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Abstract

Trajectory planning aims at computing an optimal trajectory through the minimization
of a cost function. This paper considers four different scenarios: (i) the first concerns a
given trajectory on which a cost function is minimized by a acting on the velocity along
it; (ii) the second considers trajectories expressed parametrically, from which an optimal
path and the velocity along it are computed; (iii), the case in which only the departure
and arrival points of the trajectory are known, and the optimal path must be
determined; and finally, (iv) the case involving uncertainty in the environment in which
the trajectory operates. When the considered cost functions are expressed analytically,
the application of Euler–Lagrange equations constitutes an appealing option. However,
in many applications, complex cost functions are learned by using black-box machine
learning techniques, for instance deep neural networks. In such cases, a neural
approach of the trajectory planning becomes an appealing alternative. Different
numerical experiments will serve to illustrate the potential of the proposed
methodologies on some selected use cases.

Keywords: Machine learning, Artificial intelligence, Optimal planning, Trajectory
optimization, Euler–Lagrange equations, Physics informed machine learning

Introduction
Optimal trajectory planning is a topic present in many domains of science, engineering
and technology. To cite a few examples, one has to determine the optimal velocity of an
autonomous car moving along a prescribed path for example, the optimal path of a drone,
or the optimal deposition trajectory in additive manufacturing and 3D printing processes.
In some cases, the trajectory is known, but the optimal conditions when moving along

the pathmust be defined tominimize a given cost function.When addressing autonomous
vehicles, for instance, fuel consumption must be minimized, with direct consequences on
the emission reduction [1,2]. Many works focus on the definition of an adequate cost
function that should reflect a compromise between the energy consumption and the
travel time. Once such a cost function is defined, different techniques exist to determine
the optimal conditions all along the path [3–7]. Even if reinforced learning [8] seems
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particularly well adapted for that purpose [9], the authors proposed recently an alternative
route bymaking use of neural network-based regressions informed by the Euler–Lagrange
equation [10].
The present paper proposes an extension of the just referred work by considering more

general situations in which trajectories could be expressed parametrically, or they will
result from the optimality conditions. It also proposes a valuable framework for addressing
problems involving a noticeable degree of uncertainty or variability. All the resulting
procedures will be deeply discussed.
The optimal planning problem becomesmore tricky when the trajectories are expressed

parametrically, or even more, when the trajectory could, and should, be obtained with the
only knowledge of the departure (at the initial time) and the arrival point (at the expected
arrival time). The situation becomes even more complex when the environmental condi-
tions exhibit unpredictable fluctuations, only expressible in a statistical sense.
All these scenarios can be stated as optimization problems, which have been exten-

sively addressed by using standard numerical optimization techniques. Even if using these
procedures implies a subsequent computational cost, in general, trajectory planning has
traditionally been performed offline, by assuming forecasted environmental conditions
involved in the cost functions. However, engineering applications are moving fast from
offline procedures to online applications. Digital twins are peopling all the domains of
engineering and technology. In real-life operation applications, a digital twin of an agent
or an asset, must react in real-time to any environmental change. for instance the change
of the wind orientation or speed when operating a drone, or the sea current for a ship.
Nowadays, solutions of parametrized physics-based models including environmental

conditions (e.g., temperaturemaps, windmap, currentmap, electromagneticmaps,...) can
be obtained by using the most recent techniques of meta-modeling for the construction
of the associated surrogate models [11–13]. Thus, the environmental conditions evolving
in time can be evaluated globally in almost real-time, and then, optimizations involved in
trajectory planning should perform online, pushing the available standard techniques to
their limits.
It is here that artificial intelligence andmachine learningmethods come into play [14]. In

order to speed-up optimal decisions, reinforcement learning is increasingly considered, as
commented before, in particular for autonomous system applications [9]. However, fully
data-based techniques face many difficulties: (i) accomplishing a proper and complete
training; (ii) the risks when operating outside the training region (out-of-distribution
regime, extrapolation); and (iii) the difficulty of explaining decisions (black-box proce-
dures).
In mechanical engineering, many optimization problems can be efficiently solved by

minimizing a global cost function, that results from the integral of a local cost along a
path. The global cost optimality conditions result in the so-called Euler–Lagrange equa-
tions. Thus, parametric cost functions can lead to parametrized Euler–Lagrange equa-
tions, enabling the construction of parametric optimal trajectories. Such an approach is
extremely valuable for driving an autonomous asset in operation, as discussed later in this
paper.
However, sometimes cost functions are not explicit. Thus, it becomes difficult to operate

