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Abstract

Background: Recently the Double Absorbing Boundary (DAB) method was
introduced as a new approach for solving wave problems in unbounded domains. It
has common features to each of two types of existing techniques: local high-order
Absorbing Boundary Conditions (ABC) and Perfectly Matched Layers (PML). However, it
is different from both and enjoys relative advantages with respect to both.

Methods: The DAB method is based on truncating the unbounded domain to
produce a finite computational domain, and on applying a local high-order ABC on
two parallel artificial boundaries, which are a small distance apart, and thus form a thin
non-reflecting layer. Auxiliary variables are defined on the two boundaries and within
the layer, and participate in the numerical scheme. In previous studies DAB was
developed for acoustic waves which are solutions to the scalar wave equation. Here
the approach is extended to time-dependent elastic waves in homogeneous and
layered media. The equations are written in second-order form in space and time.
Standard Finite Elements (FE) are used for space discretization and the damped
Newmark scheme is used for time discretization.

Results: The performance of the scheme is demonstrated via numerical examples.
The DAB was applied to elastodynamics problems in conjunction with the FE method
to demonstrate the performance of the method.

Conclusions: DAB is a viable method for solving wave problems in unbounded
domains.

Keywords: Double absorbing boundary; Absorbing boundary condition; High-order;
Auxiliary variables; Elastic waves; Elastodynamics; Layered media; Finite elements

Background
Even though many computational schemes for treating wave problems in unbounded
domains have been proposed during the last four decades, the quest is still going on for
a high fidelity stable scheme that will allow the numerical solution in a finite region of
interest. It turns out that in some cases it is very difficult to find an absorbing boundary
scheme, as it is often called, that is at the same time stable, sufficiently accurate, com-
putationally efficient, robust, and can be employed in conjunction with standard interior
computational schemes. This is especially true for some specific types of problems that
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remain a challenge in this context. Elastodynamics, which is dealt with in this paper, is
one such problem.
In recent years, the two most prominent absorbing-boundary type schemes have been

those based on the use of a high-order Absorbing Boundary Condition (ABC) and those
based on the use of a PerfectlyMatched Layer (PML). Research on these methods remains
very active. A search in the article archive ISI shows that during the last 5 years, more
than 200 papers were published with the words ABC or PML in the title, and almost 1500
published papers indicated ABC or PML as keywords. See the review papers [1-4].
PML was originally devised by Bérenger [5] in 1994 for electromagnetic waves, and

since then it has been further developed, analyzed and used in various applications by
many authors. See, e.g., references in the review paper [4]. The PML is a layer adjacent
to the boundary that truncates the unbounded domain, in which the governing equations
are artificially modified. It possesses two properties at the continuous level: (a) there is
a perfect match between the layer and the interior domain, namely any outgoing plane
wave produces zero reflection; and (b) the solution decays exponentially when it travels
inside the layer. These two properties theoretically guarantee excellent performance of
the PML. What may sometimes hamper this theoretical performance is the sensitivity of
the PML to the discretization and the need to introduce ad-hoc damping and stretching
profiles.
The first high-order ABC was devised by Collino [6] in 1993, and a few other formula-

tions followed by other authors. See, e.g., references in the review paper [2]. High-order
ABCs are local in space and time, like the classical ABCs of Engquist and Majda [7]
and Bayliss and Turkel [8], but unlike those, they do not involve high-order derivatives.
Therefore they can be implemented in practice up to any desired order, as opposed to
the classical ones that have been implemented up to second order only. In the high-order
ABC scheme, the order of the ABC is simply an input parameter. The high derivatives that
initially appear when designing a high-order ABC are eliminated by introducing auxiliary
variables φj on the boundary.
Recently the two approaches — high-order ABC and PML— have been compared, the-

oretically and numerically [3,9], in the frequency domain. They were found to be equally
effective, with some relative advantages for both. In fact, although usually derived by very
different approaches, recent work has shown that, at the discrete level, the two methods
are quite closely related. In particular, it is shown in [10] how to design a nonstandard
PML with a purely imaginary mesh continuation to exactly annihilate propagating waves
at any incidence angle. This nonstandard PML is formally equivalent to the high-order
ABC proposed by Hagstrom and Warburton [11].
As mentioned above, each of the two classes of techniques has relative advantages. One

major disadvantage of high-order ABCs is that they require special treatment at corners
formed by the intersection of two flat segments of the artificial boundary, and in some
cases also at corners between an artificial and a physical boundary. Such special treatment
is sometimes cumbersome or even difficult to devise. In contrast, handling corners with
PMLs is usually straight forward. Another disadvantage of high-order ABCs is that they
are constrained not to include any normal derivative of an auxiliary variable φj on the
boundary, since the φj are discretized in practice only on the boundary. Thus, the ABC
is allowed to involve only tangential and temporal derivatives of the φj. Eliminating the
normal derivatives from the ABC operators is sometimes difficult and may require a lot
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of algebra; a case in point is elastodynamics [12]. PML is also usually easier to incorporate
in an existing numerical code.
On the other hand, an important disadvantage of PML is that it is not associated

with a clear notion of convergence, except under the expensive scenario of widening a
layer where all physical and auxiliary fields are well-resolved. By contrast, in the case
of high-order ABCs, with a fixed location of the boundary, one can approach the exact
solution arbitrarily closely (up to discretization error) by increasing the order P of the
ABC (with cost that increases only linearly with P). More efficient underresolved PMLs
seem to be more sensitive to discretization and to the computational parameters than
ABCs. A good design of an ABC at the continuous level usually guarantees good per-
formance at the discrete level. This does not seem to be the general case for PML,
where the matching between the solutions in the interior and in the layer at the dis-
crete level is sometimes far from perfect. In addition, the theoretical analysis of a PML
is usually more difficult than that for a high-order ABC for the same application. Addi-
tional discussion on the comparison of the two types of methods can be found in
[1,3,9].
In [13] we presented a new method, which shares some features of both the PML and

the high-order ABC, but enjoys some of the advantages that each of them lacks. In the
new method, called the Double Absorbing Boundary (DAB) method, a high-order ABC
is applied on two parallel artificial boundaries, which are a small distance apart. Auxiliary
variables are defined on the two boundaries and in the thin layer beteween them. Like
the PML, the DAB does not require special treatment of corners. The algebra involved is
relatively simple, since no elimination of normal derivatives is needed. As in the method
of high-order ABCs on a single boundary, DAB is clearly associated with the notion of
convergence; one can approach the exact solution arbitrarily closely (up to discretization
error) by increasing the order P, with only linearly-increasing cost. The numerical prop-
erties of DAB, like accuracy, stability and sensitivity to discretization, are similar to those
of a high-order ABC on a single boundary.
In [13], the new method was applied to the scalar wave equation. We incorporated the

