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Abstract

In this work, the space-time MORe DWR (Model Order Reduction with Dual-Weighted
Residual error estimates) framework is extended and further developed for
single-phase flow problems in porous media. Specifically, our problem statement is the
Biot system which consists of vector-valued displacements (geomechanics) coupled to
a Darcy flow pressure equation. The MORe DWR method introduces a goal-oriented
adaptive incremental proper orthogonal decomposition (POD) based-reduced-order
model (ROM). The error in the reduced goal functional is estimated during the
simulation, and the POD basis is enriched on-the-fly if the estimate exceeds a given
threshold. This results in a reduction of the total number of full-order-model solves for
the simulation of the porous medium, a robust estimation of the quantity of interest
and well-suited reduced bases for the problem at hand. We apply a space-time Galerkin
discretization with Taylor-Hood elements in space and a discontinuous Galerkin
method with piecewise constant functions in time. The latter is well-known to be
similar to the backward Euler scheme. We demonstrate the efficiency of our method on
the well-known two-dimensional Mandel benchmark and a three-dimensional footing
problem.

Introduction
Porous media problems have long-standing applications in subsurface modeling, ground-
water flow, hydraulic fracturing, geothermal energy recovery, and nuclear waste stor-
age. The resulting mathematical models yield coupled systems of partial differential
equations (PDEs) from which one of the most well-known is the so-called Biot prob-
lem [18–21,71]. Developments over the last two decades have led to more complicated
models, due to additional physics that can be incorporated. Nonstationary, nonlinear
coupled PDE systems are often obtained. They are also sometimes subject to inequal-
ity constraints as in multiphysics phase-field fracture in porous media [75,78]. Despite
advances in numerical solvers of iterative or multigrid type, high-performance paral-
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lel computing, and improved hardware performance, the computational cost for solving
such multiphysics problems remains high. Specific examples in the field of poroelasticity
are [5,9,10,22,42,44,53,54,76,77].
Model order reduction (MOR) and reduced-order modeling (ROM) techniques

[14,15,30,37,47,56,57,65,68,80] provide one possible solution to significantly reduce the
computational cost. Therein, the problem is split into two phases, an offline phase (solv-
ing a costly original high-fidelity model) to build a representative reduced basis and an
online phase in which the reduced-ordermodel is solved fast. This splitting comes with an
additional cost, which pays off when the original model needs to be solved several (hun-
dreds and more) times as for example in uncertainty quantification, inverse modeling,
and optimal control. However, providing a robust and problem-specific reduced basis for
nonlinear and general problems is a challenge.
Other model-order reduction approaches are based on solving the Galerkin problem

with a separation of variables [2]. For nonlinear problems, some robust methods have
been proposed, but they require a highly intrusive and specific numerical framework
[17], or less intrusive and more flexible approaches, but without a mathematical proof of
convergence for nonlinear cases [16]. Thus, there is a need for reduced-order numerical
strategies which are flexible, general and for which the error accompanying the reduced
solution space can be controlled for any quantity of interest. Additionally, a goal-oriented
version of the proper generalized decomposition (PGD) has been applied to stationary
problems in [43]. In contrast to our work, an a priori computed dual solution was used to
control the error of the primal reduced-order solution.
Thanks to our own recent advances in space-time modeling and goal-oriented space-

time error control for nonstationary, coupled problems [64], an incremental error-
controlled proper orthogonal decomposition (POD) basedROMmethod, i.e.MOReDWR
(Model Order Reduction with Dual-Weighted Residual error estimates), was suggested
for the heat and elastodynamics equations in [32]. Therein, satisfying results for adap-
tively refining the ROM basis according to some distributed-in-time goal functionals
were obtained.
In the current work, the Biot system of poroelasticity, namely vector-valued displace-