with them by applying the Euler–Lagrange equation. For instance, when the cost function
is obtained by testing the asset under several operating scenarios, and then, expressed
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from a deep neural network. In such a case, the Euler–Lagrange equation must be solved
following an unusual procedure, as detailed later in this work. Physics Informed Neural
Networks (PINNs) offer an appealing gateway for performing in these settings [15].
This work considers the four aforementioned scenarios. The first concerns a given

trajectory on which a cost function is minimized. This is addressed in “Optimality along
a given trajectory”. The second case, which tackles the case of parametric trajectories
and the extraction of the optimal path through parameter optimization, is discussed
in “Optimal planning on parametrized trajectories”. “Optimal trajectory and planning”
addresses the case in which only the departure and arrival points of the trajectory are
known, and the optimal path (in the sense of minimizing a given cost function) is to be
determined. Finally, “Future prospects: operating in stochastic environments” proposes
a methodology to extend the approach to stochastic settings, putting in perspective its
integration in complex paths planners.

Optimality along a given trajectory
We assume a cost function C, defined as a function of the position s, the curvilinear
coordinate along a given trajectory�, and as a function of the (module of) velocity v(s) and
its variation with respect to the curvilinear coordinate s, v′(s) = dv/ds. The dependence
on v(s) accounts for the drag and v′(s) will be used to penalize the change of the velocity
along the trajectory [10]. The change of velocity entails a cost because of the inertia.
However, the considered formulation that penalizes the change of velocity with respect to
the curvilinear coordinate becomes simpler than the one making use of the acceleration
(velocity time derivative). This point is of particular interest when the environmental
conditions are fluctuating fast, and we should avoid that the agent must adapts to its
environment continuously by modifying its velocity. In those situations the use of the
penalty term suffices for obtaining an adequate response. Thus, the local cost C takes
the form C(s, v(s), v′(s)). The environmental conditions entering the cost function will be
described later.
Now, denoting by S the total path length, the total cost associated with the trajectory �,

I� , can be obtained using the integral

I� =
∫ S

0
C(s, v(s), v′(s)) ds. (1)

Theoptimizationproblem looks for theoptimal velocity along thepath�, vopt(s), bymin-
imizing the functional I� with prescribed initial and final velocities, v(0) and v(S), respec-
tively. This minimization becomes equivalent to the fulfillment of the Euler–Lagrange
(EL) equation:

∂C
∂v

− d
ds

∂C
∂v′ = 0. (2)

When the cost function is expressed analytically as a function of s, v(s) and v′(s), the
EL equation results in a differential equation involving the variable v(s), whose solution
results in the optimal velocity vopt(s).

Cost functions expressed analytically

Let us consider, for example, the instantaneous cost function given by C = 1
2v

2(s) +
β
2 (v(s) − v)2 + 1

2v
′2(s), where β is the weight enforcing the target velocity v. The optimal
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velocity results from the EL equation solution, which, in the present case, takes the form:
∂C
∂v

= v + β(v − v), (3)

and
d
ds

∂C
∂v′ = v′′, (4)

which result in the following ODE:

(1 + β)v(s) − βv − v′′ = 0. (5)

The integration of Eq. (5) requires two boundary conditions. In this example, we consider
vanishing initial and final velocities, v(s = 0) = v(s = S) = 0. Solving the ODE problem
with the appropriate boundary conditions results in theoptimal velocity vopt(s)minimizing
the total cost. Such a solution can be obtained analytically or numerically, by using the
finite difference method for example.
In the case of neglecting the term involving v′(s), the cost function reduces to the

algebraic equation C = 1
2v

2(s) + β
2 (v(s) − v)2, and the optimal velocity can be trivially

obtained from:

v(s) ≡ vopt(s) = β

1 + β
v. (6)

In Eq. (6), when β → ∞, vopt(s) = v, and when β → 0, without any constraint to perform
the travel, the best choice is stay at rest to minimize the cost induced by the drag, i.e.,
vopt = 0.