DAB in a fully explicit finite difference scheme in 1D, and in a Finite Element (FE) scheme
in 2D. In [14], a well-posedness proof was provided for the DAB scheme for the acous-
tics problem written in second-order form. The energy method was employed to obtain
uniform-in-time estimates of the norm of the solution and the auxiliary functions, thus
establishing the well-posedness and asymptotic stability of the DAB formulation. In addi-
tion, in [14] the DAB was applied to problems in 2D isotropic elastodynamics, written in
first-order conservation form. The problemwas discretized using the Lax-Wendroff finite
difference scheme.
Although DAB is a general approach, and in principle can be used with any high-

order ABC applied on the double boundary, in [13,14] the ABCs of the form proposed
by Hagstrom and Warburton (H-W) in [11,15] were considered. The ABC formulation
in [15], called the Complete Radiation Boundary Condition (CRBC), generalizes that in
[11], and leads to an almost uniform-in-time error estimate for both propagating and
decaying waves. The H-W ABCs have been incorporated in both FE and finite differ-
ence schemes, and have been shown to be extremely effective in a variety of situations,
including those associated with dispersive, stratified, anisotropic and convective media
[16-18], and where exterior sources are present (nesting) [19].
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Recently, an H-W type ABC was applied to problems in elastodynamics [20,21]. This
is the first known high-order ABC for elastodynamics that is long-time stable. The
key to obtaining stability turns out to be the use of the Lysmer-Kuhlemeyer (LK) ABC
as the termination condition of the recursive relations between the auxiliary variables
φj. The LK ABC is classical [22,23] and is commonly employed in solid earth geo-
physics computations, either as originally proposed or with some improvements; see, e.g.,
[24-26]. In the stable high-order ABC for elastodynamics, all the recursive relations except
the last one are scalar in nature (as in the H-W ABC), while the last one is the vectorial
LK condition. In [20], we have proved this combination to be stable and converging, at
the continuous level.
In this paper, the DAB is incorporated in a standard FE scheme for 2D elastodynamics

in homogeneous and layered media. This is the first FE implementation of DAB for elas-
todynamics. The design of ABCs for heterogeneous media poses an additional challenge.
PML has been used for heterogeneous media in [27], for the scalar wave equation, in [28],
for the MHD equations, and in [29], for elastodynamics. High order ABCs have been
applied to continuously-stratified and layered media, in [16,30]. We show that the DAB
formulation, when combined with the FE method, fits quite naturally to layered media,
and is as simple as DAB for the homogeneous case.
Our formulation and numerical examples assume periodic boundary conditions along

the boundaries perpendicular to the artificial DAB boundaries. This choice is made since
some stability issues arise when the periodic conditions are replaced by some physical
boundary conditions (e.g., traction free conditions). Attempts to resolve these issues are
underway.
Following is the outline of the remaining sections. In Section “The problem in the com-

putational domain and the double absorbing boundary (DAB) method” we describe the
DAB method for elastodynamics. We consider the elastic equations of motion, with a
possibly nonzero damping term. We first describe the DAB formulation for a homoge-
neous medium, and then we discuss the case of a layered medium. In Section “Finite
elements: variational formulation” we describe the FE formulation of the elastodynam-
ics problem, using the DAB. We also discuss some important computational aspects.
In Section “Results and discussion” we present some numerical experiments to demon-
strate the performance of the method. We conclude with some remarks in Section
“Conclusions”.

Methods
The original unbounded-domain problem of elastodynamics

We consider a two-dimensional semi-infinite elastic wave guide of width b, as shown
in Figure 1(a). A Cartesian coordinate system (x, y) is introduced with the origin at the
southwest corner, so that the waveguide is parallel to the x direction, and y ∈[ 0, b].
The south, north and west boundaries of the waveguide are denoted �S, �N and �W ,
respectively.
In the waveguide we consider the equation of elastodynamics with mass- and stiffness-

proportional damping, i.e.,

ρüi + AMρu̇i = σij,j(u) + fi , (1)
σij = Cijkl(εkl + AK ε̇kl), (2)
εkl = (uk,l + ul,k)/2 . (3)
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Figure 1 Setup: (a) the original unbounded domain, (b) the computation domain, with the DAB layer at the
right end.

Here and elsewhere, the summation convention is understood, and a comma subscript
denotes partial differentiation with respect to the variable following it. We shall assign
the values x and y to the indices i, j, k, l. A superposed dot indicates differentiation with
respect to time. In (1)–(3), ρ is the density of the medium, u = {ui} is the unknown
displacement vector field, σ = [ σij] is the unknown stress tensor, f = {fi} is a given body-
force vector, C = [Cijkl] is the elastic moduli tensor, and ε = [ εij] is the unknown strain
tensor. In (1) and (2), AM and AK are the mass-proportional and stiffness-proportional
damping coefficients, which together define the Rayleigh damping that exists in the
system.
We define the wave speeds cL and cT as

cL =
√

λ + 2μ
ρ

, cT =
√

μ

ρ
, (4)

where λ and μ are the Lamé constants.
Boundary conditions are specified on the three boundaries: on �N and �S we impose

periodic boundary conditions:

ui(x, 0, t) = ui(x, b, t) (5)

ui,y(x, 0, t) = ui,y(x, b, t), (6)

Periodic boundary conditions allow us to detach the study of the stability and accuracy
of the ABC, which shall be introduced in the following, from the effects of corners and
interactions between the absorbing boundary and other boundaries.
On �W any boundary condition may be imposed. We choose to prescribe zero

displacement boundary conditions

ux = 0 on �W , (7)

uy = 0 on �W . (8)
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Initial conditions are also given, i.e.,

ui(x, y, t = 0) = ui0(x, y), (9)

u̇i(x, y, t = 0) = u̇i0(x, y) (10)

where u0 = {ui0} and u̇0 = {u̇i0} are known functions.
We assume that outside a compact region, denoted �0, in which Cijkl, fi, ui0 and u̇i0

may, in principle, be general, the following simplified conditions hold: (a) the medium is
homogeneous, namely Cijkl is constant; (b) there are no sources, namely fi = 0; and (c) the
initial values vanish, namely ui0 = 0 and u̇i0 = 0.

The problem in the computational domain and the double absorbing boundary (DAB)

method

We now truncate the semi-infinite domain by introducing the artificial boundary �E ,
located at x = xE and spanning 0 � y � b. Slightly to the west of �E we set an interface
denoted �I , located at x = xI , with 0 � y � b. See Figure 1(b). The entire computa-
tional domain bounded by �N ∪�W ∪�S ∪�E is denoted as �. As Figure 1(b) shows, this
domain is divided by the interface �I into two sub-domains: the interior domain �I and
a thin layer �L. We choose the location of �E and �I such that �0 (the “irregular region”
defined above) is strictly contained within �I . Thus, in the layer �L we have that Cijkl is
constant, fi = 0, and the initial conditions are zero.
The function u satisfies the equation of elastodynamics (1) in �, the periodic boundary

conditions (5), (6) and the conditions (7), (8), and the initial conditions (9) and (10) in �.
In the layer �L we shall apply a special treatment, with the goal of rendering the solution
in the interior domain �I as close as possible to the solution of the original semi-infinite
problem in that domain. Thus, �L will act as an absorbing or non-reflecting layer.
To this end we define a sequence of auxiliary variables φ0

i , . . . ,φP
i , i = x, y in the layer

only. Here P is a chosen parameter that will determine the order of accuracy of the absorb-
ing layer. The first auxiliary variable is defined to be φ0

i = ui in �L. The problem for the
φm
i is given as follows. In the layer, we require the φm

i for a particular value ofm to satisfy
the same elastic wave equation as for ui, i.e. (1), with fi = 0:

ρφ̈m
i + AMρφ̇m

i = σij,j(φ
m), m = 1, . . . ,P (11)

We also denote byTm
i the traction vector on�I and�E that corresponds to the variables

φm
i . Also, Ti = T0

i .
All the auxiliary variables satisfy a zero initial condition:

φm
i (x, y, 0) = 0, φ̇m

i (x, y, 0) = 0, m = 1, . . . ,P, in �L (12)

On �S and �N (or more precisely the parts of these boundaries that are in the layer, i.e.,
for xI ≤ x ≤ xE and 0 ≤ y ≤ b) we apply the same (periodic) boundary conditions as for
ui, i.e.,

φm
i (x, 0, t) = φm

i (x, b, t) (13)

φm
i,y(x, 0, t) = φm

i,y(x, b, t), m = 1, . . . ,P, on �S, �N . (14)

Now we need to define boundary conditions for the φm
i on �I and on �E . We define the

boundary conditions on both boundaries recursively. The recursive boundary conditions
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are defined in a manner that is in many respects similar to the ABC for elasticity defined
by equation (28) in [20], with added low-order terms:

amφ̇m
x + cxφm

x,x + bmφm
x = ãmφ̇m+1

x − cxφm+1
x,x + b̃mφm+1

x (15)

amφ̇m
y + cyφm

y,x + bmφm
x = ãmφ̇m+1

y − cyφm+1
y,x + b̃mφm+1

x (16)

withm = 0, . . . ,P − 1, on �I , �E ,

Here, cx and cy are some chosen wave speeds. In general, various combinations of cx
and cy are possible in terms of cL and cT ; however, coefficients that do not satisfy cx = cy
lead to an unstable formulation. In all the numerical experiments (section “3”) we took
cx = cy = cL.
Also, in (15) and (16), am, bm, ãm and b̃m are the parameters of the boundary conditions

as defined in the “Computational aspects” section below.
The use of the auxiliary functions φm

i and the corresponding equations (11)–(16) is
motivated by the work of Hagstrom and Warburton [11], who introduced the auxiliary
functions at the truncation boundary for the high-order ABCs. These ABCs have been
shown to have excellent absorbing properties; see, e.g., [21]. In this work, we use (and later
discretize) the φm

i within a small layer, and impose the H-W ABCs on both boundaries of
this layer, employing the DAB construction devised in [13]. This frees us from the need
to eliminate the normal derivatives of the auxiliary variables, which is necessary when the
ABC is used on a single truncation boundary.
To complete the recursive definition, we require the following Lysmer-Kuhlemeyer (LK)

termination condition on �E :

TP
x + ρcLφ̇P

x = (2μ + λ) φP
x,x + λφP

y,y + ρcLφ̇P
x = 0 (17)

TP
y + ρcT φ̇P

y = μ
(
φP
x,y + φP

y,x

)
+ ρcT φ̇P

y = 0. (18)

Figure 2 illustrates the “ladder” structure of the DAB scheme, namely the flow of
information on the two boundaries bounding the DAB layer.

Figure 2 The “ladder” structure of the DAB, showing the flow of information on the two boundaries
bounding the layer.
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Layered media

In addition to the homogeneous scheme described in the previous subsections, we also
consider the case of layered media with different material properties in the different lay-
ers. The layers are assumed to be perpendicular to the absorbing boundary. The jump
conditions at the interfaces between the different layers for the case of the wave equation
were given in [16]. For the elastic case, a procedure similar to the one described in that
paper leads to the following jump conditions:

�φm
x � = 0; �φm

y � = 0 (19)

�Tm
x � = �σm

yx� = 0; �Tm
y � = �σm

yy� = 0. (20)

Here �·� denoted a jump across the interface between two layers.
By dividing the expression for the recursive relation (15) by a(n)

m , where the superscript
(n) indicates the n-th layer, and denoting c = cx = cy, we obtain for each layer n:

φ̇m
i + c(n)

a(n)
m

φm
i,x + b(n)

m

a(n)
m

φm
i = ã(n)

m

a(n)
m

φ̇m+1
i − c(n)

a(n)
m

φm+1
i,x + b̃(n)

m

a(n)
m

φm+1
i (21)

withm = 0, . . . ,P − 1; i = x, y, on �I , �E .

Since the auxiliary variables φm
i and their derivatives in the x direction and in time are

continuous across the layers, we will require that the ratios c(n)
x
a(n)
m
, b(n)

m
a(n)
m
, ã(n)

m
a(n)
m

and b̃(n)
m

a(n)
m

also be
continuous across the layers, namely that they do not depend on n. Thus if we denote by
∗ some reference value of the corresponding parameter, by requiring that

c(n)

a(n)
m

= c∗

a∗
m
;

b(n)
m

a(n)
m

= b∗
m

a∗
m
;

ã(n)
m

a(n)
m

= ã∗
m

a∗
m
;

b̃(n)
m

a(n)
m

= b̃∗
m

a∗
m
, (22)

all the recursive relations (21) for the different layers can be replaced by the following
recursive relation written out for a reference layer:

φ̇m
i + c∗

a∗
m

φm
i,x + b∗

m
a∗
m

φm
i = ã∗

m
a∗
m

φ̇m+1
i − c∗

a∗
m

φm+1
i,x + b̃∗

m
a∗
m

φm+1
i (23)

withm = 0, . . . ,P − 1; i = x, on �I , �E .

Now, when we consider the termination conditions for the different layers, we take into
account that

σm
xy = Tm

y |�E = Tm
x |interface between the layers . (24)

Therefore, on the interface between the layers we obtain from the second termination
condition (18) that:

TP
x + ρc(n)

T φ̇P
y = 0, (25)

which cannot hold since TP
x , φ̇P

y are continuous, while ρc(n)
T is not. However, in prac-

tice, any positive wave speed can be substituted for cT in (18) without loss of stability.
The slightly reduced accuracy that is caused by this modification will be compensated
for by the recursive relations. Thus, in the case of layered media we take the following
termination conditions:

TP
x + ρc∗Lφ̇P

x = 0 (26)

TP
y + ρc∗T φ̇P

y = 0. (27)
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Eqs. (23), (26) and (27) constitute the modified DAB formulation for the case of layered
media. The spatial discretization in this case is carried out in the same manner as for
the homogeneous medium, using the starred parameters a∗

m, ã∗
m, b∗

m, b̃∗
m, c∗, c∗L, c∗T which

pertain to a chosen reference layer.

