47 20 1.48 1.19 0.92

 VM -22 15.47 20 1.13 0.95 0.77

 VM -22 22.7 30 1.79 1.48 1.15
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shells. Their axial compression strength is also better. These results require the use of a 
number of vaults at least equal to twice the Fourier mode number of the critical buckling 
mode of the smooth cylinder under external pressure. The recommended vault depth 
d is at least ten times the thickness. In addition, these shells are relatively insensitive to 
initial imperfections, which is an important advantage over the reference smooth cylin-
ders. This type of shell can be manufactured relatively easily. The choice of vaults with 
their concavity turned inward seems to be slightly better when external pressures are 
predominant. The conclusions given in the paper take into account the load reduction 
effects due to plasticity, which play a significant role (all the more so when the stiffening 
effect is high). Therefore, one could improve the buckling strength of this type of shell 
much further by choosing materials with a high yield strength.
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