Cost functions expressed from black-box oracles

When the cost function is represented by a trained black-box, a sort of oracle—a deep
neural network (DNN) for instance—the just described procedure can not be applied, as
the explicit form of the ODE function can not be obtained.
In our recent work [10], we proposed the use of a neural network able to perform

the regression of an expression of the type v = NNv(s). Then, automatic differentiation
allowed us to compute v′(s). The velocity and its derivative, as well as the local conditions
affecting the movement (for example the local wind in the case of a flight of a drone)
at position s, and expressed by the term α(s), are the inputs of the cost function neural
network NNc. The output of the last neural network is the cost function C, that is C =
NNc(α, v, v′). The last neural network NNc is assumed to be trained during the asset
calibration, offline, and then, it is frozen, assumed to be known and accurate enough.
At this point, theEL equation canbe enforcedby computing the cost functionderivatives

∂C
∂v and d

ds

(
∂C
∂v′

)
by automatic differentiation, and the EL equation is finally enforced

in the loss function. The loss function minimization allows the calculation of the NNv
parameters, that is, the NNv training. The whole architecture and workflow is sketched
in Fig. 1.

Optimal planning on parametrized trajectories
This section generalizes the procedure described in the previous one, by considering
parametrized trajectories �p, where vector p groups the set of parameters involved in
the description of the trajectory. Usual parametric descriptions are based on the use of
polygonal curves or NURBS, whose parametric description involves the control points
position, among many other possibilities.
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Fig. 1 Flow chart for the training of networkNNv , when the cost function C is approximated by a neural
network based regressionNNc . The weights and biases ofNNv are noted �

Fig. 2 Parametrized trajectory by using a single parameter p defining �p

A more implicit way of expressing possible trajectories consists on solving a paramet-
ric partial differential equation, in such a way that the level-set curves could represent
valuable trajectories. This strategy was considered in our former work [16] for addressing
deposition trajectories in additive manufacturing.
In what follows, for the sake of simplicity but without loss of generality, a simple case,

involving a single parameter, noted by p, is considered, and illustrated in Fig. 2.
In the present case, the rationale described previously remains almost unchanged. Here,

again, a cost function, analytical or expressed with the help of a DNN, is assumed to be
available. This cost function is again represented by C(s, v, v′; p), where the dependence on
p of the cost function is highlighted, even if in the sequel, this dependence will be omitted
in the notation, for the sake of clarity, if there is no risk of confusion.
In this section the only difference is the domain inwhich s takes its values,whichdepends

on the considered trajectory �p. Each �p involves a length Sp. Thus, the global cost reads:

Ip =
∫ Sp

0
C(s, v(s), v′(s)) ds. (7)

Optimal planning on each trajectory offline, and optimal trajectory extraction online

The simplest procedure consists in considering a set of parameters in the interval of
variation of p, p ∈ [0,P]. When consideringN values uniformly distributed in the interval
[0,P], they read:

pi = (i − 1) × P

N − 1
, i = 1, ...,N. (8)

For each trajectory �pi , the optimal velocity is computed following the rationale just
described in “Optimality along a given trajectory”, which leads to vopt(s ∈ �pi ). Later on,
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by introducing that optimal velocity into the total cost expression Ip, it results in:

Ipi =
∫ Spi

0
C(s, vopt(s), v′ opt(s) ds. (9)

Finally the best trajectory, represented by popt is obtained by solving the minimization
problem:

popt = argmin
p=p1 ,...,pN

{Ip} , (10)

Parametric optimal planning and optimal trajectory extraction

Amore appealing route consists in using a reference domainwhere the curvilinear coordi-
nate s ismapped into a reference interval, ξ ∈ [0, 1]. In the case considered here, illustrated
in Fig. 2, the coordinate mapping reads;

ξ = s
S(p)

, (11)

with S(p) = 2
√
0.52 + p2 when considering a unit distance between the departure and

arrival points or, equivalently:

s = ξ S(p), (12)

representing the direct and inversemappings, ξ (s; p) and s(ξ ; p). Expressing the global cost
in the reference domain

Iξ =
∫ 1

0
C(ξ , v(ξ ), v′(ξ )) ds

dξ
dξ , (13)

with dv
ds = dv

dξ
dξ
ds = v′(ξ )dξ

ds , the optimal velocity results from the solution of the Euler–
Lagrange equation.