Finite elements: variational formulation

The strong form of the DAB scheme consists of the elastic Eqs. (1) in � and (11) in �L,
the initial conditions (9), (10) in � and (12) in �L, the periodic boundary conditions (5),
(6) and (13), (14) on �S and �N , the boundary conditions (7) and (8), and the recursive
boundary relations (15) and (16) on �I and �E , with the termination conditions (17) and
(18) on �E .
To derive the weak form, we first define the following function spaces:

S =
{
u ≡ {ui}

∣∣∣ {ui} ∈ H1(�),ui(�S) = ui(�N ),ui(�W ) = 0
}

(28)

SL =
{
φm ≡ {φm

i }
∣∣∣ {φm

i } ∈ H1(�L),φm
i (�S) = φm

i (�N ),m = 1, . . .P
}

(29)

We multiply Eq. 1 by a weight function w0 ∈ S and Eqs. (11) by the weight functions
wm ∈ SL,m = 1, . . . ,P, and integrate the terms that include Cijkl by parts to obtain∫

�

w0
i ρui,tt d� + AM

∫
�

w0
i ρui,t d�

+
∫

�

w0
i,jCijkluk,l d� + AK

∫
�

w0
i,jCijklu̇k,l d� + B0

E =
∫

�

w0
i fi d� (30)∫

�L
wm
i ρφm

i,tt d� + AM

∫
�L

wm
i ρφm

i,t d�

+
∫

�L
wm
i,jCijklφ

m
k,l d� + AK

∫
�L

wm
i,jCijklφ̇

m
k,l d� + Bm

I + Bm
E = 0,

m = 1, . . . ,P, (31)

where we have

Bm
I = −

∫
�I

[
wm
x T

m
x + wm

y T
m
y

]
d� (32)

Bm
E = −

∫
�E

[
wm
x T

m
x + wm

y T
m
y

]
d�. (33)

We rewrite the recursive relations (15) and (16) in the following form:
On the boundary �I :

φm
x,x = 1

cx
(
ãm−1φ̇

m
x − am−1φ̇

m−1
x

) + 1
cx

(
b̃m−1φ

m
x − bm−1φ

m−1
x

)
− φm−1

x,x (34)

φm
y,x = 1

cy

(
ãm−1φ̇

m
y − am−1φ̇

m−1
y

)
+ 1

cy

(
b̃m−1φ

m
y − bm−1φ

m−1
y

)
− φm−1

y,x (35)

m = 1, . . . ,P, on �I

On the boundary �E :

φm
x,x = 1

cx
(
ãmφ̇m+1

x − amφ̇m
x

) + 1
cx

(
b̃mφm+1

x − bmφm
x

)
− φm+1

x,x (36)

φm
y,x = 1

cy

(
ãmφ̇m+1

y − amφ̇m
y

)
+ 1

cy

(
b̃mφm+1

y − bmφm
y

)
− φm+1

y,x (37)

m = 0, . . . ,P − 1, on �E
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and (17) and (18) serve as the termination conditions:

TP
x = −ρcLφ̇P

x (38)

TP
y = −ρcT φ̇P

y , on�E , (39)

in which case, by substituting (34)–(37) in the terms Bm
E , B

m
I in (32) and (33), these terms

become:

Bm
I =

∫
�I
wm
x

[
(2μ + λ)φm

x,x + λφm
y,y

]
d� +

∫
�I
wm
y

[
μφm

x,y + μφm
y,x

]
d�

=
∫

�I
wm
x

[
2μ + λ

cx
ãm−1φ̇

m
x − 2μ + λ

cx
am−1φ̇

m−1
x + 2μ + λ

cx
b̃m−1φ

m
x − 2μ + λ

cx
bm−1φ

m−1
x

−(2μ + λ)φm−1
x,x + λφm

y,y

]
d�+∫

�I
wm
y

[
μ

cy
ãm−1φ̇

m
y − μ

cy
am−1φ̇

m−1
y + μ

cy
b̃m−1φ

m
y − μ

cy
bm−1φ

m−1
y − μφm−1

y,x + μφm
x,y

]
d�,

m = 1, . . . ,P on �I

(40)

Bm
E = −

∫
�E

wm
x

[
(2μ + λ)φm

x,x + λφm
y,y

]
d� −

∫
�E

wm
y

[
μφm

x,y + μφm
y,x

]
d� =

−
∫

�E

wm
x

[
2μ + λ

cx
ãmφ̇m+1

x − 2μ + λ

cx
amφ̇m

x + 2μ + λ

cx
b̃mφm+1

x − 2μ + λ

cx
bmφm

x

−(2μ + λ)φm+1
x,x + λφm

y,y

]
d�

−
∫

�E

wm
y

[
μ

cy
ãmφ̇m+1

y − μ

cy
amφ̇m

y + μ

cy
b̃mφm+1

y − μ

cy
bmφm

y − μφm+1
y,x + μφm

x,y

]
d�,

m = 0, . . . ,P − 1 on �E

(41)

and (38) and (39) are substituted directly into (33), withm = P:

BP
E =

∫
�E

wP
xρcLφ̇P

x d� +
∫

�E

wP
yρcT φ̇P

y d� on �E , (42)

Here and elsewhere, the x-derivatives on the boundaries �I ,�E are calculated in a
one-sided manner everywhere, except for the derivatives φ0

x,x and φ0
y,x on �I , which are

calculated as the average of the derivative in the elements adjacent to this boundary from
the left and from the right.
Thus the weak form is: find u ≡ {ui} ∈ S(�) and φm ≡ {φm

i } ∈ SL(�L), m = 1, . . . ,P,
which satisfy the initial conditions (9), (10) in � and (12) in �L, and satisfy (30) and (31)
for all w0 ≡ {wi} ∈ S(�) and all wm ≡ {wm

i } ∈ SL(�L),m = 1, . . . ,P.

Semi-discrete form

We discretize the weak form described in the previous subsection in space using the stan-
dard Galerkin FE method. At the global level, the variables ui in � and φm

i in �L are
replaced by their finite-dimensional approximations

uhi (x, t) =
∑
A∈ηi

d0hAi (t)NA(x), x ∈ �, i = x, y (43)

φmh
i (x, t) =

∑
A∈ηLi

dmh
Ai (t)NA(x), x ∈ �L, i = x, y, m = 1, . . . ,P (44)
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Here h is the mesh parameter,A stands for the global node number, ηi is the set of nodes
in � on which there is no essential boundary condition prescribed on the displacement
in the i direction, ηLi is the set of nodes in �L on which there are no essential boundary
conditions prescribed on the displacement in the i direction, NA is the global-level shape
function associated with the variables ui in � and node A, or with the variables φm

i in �L
and node A. We use identical bilinear shape functions for the discretization of ui and for
the discretization of all the φM

i .
At the element level the analogous expansion is:

uei (x, t) =
Nen∑
a=1

d0eai (t)Na (x) , x ∈ �e, i = x, y (45)

φme
i (x, t) =

Nen∑
a=1

dme
ai (t)Na(x), x ∈ �e, i = x, y, m = 1, . . . ,P (46)

Here e stands for an element number, Nen is the number of element nodes, a stands for
the local element node number, �e is the domain of element e, Na is the element-level
displacement shape function associated with the node a, the quantities dme

ai ,m = 0, . . . ,P
are the values of uei and φme

i at node a of element e. We also write global expressions simi-
lar to (43) and (44) for the test functions wmh

i ,m = 0, . . . ,P and element level expressions
similar to (45) and (46) for the element-level test functions wme

i ,m = 0, . . . ,P.
Substitution of the approximations (43) and (44) into the weak Eqs. 34–(42) yields a

system of ordinary differential equations in time, of the form:

M11
0 d̈x + C11

0 ḋx + C12
0 ḋy + k110 dx + k120 dy + G11

0 φ̇x
1 + H11

0 φx
1 = f x (47)

M22
0 d̈y + C12

0 ḋx + C22
0 ḋy + k210 dx + k220 dy + G22

0 φ̇
y
1 + H22

0 φ
y
1 = f y (48)

Form = 1, . . . ,P − 1

M11
m φ̈x

m + C11
m φ̇x

m + C12
m φ̇

y
m + k11m φx

m + k12m φ
y
m + A11

m φ̇x
m−1 + B11

m φx
m−1

+ G11
m φ̇x

m+1 + H11
m φx

m+1 = 0 (49)

M22
m φ̈

y
m + C12

m φ̇x
m + C22

m φ̇
y
m + k21m φx

m + k22m φ
y
m + A22

m φ̇
y
m−1 + B22

m φ
y
m−1

+ G22
m φ̇

y
m+1 + H22

m φ
y
m+1 = 0 (50)

and also:

M11
P φ̈x

P + C11
P φ̇x

P + C12
P φ̇

y
P + k11P φx

P + k12P φ
y
P + A11

P φ̇x
P−1 + B11

P φx
P−1 = 0 (51)

M22
P φ̈

y
P + C12

P φ̇x
P + C22

P φ̇
y
P + k21P φx

P + k22P φ
y
P + A22

P φ̇
y
P−1 + B22

P φ
y
P−1 = 0 (52)

with the initial conditions

di(t = 0) = di
0; ḋi

(t = 0) = vi0; i = x, y (53)

φi
m(t = 0) = 0; φ̇i

m(t = 0) = 0; i = x, y, m = 1, . . . ,P (54)

Here di and φi
m are the vectors whose entries are the unknown nodal values of ui in �

and of φi
m in �L, respectively; a dot indicates differentiation with respect to time.

The element level expressions may be extracted from (34)–(42). The first (mass) and
second (stiffness) terms in each of (30) and (31) contribute to the global mass and stiffness
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matrices respectively via the following arrays at the element level (we denote these arrays
by the superscript OM):

MOM11e
0ab = ρ

∫
�e

NaNbd� (55)

MOM22e
0ab = ρ

∫
�e

NaNbd� (56)

COM11e
0ab = AMρ

∫
�e

NaNbd� + AK (2μ + λ)

∫
�e

Na,xNb,xd� + AKμ

∫
�e

Na,yNb,yd�

(57)

COM22e
0ab = AMρ

∫
�e

NaNbd� + AK (2μ + λ)

∫
�e

Na,yNb,yd� + AKμ

∫
�e

Na,xNb,xd�

(58)

COM12e
0ab = AKμ

∫
�e

Na,yNb,xd� + AKλ

∫
�e

Na,xNb,yd� (59)

COM21e
0ab = AKμ

∫
�e

Na,xNb,yd� + AKλ

∫
�e

Na,yNb,xd� (60)

KOM11e
0ab = (2μ + λ)

∫
�e

Na,xNb,xd� + μ

∫
�e

Na,yNb,yd� (61)

KOM22e
0ab = (2μ + λ)

∫
�e

Na,yNb,yd� + μ

∫
�e

Na,xNb,xd� (62)

KOM12e
0ab = μ

∫
�e

Na,yNb,xd� + λ

∫
�e

Na,xNb,yd� (63)

KOM21e
0ab = μ

∫
�e

Na,xNb,yd� + λ

∫
�e

Na,yNb,xd� (64)

The arrays of this form, with the first subscript taken as 0, correspond to the first and
second terms in (30). The expressions corresponding to the first and second terms in (31)
are similar, except that the integration takes place in an element in �I rather than in �

and that the first subscript ofM and K is taken asm instead of 0 (m = 1, . . . ,P).
The contribution from the Bm

I term (denoted by the superscript BI) to the damping
matrices is (m = 1, . . . ,P) is:

CBI11e
mab = 2μ + λ

cx
ãm−1

∫
�I
NaNbd� (65)

ABI11e
mab = −2μ + λ

cx
am−1

∫
�I
NaNbd� (66)

CBI22e
mab = μ

cy
ãm−1

∫
�I
NaNbd� (67)

ABI22e
mab = − μ

cy
am−1

∫
�I
NaNbd�, (68)

The contribution from the Bm
I term to the stiffness matrixes is:

KBI11e
mab = 2μ + λ

cx
b̃m−1

∫
�I
NaNbd� (69)

BBI11e
mab = −2μ + λ

cx
bm−1

∫
�I
NaNb,xd� − (2μ + λ)

∫
�I
NaNb,xd� (70)

KBI12e
mab = λ

∫
�I
NaNb,yd� (71)

KBI21e
mab = μ

∫
�I
NaNb,yd� (72)
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KBI22e
mab = μ

cy
b̃m−1

∫
e
NaNbd� (73)

BBI22e
mab = − μ

cy
bm−1

∫
e
NaNbd� − μ

∫
�I
NaNb,xd�, (74)

Similarly, the contribution from the Bm
E term (denoted by the superscript BE) to the

damping matrices is (m = 0, . . . ,P − 1):

GBE11e
mab = −2μ + λ

cx
ãm

∫
�E

NaNbd� (75)

CBE11e
mab = 2μ + λ

cx
am

∫
�E

NaNbd� (76)

GBE22e
mab = − μ

cy
ãm

∫
�E

NaNbd� (77)

CBE22e
mab = μ

cy
am

∫
�E

NaNbd�, (78)

and with the LK termination:

CBE11e
Pab = ρcL

∫
�E

NaNbd� (79)

CBE22e
Pab = ρcT

∫
�E

NaNbd�, (80)

The contribution from the Bm
E term to the stiffness matrix is:

KBE11e
mab = 2μ + λ

cx
bm

∫
�E

NaNbd� (81)

HBE11e
mab = −2μ + λ

cx
b̃m

∫
�E

NaNbd� + (2μ + λ)

∫
�E

NaNb,xd� (82)

KBE12e
mab = −λ

∫
�E

NaNb,yd� (83)

KBE21e
mab = −μ

∫
�E

NaNb,yd� (84)

HBE22e
mab = − μ

cy
b̃m

∫
�E

NaNbd� + μ

∫
�E

NaNb,xd� (85)

KBE22e
mab = μ

cy
bm

∫
�E

NaNbd�. (86)

The different contributions (denoted OM, BI and BE) to the matrices M, C, k, A, B,
G and H are summed, and the resulting matrices are assembled by the standards FE
assembly method, to form the system (47)–(54).