ments and a Darcy-type pressure equation, is considered and modeled in a space-time
fashion. Specifically, the temporal discretization is based on discontinuous Galerkin (dG)
finite elements, while the spatial discretization employs classical continuousGalerkin (cG)
finite elements. This serves as a basis for space-time error-controlled adaptivity by apply-
ing the dual-weighted residual method (DWR) [8,12] to our ROM concepts. Importantly,
the ROM error is computed with respect to a goal functional, which is often motivated
from technical quantities of interest arising in physics, engineering and practical applica-
tions. The ROM updates are performed in an incremental fashion as recently suggested
in [46] and do not require a full FOM (full-order model) run in advance. Thus, the ROM
is updated on the fly using FOM solutions estimated only for one temporal element. Here,
the singular value decomposition (SVD) for computing the leading components reduces
to a truncated version and provides the snapshot matrix. An important point in coupled
problems resorts to considering a monolithic version and computing one single SVD or,
alternatively, splitting the SVD into its PDE components. In this work, we aim for the
latter and split the displacements and pressure into separate SVDs in order to facilitate
computing different POD sizes for the individual solution components. These develop-
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ments result into a final MORe DWR algorithm, which is tested for two-dimensional and
three-dimensional configurations. First, the well-knownMandel benchmark is addressed.
In a second numerical test, a poroelastic three-dimensional block is considered. Therein,
on the one hand, typical cost factors such as speedup, FOM solves and ROM sizes are
investigated. On the other hand, standard quantities of a posteriori error control such as
effectivity indices and indicator indices are computed as well, demonstrating the perfor-
mance of our overall proposed concepts.
The outline of this paper is as follows. In Sect. 2 the strong form problem statement

is presented first. Then, a space-time formulation is derived. The dual-weighted residual
method for goal-oriented error control is exposed, which requires a linear, backward-in-
time running, adjoint problem. Next, in Sect. 3, theMOReDWR (Model Order Reduction
withDual-WeightedResidual error estimates) concepts are explained.Goal-oriented error
control for refining the ROM basis is also discussed. In Sect. 4 two numerical examples
are investigated. The first test is the two-dimensional Mandel benchmark. The second
test is a three-dimensional footing problem.

Problem formulation
In this work, we model a porous medium by coupling a vector-valued displacement equa-
tion (geomechanics) to Darcy flow in a poro-elastic medium. In the problem description,
I := (0, T ) denotes the temporal domain and� ⊂ R

d a sufficiently smooth spatial domain
with spatial dimension d ∈ {2, 3}.

Strong form of poroelasticity and function spaces

The governing equations for poroelasticity read [28,49]: Find pressure p : �̄× Ī → R and
displacement u : �̄ × Ī → R

d such that

∂t (cp + α(∇x · u)) − 1
ν
∇x · (K∇xp) = 0 in � × I,

−∇x · σ (u) + α∇xp = 0 in � × I,
(1)

with the isotropic stress tensor

σ (u) := μ(∇xu + (∇xu)T ) + λ(∇x · u)I,

and the (constrained specific) storage coefficient c ≥ c∗ > 0, which is assumed strictly
positive in this paper, the Biot-Willis constant α ∈ [0, 1], the permeability tensor K , the
fluid viscosity ν and the Lamé parameters λ,μ > 0. We notice that the constant c may
depend on space, i.e., c(x), and is linked to the compressibility M > 0. When c tends to
zero, numerical instabilities may arise (e.g., [58,60]) for whichmixedmethods or enriched
Galerkin or discontinuous Galerkin finite elements in the numerical discretization should
be employed [48,50,55,59,69]. This coupled system of equations is also known as the Biot
system [18–21,71]. A rigorous mathematical analysis of this poroelasticity problem can
be found in [67].
Assuming homogeneous Dirichlet boundary conditions for the displacement on�D and

inhomogeneous Neumann/traction boundary conditions



Fischer et al. AdvancedModeling and Simulation in Engineering Sciences           (2024) 11:9 Page 4 of 27

σ (u) · n = t

on �N = ∂� \ �D, the spatial function spaces are given by

Vu(�) = (
H1
0,�D (�)

)d ,

Vp(�) = H1(�),

V (�) = Vu(�) × Vp(�).