Discussion

In Appendix , several trajectory optimization problems associated to different cost func-
tions are considered, solved and discussed, to emphasize the effects of the different terms
involved in the cost function on the optimal trajectory, that as expected, in certain cir-
cumstances deviates from the shortest one.
The addressed problems do not have an intrinsic interest beyond the fact of illustrating

how the different factors impacting the cost are addressed in the proposed formalism.
Even if the performed analyses proved that the proposedmethodology is general enough

for considering a diversity of scenarios of practical interest, its main limitation, as in many
other engineering areas, is the parametrization itself.
Complex trajectories, as the ones concerned by drones operating in urban areas involv-

ing numerous non-flying zones (buildings, restricted areas, regions with intense wind
turbulences or without satellite coverage,...) need rich enough parametrization able to
represent trajectories in such multi-constraint domains. Thus, tens of parameters are
needed to parametrize trajectories able to adapt to all the existing contraints. In that case,
the procedures just described fail because of the curse of dimensionality.
The curse of dimensionality can be circumvented, or at least alleviated, by consider-

ing separated representations (tensor decompositions) of the multi-parametric space.
Separated representations, at the heart of the so-called PGD—Proper Generalized
Decomposition—, express multi-valued functions from a finite sum of products of lower
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dimensional functions. These separated representations can be generated by projection
(intrusive formulation) [11,12], or directly from the solutions related to a sampling of
the high-dimensional parametric space (non-intrusive formulation), giving rise to multi-
parametric surrogates [13,14].
The separated constructor employing projection (intrusive) allows accurate (and certifi-

able eventually) solutions, however, its deployment for addressing nonlinear or non-affine
models remains a tricky issue.
On theotherhand, the constructionofmulti-parametric surrogates is alwayspossible, by

combining the separated representation of the solutions, with appropriate regularizations
(e.g., elastic-net, ridge, lasso,...), for pushing aside overfitting while promoting sparsity,
looking for approximating complex nonlinear parametric solution from a very reduced
amount of data (the numerical solutions related to the parameters sampling).
Even if the just referred parametric surrogates constitute an appealing route, the accu-

racy of the solution for a given choice of the parameters remains difficult to quantify, and
with it, the possibility of certifying the derived decisions.
Due to the limitations of operating in parametric settings, non-parametric approaches

seem preferable. Among the numerous alternatives, two procedures attracted our atten-
tion. The first consists of using reinforced learning—RL—, while the second consists of
extending the Euler–Lagrange formalism to the construction of the optimal trajectory and
the optimal operation along that optimal trajectory [7], while expressing the cost from a
NN-based regression.
Even if RL is a very valuable approach, widely considered in a diversity of applications

eluding a frugal parametric formulation, while addressing eventual variability, as it is the
case of driver assistant, optimal planning, and more generally optimal decision making
in complex environments, the training cost and complexity, as well as the prediction
performances, make difficult, at present, its use in critical applications.
For that reason, in what follows, the last approach, the one based on the use of the stan-

dard Euler–Lagrange formalism operating on a NN-based cost function will be retained.
This approach represents an appealing compromise between: (i) the explicability that the
Euler–Lagrange formalism provides; (ii) the accuracy ensured by the offline construction
of the cost function (calibration); and (iii) the training performances because no data is a
priori required for evaluating the optimal solution.
Thus, the resulting technique becomes a strongminimizer operating on an offline learnt

cost function (calibration performed only once), the last employing experimental data,
while the former (the minimizer) only consider the physical knowledge provided by the
Euler–Lagrange equations.
This last approach will be considered in the next section, and then, its extension to

stochastic settings accounting for the environement variability (time and space fluctua-
tions) will be then put in perspective.

Optimal trajectory and planning
By ignoring inertia, and referring the time by t, the most general setting consists in com-
puting the optimal trajectory x(t) and the optimal velocity along it, v(t), by applying the
EL equation on the cost function.
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Fig. 3 Flow chart for the training of networkNNx , when the cost function C is approximated by a neural
network based regressionNNc . The weights and biases ofNNx are noted �

The EL equation can be generalized to address higher-order derivatives. However, for
the sake of simplicity and without loss of generality, in what follows we assume C(t, x, v),
with v = ẋ.
We consider the simple 2D cost function C = (vx + y)2 + (

vy − x
)2, with (vx, vy) the

components of the velocity vector v = (ẋ, ẏ)T , and x, y the components of the position
vector x = (x, y)T .
We assume that the departure and arrival points are known, as well as the time at which

the arrival point is reached, t = T .
In the present case the EL equations read{

∂C
∂x − d

dt
∂C
∂ ẋ = 0,

∂C
∂y − d

dt
∂C
∂ ẏ = 0.