Computational aspects

Parameters of the absorbing condition

The parameters am, bm, ãm and b̃m in the recursive relations (15) and (16) are defined in
a manner equivalent to their definition in the case of an absorbing boundary condition
for elasticity defined on a single boundary (see for example [21]). Based on the analysis
presented there we have:

aj = cos θj, bj = sin2 θj

T cos θj
, ãj = cos θ̃j, b̃j = sin2 θ̃j

T cos θ̃j
. (87)
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where T is the time period of interest and the “angles of incidence” θj and θ̃j control the
accuracy and stability of the particular double absorbing boundary. In previous studies
we have used optimized parameter values (see, e.g., [14,21]), which enabled the control of
both propagating and evanescent modes, and yielded excellent accuracy. In the numerical
experiments described below we restrict ourselves to the case θj = θ̃j = 0, which is the
simplest possible set of parameters.
In the present scheme, using optimized parameters, which include small values of θj,

gave rise to some instability difficulties.

Discretization in time

The system (47)–(52) was solved using a fully implicit Newmark method, where all the
degrees of freedom were obtained at once in each time step: ui in � and all the aux-
iliary variables in �L. The standard second-order implicit scheme with β = 0.25 and
γ = 0.5 turned out to be unstable for this problem. Therefore, the procedure carried
out in the acoustic case [13] was repeated here: we modify the Newmark parameters
to be βL = 0.36, γL = 0.7 inside the layer and along an additional row of elements
in �I which is adjacent to �I (in this row of elements we calculate the derivative ui,x
and use it in calculations performed in the layer). Throughout the rest of the domain
�I , we take βL = 0.25, γL = 0.5. The damped Newmark scheme is of first-order
accuracy; however, this fact is not of much concern, since the layer may be regarded
as a purely numerical construction, while in the region of interest the scheme has
second-order accuracy in time. In theory, it is possible that the reduced accuracy could
affect the reflection coefficient of the DAB, although no such effect has been observed
in [13].

Stability

The stability of each of the examples described herein was investigated by two methods.
The first, direct method consisted of running the scheme for very long periods of time
(typically 500,000 time steps) and observing the behavior of the displacement at a point
located inside the solution domain �. When the solution grew larger than a predefined
value (typically 1), the solution was noted as unstable. This method gives an immedi-
ate indication of instability; however, it may judge a method to be stable when in fact
divergence might occur at very large times (larger than 500,000 time steps).
We therefore used another method to determine stability, by solving an associated

eigenvalue problem. In this regard, we have two options: to investigate the stability either
of the semi-discrete problem (i.e., after FE discretization and before time discretization),
or of the fully-discrete problem. The fully discrete problem is, of course, the problem that
we actually solve and therefore its stability is crucial, but it is also of interest to investigate
the stability of the semi-discrete problem.
We start by considering the semi-discrete problem. We rewrite the system (47)–(52) as

a general second order system:

M̂ü + Ĉu̇ + K̂u = f̂ (88)

where M̂ is the global mass matrix consisting of M11
m and M22

m , Ĉ is the global damp-
ing matrix consisting of C11

m ,C22
m ,A11

m ,A22
m ,G11

m and G22
m , and K̂ is the global stiffness

matrix consisting of K11
m , K12

m , K21
m , K22

m , B11
m , B22

m , H11
m and H22

m . The stability of this
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semi-discrete system is determined from the solution of the corresponding quadratic
eigenvalue problem(


2M̂ + 
Ĉ + K̂
)
u = 0 (89)

where stability is established if all the eigenvalues 
 satisfy Re(
) ≤ 0.
Now we consider the fully-discrete scheme. The fully discrete form of (88) is given in

[31]:

M∗ = M̂ + γ�tĈ + β�t2K̂ (90)

C∗ = −2M̂ + (1 − 2γ )�tĈ + (1/2 − 2β + γ )�t2K̂ (91)

K∗ = M̂ − (1 − γ )�tĈ + (1/2 + β − γ )�t2K̂ (92)

M∗un+1 + C∗un + K∗un−1 + �t2f ∗
n = 0 (93)

where un is the value of u at time step n, and f ∗
n is some expression for the external force

vector at time step n. In this case we solve the eigenvalue problem
(

∗2M∗ + 
∗C∗ + K∗)u = 0 (94)

and require for stability that all the eigenvalues 
∗ satisfy |
∗| ≤ 1.
Our analysis based on (89) and (94), and our numerical experiments, yielded the fol-

lowing results for the DAB scheme described above. The semi-discrete formulation is
long-time unstable, namely there are eigenvalues of (89) with a (small) positive real part.
However, the fully-discrete problem is stable; this is obtained by both running the scheme
for long times and through the eigenvalue analysis of (94). These facts give us a view of the
stability properties of DAB at the various levels. At the continuous level, DAB for elasto-
dynamics is believed to be stable. In [14] a well-posedness proof was provided for the DAB
scheme, albeit for the acoustic problem, and in [20] stability was proved for an elastody-
namics formulation using the same high-order ABC that the DAB in the present paper
is based on. Since, as noted above, the semi-discrete problem is found to be unstable,
we conclude that the FE formulation destabilizes the DAB scheme. Luckily, the dissipa-
tive time discretization that we employ regains stability. Of course, it would have been
better to find a FE formulation that would maintain the stability of the continuous DAB
formulation.
Achieving robust stability is still an issue for the present scheme. Unfortunately, the

scheme loses its long-time stability when either of the following changes is applied:
(a) replacing of the periodic boundary conditions on the north and south boundaries
by traction-free conditions; (b) using non-zero (but not too large) coefficients for the
low-order terms in order to capture efficiently evanescent waves; (c) using small compu-
tational parameter values a∗

m and/or b∗
m, such as the optimal or quasi-optimal parameter

values proposed in [14]; (d) taking much softer material parameters, i.e., much slower
medium wave speeds. All these instabilities occur in a homogeneous elastic medium as
well as in a layered one, but do not occur in the acoustic case. Research is underway to
overcome these difficulties.

Accuracy

In order to measure the accuracy of the DAB method in the elastic setting, the solu-
tion in the truncated waveguide was compared to a reference solution uh,ref , which
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was constructed in such a manner that the waves generated in �I do not encounter a
truncation boundary at xE . This was done in one of two ways:

(a) We solve the same problem in a waveguide in which the truncation boundary is
located much farther from the source of the wave, so that waves reflected from the far
truncation boundary do not reach back to x = xE during the simulation. Thus, the
difference between the solution uh computed in � and the reference solution uh,ref is
approximately the DAB error.
(b) If extending the waveguide significantly is computationally prohibitive (as in the case
of the numerical example of the thin layer given below), one can extend the waveguide
only slightly, and apply a high order version of the DABmethod at the end of the extended
domain. In such a case there will be reflections from the truncated boundary in the
extended waveguide that will penetrate to the left of xE , but such reflections will be small,
and the obtained difference between uh computed in � and the reference solution uh,ref

will be an upper bound of the approximate DAB error.

We thus define the error measure

E =
∥∥uh − uh,ref

∥∥
�I×[0,T]∥∥uh,ref ∥∥

�I×[0,T]
, (95)

where ‖ · ‖M is the l2 norm calculated on the manifoldM, and T is the simulation time.
Note that the errors are measured outside of �L. In one case we shall also consider the
evolution of the relative error in time, to which end we define

(t) =
∥∥uh − uh,ref

∥∥
�I

(t)√
A (�I)

, (96)

where A(�I) is the area of the domain �I .
In all of the numerical examples presented in Section “3”, the reference solution was cal-

culated using method (b) outlined above. In the case of a homogeneous medium we also
calculated the reference solution using method (a), thus satisfying ourselves that method
(b) is indeed a legitimate method for error estimation.