All boundary conditions, including pressure conditions as well, are carefully specified in
Sect. 4 and the function spaces are redefined w.r.t. the modified boundary conditions, too.

Weak space-time form of the primal problem

We define the space-time function space X(I, V (�)) as

X(I, V (�)) := L2(I, V (�)) ∩ H1(I, V ∗(�))

with the dual space of V (�) being denoted as V ∗(�) = L(V (�),R). Furthermore, we will
use the notation

(f, g) := (f, g)L2(�) :=
∫

�

f · g dx, ((f, g)) := (f, g)L2(I,L2(�)) :=
∫

I
(f, g) dt,

〈f, g〉 := 〈f, g〉L2(�) :=
∫

�

f · g ds, (〈f, g〉) := (f, g)L2(I,L2(�)) :=
∫

I
〈f, g〉 dt.

In this notation, f · g represents the Euclidean inner product if f and g are scalar- or
vector-valued and represents the Frobenius inner product if f and g are matrices.
We cannowderive the space-time variational formulation for the (primal) poroelasticity

problem. By integration by parts, the variational formulation reads: Find U := {u, p} ∈
X (I, V (�)) such that

c((∂tp,φp)) + α((∂t (∇x · u),φp)) + K
ν
((∇xp,∇xφ

p)) = 0,

((σ (u),∇xφ
u)) − α((pI,∇xφ

u)) + α(〈pn,φu〉)�N×I = (〈t,φu〉)�N×I

∀
 :=
(

φu

φp

)

∈ X (I, V (�)) .

Here, n denotes the normal vector on the Neumann boundary �N .
For the time discretization, let Tk := {Im | 1 ≤ m ≤ M} with Im := (tm−1, tm) and

0 =: t0 < t1 < · · · < tM−1 < tM =: T

be a partitioning of time i.e., Ī = [0, T ] = ∪M
m=1 Īm. Then, in an intermediate step similar

to spatial discontinuous Galerkin (dG) method, we can define a broken function space
that allows for discontinuities at the temporal grid points:

X̃(Tk , V (�)) :=
{(

u
p

)

∈ L2(I, L2(�)d+1),
(
u
p

) ∣∣
∣∣∣Im

∈ X(Im, V (�)) ∀Im ∈ Tk

}

.
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Due to these discontinuities, the limits of a function f at time tm from above and from
below are

f ±
m := lim

ε↘0
f (tm ± ε),

and the jump of the function value of f at time tm is

[f ]m := f +
m − f −

m .

Accounting for the discontinuities in time, we thus need to solve the problem:
Find U ∈ X̃ (Tk , V (�)) such that

A(U )(
) = F (
) ∀
 ∈ X̃ (Tk , V (�)) . (2)

The bilinear form and right-hand side read

A(U )(
) =
M∑

m=1

∫

Im
c(∂tp,φp) + α(∂t (∇x · u),φp) + K

ν
(∇xp,∇xφ

p) dt

+
M∑

m=1

∫

Im
(σ (u),∇xφ

u) − α(pI,∇xφ
u) + α〈pn,φu〉�N dt

+
M−1∑

m=1
α([∇x · u]m,φp,+

m ) + α(∇x · u+
0 ,φ

p,+
0 )

+
M−1∑

m=1
c([p]m,φ

p,+
m ) + c(p+

0 ,φ
p,+
0 )

and

F (
) := (〈t,φu〉)�N×I + α(∇x · u0,φp,+
0 ) + c(p0,φp,+

0 ),

where

U := (u, p), 
 := (φu,φp).

Remark 2.1 This space-time formulation can also be easily extended to a multirate-in-
time setting with different timestep sizes for displacement and pressure [63]; a rigorous
analysis starting directly with the backward Euler time discretization and mixed spaces
for flow and conformal Galerkin for geomechanics is provided in [3].