(14)

Considering the expression of C, Eq. (14) leads to:{
ẍ − x + 2ẏ = 0,
ÿ − y − 2ẋ = 0.

(15)

The departing and arrival points are defined respectively by (0, 0) at t = 0 and (0, H ) at
t = T .
The EL equations given in Eq. (15) can be solved by applying the finite differencemethod

for example. The converged finite difference solution is considered as the reference solu-
tion in this section.
When the cost function is not available analytically, an appealing neural architecture is

presented in Fig. 3. The fact of using two different neural networks, each predicting one
component of the position vector x, that is, x and y, provides better accuracy than using
a single NN for predicting both components.
The solution of the problem for H = 1m and T = 1s is shown in Fig. 4, where the

solutions obtained with three different strategies are compared with the reference one.
The four strategies include:

• Finite difference discretization. The finite differencemethod is applied to solvemono-
lithically both equations in (15), with a time discretization of nt = 1000 nodes uni-
formly distributed. The same time nodal distribution is considered in the different
strategies described below.

• Optimized cost. The cost function C is approximated by a neural networkNNc, then
the parameters of NNc are frozen. Later on, NNx is trained with a loss function Lc
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Table 1 The neural network used as the surrogate model
NNx

Layer Building block for x prediction Activation

1 Input layer having the size of the time t coordinate (= 1) No activation

2 Dense layer with 200 neurons tanh

3 Dense layer with 200 neurons tanh

4 Output layer having the size of x per node (= 1) linear

Layer Building block for y prediction Activation

1 Input layer having the size of the time t coordinate (= 1) No activation

2 Dense layer with 200 neurons tanh

3 Dense layer with 200 neurons tanh

4 Output layer having the size of y per node (= 1) linear

Independent networks are used for predicting the coordinates x and y, while having the same structure. tanh stands for the
hyperbolic tangent

representing the total cost:

Lc =
nt∑
i=1

Ci. (16)

• Lagrange Net. This strategy uses the algorithm illustrated in Fig. 1. The cost function
C is approximated by the same neural networkNNc, then the parameters ofNNc are
set to non-trainable. Later on,NNx, is trained with a loss function LLN defined by:

LLN =
T∫

0

(
∂C
∂x

− d
dt

∂C
∂ ẋ

)2
+

(
∂C
∂y

− d
dt

∂C
∂ ẏ

)2
dt. (17)

• Physics Informed Neural Network, PINN. The PINN is employed to solve Eq. (15).
The same neural network architecture used forNNx is used again for the PINN, with
the same boundary conditions and same time mesh. The PINN loss function, LPINN,
reads:

LPINN =
T∫

0

(
(ẍ − x + 2ẏ)2 + (ÿ − y − 2ẋ)2

)
dt (18)

One may note that the PINN consider the explicit expression of the cost function C
instead of the neural networkNNc that was considered by both previous strategies.

The same training methodology is used for the three neural networks NNx: PINN,
Lagrange Net and Optimized Cost.
It is important to mention that the considered architectures do not need a data-based

training. Here, the loss is based on the deviation from the existing knowledge, the optimal-
ity conditions in our case. In a similar way than PINNs, here we are closer from a solver
than from a learner. The issue related to the choice of the networks hyper-parameters is
the usual one, where a certain number of trials are made until obtaining performances
considered good enough.

A first training

The ADAM stochastic gradient descent algorithm is considered, with a learning rate of
10−4 and 2000 epochs. TheNNx neural network structure is illustrated in Table 1.
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Fig. 4 Solution for C = (
vx + y

)2 + (
vy − x

)2, H = 1m and T = 1s when using finite difference (FD), optimizing
the cost directly, the Lagrange-Net flow chart illustrated in Fig. 3, and a Physics Informed Neural Network (PINN)
solving the equations illustrated in Eq. (15)

Table 2 The deeper neural network used as the surrogate
modelNNx

Layer Building block for x prediction Activation

1 Input layer having the size of the time t coordinate (= 1) No activation

2 Dense layer with 60 neurons relu

3 Dense layer with 60 neurons relu

4 Dense layer with 60 neurons relu

5 Dense layer with 60 neurons relu

6 Output layer having the size of x per node (= 1) linear

Layer Building block for y prediction Activation

1 Input layer having the size of the time t coordinate (= 1) No activation

2 Dense layer with 60 neurons relu

3 Dense layer with 60 neurons relu

4 Dense layer with 60 neurons relu

5 Dense layer with 60 neurons relu

6 Output layer having the size of y per node (= 1) linear

Independent networks are used for predicting the coordinates x and y, while having the same structure. relu stands for the
rectified linear unit