Results and discussion
Initial pulse in a homogeneous medium

The discrete DAB scheme was tested on a numerical example of a waveguide with b = 3,
xI = 10. The mesh of the solved problem was composed of 60 × 200 square elements,
with nL elements across the width of �L, where the side length of each square element
was h = 0.05. Since the DAB layer extended nL elements beyond xE , the total length of the
waveguide varied according to xE = xI +h ·nL. We take λ = 1, μ = 1 (which corresponds
to Poisson’s ratio ν = 0.25), and ρ = 1. The time step is taken as �t = 0.005.
The C1-continuous initial conditions used in the all the test runs (unless specified

otherwise) of the first example problem were

ux0(x, y) =
⎧⎨
⎩

[
(x − 8.5)2 − 1

]2 sin (
2πy
b

)
for 7.5 � x � 9.5

0 otherwise
(97)

uy0(x, y) = 0 (98)
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vx0(x, y) = 0 (99)

vy0(x, y) = 0. (100)

The DAB scheme was tested for accuracy by running the scheme for different values of
P and nL, and comparing the results to a waveguide 2.5 times longer than xE . The results
without damping (ξ = 0) are shown in Figures 3 and 4 for two discretization densities:
the one mentioned above (Figure 4) and one which is twice coarser in space and time
(Figure 3).
As can be seen from the accuracy plots, the high-order DAB acts as an accurate

absorbing boundary, reducing the L2 error in time and space as P increases, up to the dis-
cretization level. With P = 0, which amounts to the use of the LK condition on �E , the
error is large (around 20%), but with P = 6 the error is reduced by an order of magnitude.
The error also decreases as nL is increased.
The cause for the dependence of the error on nL is the presence of evanescent modes

in the model, which are uncontrolled due to our simple choice of the parameters
θj = ~θj = 0.
Let us compare the error curves corresponding to nL = 2, 4, 6 in Figure 3 (the coarse-

mesh results) to the error curves corresponding to nL = 4, 8, 12 in Figure 4 (the fine-
mesh results), respectively. The three pairs of values of nL correspond to the same DAB
thickness (in terms of physical distance), since the elements of the coarse mesh are twice
as large as those of the fine mesh (the h ratio is 2). The error curves behave similarly in
terms of reduction with P, except that the errors corresponding to the fine mesh are much
smaller. For example, for large P and for the thickest DAB, the coarse-mesh model yields
an error of about 7 · 10−3 whereas the fine-mesh model yields an error of about 2 · 10−3.
The reduction factor of 3.5 is a bit smaller than the theoretical reduction factor of 4 of the
discretization error (expected from the second-order accuracy in space and time). What
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Figure 3 Initial pulse in a homogeneous medium, no Rayleigh damping, discretization with h = 0.1 and
�t = 0.01: error E as a function of the DAB order P, for different values of the DAB thickness.
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Figure 4 Initial pulse in a homogeneous medium, no Rayleigh damping, discretization with h = 0.05 and
�t = 0.005: error E as a function of the DAB order P, for different values of the DAB thickness.

the theory does not take into account is the discretization error associated with the DAB
equations themselves, which apparently contributes slightly to the total error.
One may wonder why the error “saturates” at a certain level for large values of P, rather

than approaching zero as P → ∞; after all, the reference solution uses the same mesh
density and time-step size as the solution in �. The explanation is as follows. One should
distinguish between three different exact ABCs associated with P → ∞: (a) the exact
ABC at the continuous level, denoted Bu = 0; (b) the ABC obtained by discretizing the
continuous exact ABC, denoted Bhuh = 0; and (c) the exact ABC at the discrete level,
denoted Ghuh = 0. It should be noted that Bh and Gh are not the same. In other words,
taking the exact ABC at the continuous level and discretizing it is not the same as taking
the exact ABC at the discrete level. The reference solution is equivalent to a solution of
the truncated problem with the ABC Ghuh = 0. On the other hand, when we use our
numerical scheme and take P → ∞, our solution satisfies Bhuh = 0. The difference
between the two solutions is of the order of the discretization error.
This was confirmed by a direct calculation in [16].
Therefore, as we increase P, we cannot go much below the discretization error. This

explains why the error “saturates” in the error graph of Figure 4 and all the subsequent
figures.
Next we investigate the effect of damping on the accuracy of the method. Damping

coefficients AK and AM that are characteristic of soil need to be selected. We select values
for these coefficients from the literature, specifically in the range of values suggested for
soils in [32]. We compare the magnitude of the solution vector at a point in the middle
of �I with and without mass-proportional and stiffness-proportional damping for nL = 4
and P = 10 as shown in Figure 5. It is clear that the added damping reduces somewhat
the magnitude of the solution, and smooths out its oscillations; the larger the damping
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Figure 5 Initial pulse in a homogeneous medium, with Rayleigh damping: |u| at a single point for various
values of the damping parameters.

the smaller the oscillations. However, the small stiffness-proportional coefficientAK from
the range of values specified in [32] has only a small effect on the solution for relatively
short times.
In Figure 6 we show the accuracy of the absorbing boundary for the damped case for

nL = 4 for different values of P. The damping reduces somewhat the error of the DAB
scheme, although for the suggested values of the damping the reduction is small. For
large values of P the stiffness-proportional damping increases the error somewhat when
compared to the error of the scheme without stiffness-proportional damping and with
the same mass-proportional damping.
In the sequel we examine other problems, in whichwe shall only consider the undamped

case, i.e., with AM = 0, AK = 0.

Initial pulse in a two-layer medium

In this example we use an overall geometry, initial and boundary conditions that are
similar to the ones used in the first example. In the present case, however, the medium
is divided into two horizontal layers with different material properties. The interface
between the layers is the line y = b/2 = 1.5. In the upper layer (y > 1.5), which we denote
medium 1, we set λ1 = 1 and μ1 = 1. In the lower layer (y < 1.5), which we denote
medium 2, we set λ2 = 1, while the value of μ2 will vary in the following experiments.
We take ρ = 1 everywhere. The procedure was carried out both for the solved waveguide
and for the reference waveguide.
Snapshots comparing the solution at various times to the solution in the reference

waveguide for μ2 = 0.75, P = 10 and nL = 4 are shown in Figure 7. Each snap-
shot consists of two subplots: the upper one depicts the reference solution uh,refi over
the extended domain, and the lower one is the computed solution uhi in the truncated
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Figure 6 Initial pulse in a homogeneous medium, with Rayleigh damping: error E as a function of the DAB
order P, for different values of the damping parameters, with nL = 4.

domain. The x component of the solutions is shown in the left column and the y com-
ponent is shown in the right column. The DAB layer is indicated by showing the vertical
boundary �I .
The snapshots show good agreement between the reference and the actual solutions.