For the projection of the problem onto the POD vectors, the block structure of the
linear system is exploited to build separate bases for displacement and pressure. We can
decompose the bilinear form into the four following blocks

A1(u)(φu) =
M∑

m=1

∫

Im
(σ (u),∇xφ

u) dt,

A2(p)(φp) =
M∑

m=1

∫

Im
c(∂tp,φp) + K

ν
(∇xp,∇xφ

p) dt
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+
M−1∑

m=1
c([p]m,φ

p,+
m ) + c(p+

0 ,φ
p,+
0 ),

B1(p)(φu) =
M∑

m=1

∫

Im
−α(pI,∇xφ

u) + α〈pn,φu〉�N dt,

B2(u)(φp) =
M∑

m=1

∫

Im
α(∂t (∇x · u),φp) dt

+
M−1∑

m=1
α([∇x · u]m,φp,+

m ) + α(∇x · u+
0 ,φ

p,+
0 ).

dG(0), i.e., backward Euler, time discretization of the primal problem

Using the space-time formulation of the poroelasticity problem (2), a dG(0) time dis-
cretization is derived by using discontinuous, piecewise-constant finite elements in time;
see e.g., [79]. This results into a backward Euler scheme. Then, on each temporal element
Im = (tm−1, tm), we have temporally constant functions (um, pm) ∈ V (�) such that

u|Im =: um, p|Im =: pm.

Using piecewise-constant functions f in time, we can insert the relations

∂t f |Im = 0, [f ]m = fm+1 − fm

and arrive at the time-stepping scheme: Find Um := (um, pm) ∈ V (�) such that

c(pm − pm−1,φp) + α(∇x · um − ∇x · um−1,φp) + k
K
ν
(∇xpm,∇xφ

p)

+ k(σ (um),∇xφ
u) − kα(pmI,∇xφ

u) + kα〈pmn,φu〉�N = k〈t,φu〉�N

∀
 = (φu,φp) ∈ V (�).

Here, k := tm − tm−1 denotes a (constant) timestep size.

Remark 2.2 Instead of starting from the space-time formulation, we can also directly
derive thebackwardEuler timediscretization fromthe strong formulationofporoelasticity
(1). The main difference is that now we do not scale the mechanics equation by the
timestep size k . This is motivated by the displacement equation being quasi-static. Hence,
in traditional time discretizations the time integral is omitted for this equation. For a
consistent mathematical description, the previous time-stepping scheme fits better in the
space-time setting, but in the actual implementation we can neglect the time step size k
in the mechanics equation. We then have: Find Um := (um, pm) ∈ V (�) such that

c(pm − pm−1,φp) + α(∇x · um − ∇x · um−1,φp) + k
K
ν
(∇xpm,∇xφ

p)

+ (σ (um),∇xφ
u) − α(pmI,∇xφ

u) + α〈pmn,φu〉�N = 〈t,φu〉�N

∀
 = (φu,φp) ∈ V (�).

We will use this formulation for our numerical tests since it is equivalent to the dG(0)
time discretization.
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Weak space-time form of the adjoint problem

The MORe DWR method [32] measures the adjoint sensitivity of the primal reduced-
order solution with respect to some quantities of interest. Let a goal functional J :
X̃(Tk , V (�)) → R of the form

J (U ) =
∫ T

0
J1(U (t)) dt + J2(U (T )), (3)

be given, which represents some physical quantity of interest (QoI). The adjoint equations
for porous media are derived, following [79]. Since the problem is linear, we just need to
switch trial and test functions in the bilinear form and replace the primal with the adjoint
solution. The forcing function on the right-hand side is being substituted by the goal
functional J , which is justified by the Lagrangian formalism, c.f. Sect. 3. The space-time
formulation of the adjoint problem thus reads: Find Z ∈ X̃ (Tk , V (�)) such that

A(
)(Z) = J ′U (U )(
) ∀
 ∈ X̃ (Tk , V (�)) .

More concretely, the bilinear form reads

A(
)(Z) =
M∑

m=1

∫

Im
c(∂tφp, zp) + α(∂t (∇x · φu), zp) + K

ν
(∇xφ

p,∇xzp) dt

+
M∑

m=1

∫

Im
(σ (φu),∇xzu) − α(φpI,∇xzu) + α〈φpn, zu〉�N dt

+
M−1∑

m=1
α([∇x · φu]m, z

p,+
m ) + α(∇x · φ

u,+
0 , zp,+0 )

+
M−1∑

m=1
c([φp]m, z

p,+
m ) + c(φp,+

0 , zp,+0 ),

where

Z := (zu, zp), 
 := (φu,φp).