Figure 4 compares the computed trajectories x(t), from which we can conclude that
techniques involving derivatives calculation exhibit lower accuracy. The indicated cost in
Fig. 4 is computed as the sum of the cost C over all the time steps, as expressed in Eq. (16).
The fact that the optimized cost is slightly smaller that the reference one can be explained
by the fact that the former uses an approximation of the cost, that is, it proceeds from
NNc.

Training deeper networks

The used training algorithm is again ADAM, with a learning rate of 10−3 and 100 epochs
of gradient descent. TheNNx neural network structure used in this section is illustrated
in Table 2. The optimal trajectories using the different schemas are illustrated in Fig. 5.
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Fig. 5 Trajectory solutions when using the deeper network illustrated in table 2

Table 3 A deeper neural network used as the surrogate modelNNx combining relu and tanh
activation functions

Layer Building block for x prediction Activation

1 Input layer having the size of the time t coordinate (= 1) No activation

2 Dense layer with 200 neurons tanh

3 Dense layer with 60 neurons relu

4 Dense layer with 60 neurons relu

5 Dense layer with 60 neurons relu

6 Output layer having the size of x per node (= 1) linear

Layer Building block for y prediction Activation

1 Input layer having the size of the time t coordinate (= 1) No activation

2 Dense layer with 200 neurons tanh

3 Dense layer with 60 neurons relu

4 Dense layer with 60 neurons relu

5 Dense layer with 60 neurons relu

6 Output layer having the size of y per node (= 1) linear

It can be noticed that a deeper network with a rectified linear unit (relu) activation does
not produce a significant improvement in the Lagrange Net results, even if it improves
the PINN performances.
Thus, a thirdmodel, combiningReLUand tanh activations, is trained using the structure

given in Table 3, that improves the Lagrange Net results, as Fig. 6 proves. The associated
velocities all along the trajectory, are compared for the horizontal and vertical velocity
components in Figs. 7 and 8, respectively.
The results obtained with the three strategies exhibit similar accuracy. Their main

difference concerns the expression of the cost function, explicit in the case of the PINN
approach, and expressed from a general regression in the other two cases.
It is important to mention that the main aim of the previous analysis was proving that

different regressions, making use of a multi-layer perceptron trained from different loss
functions, can be successfully used, reaching equivalent accuracies. The previous analysis
is not expected providing a comparaison among them. Such a comparison is beyond the
objectives of the present paper.
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Fig. 6 Trajectory solutions when using the deeper network illustrated in Table 3, combining relu and tanh
activation functions

Fig. 7 Optimal velocities vx when using the deeper network illustrated in Table 3, combining relu and tanh
activation functions

Future prospects: operating in stochastic environments
This section aims at determining the optimal velocity when the cost has a given statistical
variability. For that purpose we assume the flight of a drone, where the resistance scales
with the drone-wind relative velocity.
For the sake of simplicity we assume a rectilinear drone trajectory, with the wind (uni-

form in space) aligned with the drone trajectory and characterized by a certain statistical
distribution. One expects that during the drone flight the wind velocity will represent the
entire known statistics (ergodicity assumption).
The considered cost function consists of two terms (here the inertia term is neglected).

The first representing the drag Cd , scaling with

Cd ∼ (vd − v)2vd, (19)

with vd the drone velocity along the rectilinear trajectory and v the one of the wind,
uniform in space but that evolves in time.
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Fig. 8 Optimal velocities vy when using the deeper network illustrated in Table 3, combining relu and tanh
activation functions

The second contribution to the cost concerns the flight duration. Thus, if the path, of
length L, is expected be completed in the time period T , the nominal velocity will result
vnomd = L/T , and then, any deviation from it, is considered as an extra-cost. By assuming
a constant velocity of the drone, the cost could be expressed from

Ct ∼ (vdT − L)2. (20)