The obtained accuracy in this case is illustrated better by the error plot given in Figure 8.
It can be seen that the behavior of the error in this case does not differ much from the
behavior in the homogeneous case.
In Figures 9 and 10 we show the error as a function of P for different values of the μ2

parameter for nL = 4 and nL = 12, respectively. It can be seen that the presence of two
layers with different material properties in the domain does not change the DAB error
drastically when we follow the guidelines outlined in the section “Layered media” for the
selection of the appropriate constants in the definition of the boundary condition. For
large value of P, the error is larger in the case where the material properties of the two
layers differ significantly, namely the case μ2/μ1 = 3, than in the other cases. We also
note that by enlarging the DAB layer from nL = 4 to nL = 12, the accuracy is improved,
since some of the evanescent waves are better represented.

Persistent couple

We consider a problem involving the same waveguide and the same mesh as in the pre-
vious examples b = 3, xI = 10, with homogeneous material properties λ = 1, μ = 1,
but where instead of initial conditions driving the solution, we impose the following two
persistent point forces F1 and F2 inside �I :

F1(x = 9.5, y = 1, t) = (1, 0) (101)

F2(x = 9.5, y = 2, t) = (−1, 0), (102)
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Figure 7 Pulse propagation in a two-layer medium, snapshots of solution: (a)–(b) ux and uy at t = 0; (c)–(d)
ux and uy at t = 2; (e)–(f) ux and uy at t = 4; (g)–(h) ux and uy at t = 10.

thus a couple is imposed inside the waveguide, near �I . The plot of the space-time error
as a function of the DAB order P is shown in Figure 11 for different values of nL.
It can be seen from the plot that the present problem is in a certain sense more difficult

than the problem with the initial driving pulse, as the error lines drop sharply only after
P = 4 in this case, and the error level to which the graphs reach for large P is somewhat
higher than in the case of the initial pulse. Nevertheless, a decrease of almost two orders
of magnitude in the error is obtained for all values of nL.
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Figure 8 Two-layer medium, μ2 = 0.75: error E as a function of the DAB order P, for different values of the
DAB thickness.

Three layers

In the last example we consider a setup of a uniformmedium through which passes a thin
horizontal layer made from a different material. We consider a domain with a width of
9 and a length of 2.5 plus a DAB layer. The mesh is composed of square elements with
the side length of 0.05. We apply a DAB layer with a thickness of 4 elements. The thin
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Figure 9 Two layer medium: error E as a function of the DAB order P, for different values of the material
properties, with nL = 4.



Rabinovich et al. AdvancedModeling and Simulation in Engineering Sciences  (2015) 2:3 Page 23 of 27

Figure 10 Same as Figure 9, with nL = 12.

horizontal layer is located at 4 < y < 5. As before, we apply periodic boundary conditions
on �S and �N .
We define r = √

(x − 0.5)2 + (y − 3.5)2, a = 0.3, and introduce the following source
function:

ux(x, y, t = 0) =
⎧⎨
⎩ 2

( r
a

)3 − 3
( r
a

)2 + 1 for 0 � r � a

0 otherwise
(103)

uy(x, y, t = 0) = 0. (104)

In the thin layer, we set λ = μ = 1, whereas in the surroundingmedia we set λ = μ = 2.
For this problem, Figure 12 shows the L2 spatial error as a function of time, e(t), for three

0 2 4 6 8 10 12
10

−3

10
−2

10
−1

10
0

P

E

n
L
=2

n
L
=4

n
L
=8

n
L
=12

Figure 11 Persistent couple problem: error E as a function of the DAB order P, for different values of the DAB
thickness.
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Figure 12 Three layer problem: error e(t) for three values of DAB order P.

values of P. It is apparent that the LK ABC (which corresponds to P = 0) yields a large
error in this case. The DAB error converges very quickly with P to an error significantly
smaller.
In Figure 13 we compare three solutions. We fix the Poisson’s ratio at ν = 0.25 by

taking λ = μ in all the phases. In all cases the background medium has the properties
λ = μ = 2. The left subplots correspond to a thin layer with λ = μ = 1, the middle
subplots correspond to a thin layer with λ = μ = 2, i.e., a homogeneous medium, and
the right subplot correspond to a thin layer with λ = μ = 4. We take ρ = 1 everywhere.
This creates a hierarchy for the wave velocities cL and cT : in the layer with λ = μ = 1
(left subplots) these velocities are smaller by a factor of

√
2 than those in the surrounding

regions, while in the layer with λ = μ = 4 (right subplots) they are larger by a factor of√
2 than the velocities in the surrounding regions. Since the wave source is located below

the thin layer, the latter serves as a wave decelerator or accelerator, as the case may be.
This effect is clearly apparent in the figure; see, e.g., Figure 13(e).
The solution is non-symmetric despite the periodic boundary conditions, since the

wave source is not centrally located but lies slightly below the horizontal layer. The solu-
tion in the heterogeneous media is characterized by much more reverberation. No clear
spurious reflection of waves is observed. It should be remarked that each plot has its own
scaled color map; therefore wave intensities cannot be compared between subplots in this
figure.
The errors corresponding to these solutions (not shown here), with respect to a ref-

erence solution obtained with a longer domain, have the same characteristics as those
shown in the previous examples.

Conclusions
In this paper the Double Absorbing Boundary (DAB) method for solving unbounded
domain problems was applied to elastodynamics problems, in conjunction with the FE
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Figure 13 A three-layer medium, snapshots of solution. Solutions in three media are compared, where
Poisson’s ratio is held fixed at ν = 0.25 in all the phases. In all cases the background medium has the
properties λ = μ = 2. The left subplots correspond to a thin layer with λ = μ = 1, the middle subplots
correspond to a thin layer with λ = μ = 2, i.e., a homogeneous medium, and the right subplot correspond
to a thin layer with λ = μ = 4. Shown are snapshots of: (a) ux at t = 0; (b) uy at t = 0; (c) ux at t = 1; (d) uy
at t = 1; (e) ux at t = 2; (f) uy at t = 2; (g) ux at t = 3; (h) uy at t = 3; (i) ux at t = 4; (j) uy at t = 4; (k) ux at
t = 5; (l) uy at t = 5.
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method. This method shares some of the properties of using a high-order ABC on a single
boundary and of PML, but has some relative advantages with respect to both.
Several important extensions will be considered in our future work. Three of them are:

• Some stability issues still need to be resolved. In particular, when the periodic
boundary conditions used in this paper were replaced by some physical conditions,
like traction-free conditions, numerical stability was lost. It seems that this difficulty,
which is currently under investigation, is not associated with the original DAB
formulation, at the continuous level, but with the semi-discrete formulation.

• The behavior of DAB in the presence of corners joining two straight artificial
boundaries will be investigated. The use of DAB on a boundary with corners is
expected to be as straight forward as the case with PML (roughly speaking, a “cross
product” of the x and y formulations), and thus to be free of the difficulties associated
with high order ABCs on a single boundary in the presence of corners.

• Extension to an anisotropic medium also seems possible, although it would require a
more involved adaptation. It would be especially interesting to see how DAB behaves
in those cases of anisotropy where standard PMLs are unstable.
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