Both contributions are combined into the global cost function

C = Cd + Ct = (vd − v)2vd + λ(vdT − L)2, (21)

with λ a coefficient weighting both contributions.
Now, being the wind velocity uniform in space, as well as the one of the drone, the global

minimization coincides with the local one. The later reads:
∂C
∂vd

= 0, (22)

leading to

3v2d − (4v − 2λT 2)vd + v2 − 2λTL = 0, (23)

that, in absence of traveling time constraints, that is, with λ = 0, the minimum cost
concerns, as expected, vd = v.
Now, we assume that the wind velocity is not constant in time, and that during the flight,

the wind velocity will represent the entire wind statistics.
Thus, for any possible wind velocity v, its probability (fraction of the flight time in which

the wind has that velocity) is given by p(v). The optimal drone velocity when the wind
velocity is v, is given by the solution of Eq. (23), whose associated cost C(v) results from
applying Eq. (21).
If, for example, we assume a uniform wind velocity distribution in the interval v ∈

[vmin, vmax], p(v) = 1/l, with l = vmax − vmin, then, it is enough to consider the mean of
the cost, that is

C =
∫ vmax

vmin

C1
l
dv, (24)
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then, compute the wind velocity v∗ related to C, i.e. C(v∗) = C, and finally the drone
velocity associated to v∗ according to Eq. (21), that represents the optimal constant drone
velocity.
For the sake of illustrative purposes we consider the following numerical values (in the

metric system): T = 10, L = 50, vmax = 19, vmin = 1 and λ = 0.06. In that case the
optimal drone velocity that the previous procedure provides becomes vd = 9.13, whereas
the optimal drone velocity related to the mean wind velocity vw = 0.5(vmax + vmin) is
vd(vw) = 7.5.
Thus, the optimal drone velocity becomes different from the one related to the wind

velocity mean value. This is due to the fact that the cost is a nonlinear function.
The proposed procedure can of course be generalized for more complex scenarios. For

that purpose, the just described methodology should be deployed into the two frame-
works described in the present paper, the one concerning the optimal velocity on a given
trajectory, and the other where both the optimal trajectory and the optimal velocity on it
are computed simultaneously.
The just proposed rationale can be embedded into a neural architecture that using the

wind velocity as an input computes the optimal drone velocity, in such a way that the
associated cost is minimized. Then, by considering a variability around the wind velocity,
the optimal drone velocity is obtained by enforcing that the resulting average cost is
minimized.
Therefore, both procedures considered in the present paper, apply by replacing the cost

by its average. The implementation, analysis of performances and applications, constitute
the topic of a paper in progress.

Conclusion
This work proposes a holistic approach to trajectory and velocity optimization along a
path, while minimizing the cost based on the Euler–Lagrange functional minimization,
along with the use of artificial neural networks for machine learning.
Three different scenarios were addressed: (i) the one in which the trajectory is done,

and the velocity on it must be obtained for minimizing the cost; (ii) the same procedure
but now operating on parametrized trajectories, that is, trajectories defined by a number
of parameters, as it is the case when describing trajectories from splines; and finally, (iii)
when the trajectory and the velocity along it are computed simultaneously from the cost
minimization. The three cases were formulated and their solutions analyzed. Moreover,
the effect of considering variability was discussed and put in perspective.
Moreover, two approches were considered, the one in which the cost function is explic-

itly defined, and the one in which the cost function is expressed from aNN-based approx-
imation, the later offering higher versatility and generality.
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Appendix A: Numerical experiments and discussion

A.1 Cost function

In this numerical example, the following cost function is considered

C = 1
2

(
v2(s) + κpv2(s) + β(v(s) − v)2 + γ v′2) , (25)

where κpv2(s) represents a trajectory-dependent cost, and the parameter γ is introduced
to easily evaluate solutions when the cost associated to v′(s) is neglected.

A.2 Euler–Lagrange equation

For the cost function given in Eq. (25), the derivative terms involved in the EL equation
write:

∂C
∂v

= v + κpv + β(v − v), (26)

and
d
ds

(
∂C
∂v′

)
= γ v′′, (27)

from which, the EL equation gives:

γ v′′(s) − (1 + κp + β)v(s) = −βv. (28)

The imposed boundary conditions for this problem are v(s = 0) = v(s = S(p)) = 0.

A.3 Expressing the Euler–Lagrange equation in the reference domain

By considering the mapping introduced in Eqs. (11) and (12), one can write:
∂

∂s
= ∂ξ

∂s
∂

∂ξ
= 1√

1 + 4p2
∂

∂ξ
, (29)

and
∂2

∂s2
= 1

1 + 4p2
∂

∂ξ
. (30)

Equations (29) and (30) allow us to express the EL equation in the reference domain:
γ

1 + 4p2
v′′(ξ ) − (1 + κp + β)v(ξ ) = −βv. (31)

A.4 Inertia-less limit

When the inertia can be neglected in the cost function, i.e., γ = 0, the ODE equation (31)
reduces to:

(1 + κp + β)v(ξ ) = βv, (32)
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Fig. 9 Comparing the optimal velocity on different trajectories

which allows defining the optimal velocity as:

v(ξ ) ≡ vopt(ξ ) = β

1 + κp + β
v. (33)

One can note that the optimal velocity decreases with increasing κ and p, and approaches
v when β → ∞.

A.5 Numerical solution for increasing p

By considering κ = 1, β = 5, γ = 0.1 and v = 1, Fig. 9 shows the optimal velocity
profiles for p = 0, 0.5, 1, 1.5, . . . , 4.5. By comparing the solutions for p = 0 and p = 5,
it can be noticed that the higher is the value of p, the more intense is the resistance to
movement (higher cost) and, consequently, the maximum velocity decreases. The total
costs when considering the just computed optimal velocities result: I(p = 0) = 197.7
and I(p = 5) = 2818.6, which proves that the rectilinear trajectory becomes the optimal
one. In fact, the resistance (cost induced by trajectories deviating from the rectilinear one
defined by p = 0) increases by increasing p. Figure 10 shows the associated total cost
associated to the optimal velocity profiles.

A.6 Evaluating effect of trajectory length

In this section, to evaluate the impact of the trajectory length on the planning, we remove
the dependence of the cost function on the parameter p by setting κ = 0. Thus, from
the point of view of the cost function C, no difference between one trajectory or another
exists. However, from the point of view of the global cost I, the longer is the trajectory, the
higher is the cost. Consequently, one expects that, again, the rectilinear trajectory (p = 0)
is the optimal one, whereas the longest implies higher cost because of the necessity of
covering a longer distance.
Figure 11 compares the optimal velocity profiles vopt(ξ ; p), for p = 0 and p = 5 in

absence of a cost term depending on p. As expected, when computing the global cost
related to the optimal velocities profiles, the longer trajectory (p = 5) presents the higher
cost: I(p = 0) = 197.7 and I(p = 5) = 1009.7.
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Fig. 10 Cost evolution I(p)

Fig. 11 Comparing the optimal velocity on two trajectories characterized by p = 0 and p = 5 respectively,
when κ = 0

A.7 Optimal trajectories differing from the rectilinear one

In this section we set κ = 5, but a vanishing resistance for a trajectory that deviates from
the rectilinear one. For example, this can be achieved by setting p = 1, with β = 4, γ = 0.1
and v = 1, and the following cost function:

C = 1
2

(
v2(s) + κ

√
(p − 1)2v2(s) + β(v(s) − v)2 + γ v′2

)
. (34)

The just introduced cost function enforces the fact that when p = 1 and the trajectory
deviates a bit from the rectilinear one, the trajectory-dependent cost, due to the effect
of other factors (environmental conditions for example) vanishes. Such a choice allows
enforcing the fact that the optimal trajectory could be different from the rectilinear one.
Figure 12 shows the evolution of the total cost I(p) evaluated by considering the optimal

velocities on each trajectory characterized by the parameter p. Figure 12 shows that the
optimal trajectory is located somewhere between the rectilinear shortest path (but having
a high cost induced by the deviation from p = 1), and the one in which the contribution
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Fig. 12 Cost evolution I(p) associated with the cost function depicted in Eq. (34)

scaling with |p − 1| is minimum (however exhibiting a longer path), with the minimum
global cost for a trajectory close to p = 0.1 in the present example.
Remark. In all the discussion until now, the cost function involves a term penalizing

deviations with respect to a reference velocity v. However, other forms of this term can
be designed to penalize the deviation with respect to the time spent to cover the whole
trajectory for example. The travel time can be expressed from

∫ S
0

ds
v(s) , and if we are looking

for a duration T , the local cost could be be expressed by
(
1
v − T

S

)
, that integrated from

s = 0 to s = S vanishes when the travel time is T , and becomes positive if the duration is
longer and negative if it is shorter.
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