The timederivatives aremoved fromthe test function to the adjoint solutionby integration
by parts in time e.g., on the time-continuous level we use integration by parts for

∫ T

0
α(∂t (∇x · φu), zp) = −

∫ T

0
α(∇x · φu, ∂t zp) dt + α(∇x · φu(T ), zp(T ))

− α(∇x · φu(0), zp(0)).

The adjoint problem runs backward in time and starts with a final time condition, which
depends on the quantity of interest. In particular, we have

α(∇x · φu(T ), zp(T )) + c(φp(T ), zp(T )) = J ′2,U (U (T ))(
(T ))
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i.e.,Z(T ) = 0 for J2 = 0. The integration by parts can be applied to each temporal element,
which leads exemplarily to

M∑

m=1

∫

Im
α(∂t (∇x · φu), zp) dt +

M−1∑

m=1
α([∇x · φu]m, z

p,+
m ) + α(∇x · φ

u,+
0 , zp,+0 )

= −
M∑

m=1

∫

Im
α(∇x · φu, ∂t zp) dt +

M−1∑

m=1
α([∇x · φu]m, z

p,+
m ) + α(∇x · φ

u,+
0 , zp,+0 )

+
M∑

m=1
α(∇x · φu,−

m , zp,−m ) − α(∇x · φ
u,+
m−1, z

p,+
m−1)

= −
M∑

m=1

∫

Im
α(∇x · φu, ∂t zp) dt +

M−1∑

m=1

(
α(∇x · φu,+

m , zp,+m ) − α(∇x · φu,−
m , zp,+m )

+ α(∇x · φu,−
m , zp,−m ) − α(∇x · φu,+

m , zp,+m )
)

+ α(∇x · φ
u,−
M , zp,−M ) − α(∇x · φ

u,+
0 , zp,+0 ) + α(∇x · φ

u,+
0 , zp,+0 )

= −
M∑

m=1

∫

Im
α(∇x · φu, ∂t zp) dt −

M−1∑

m=1
α(∇x · φu,−

m , [zp]m) + α(∇x · φ
u,−
M , zp,−M ).

Overall, we can rewrite the left-hand side of the adjoint problem as

A(
)(Z) =
M∑

m=1

∫

Im
−c(φp, ∂t zp) − α(∇x · φu, ∂t zp) + K

ν
(∇xφ

p,∇xzp) dt

+
M∑

m=1

∫

Im
(σ (φu),∇xzu) − α(φpI,∇xzu) + α〈φpn, zu〉�N dt

−
M−1∑

m=1
α(∇x · φu,−

m , [zp]m) + α(∇x · φ
u,−
M , zp,−M )

−
M−1∑

m=1
c(φp,−

m , [zp]m) + c(φp,−
M , zp,−M ).

(4)

dG(0), i.e., backward Euler, time discretization of the adjoint problem

A dG(0) time discretization is again used for the adjoint problem. Then on each temporal
element Im+1 = (tm, tm+1), we have temporally constant functions (zum, z

p
m) ∈ V (�) such

that

zu|Im+1
=: zum, zp|Im+1

=: zpm.

Using piecewise-constant functions f in time, the relations

∂t f |Im = 0, −[f ]m = −(fm+1 − fm) = fm − fm+1

hold and give the adjoint time-stepping scheme: Find Zm := (zum, z
p
m) ∈ V (�) such that

c(zpm − zpm+1,φ
p) + α(zpm − zpm+1,∇x · φu) + k

K
ν
(∇xz

p
m,∇xφ

p)

+ k(∇xzum, σ (φu)) − kα(∇xzum,φ
pI) + kα〈zum,φpn〉�N = J ′U (U )(
)

∀
 = (φu,φp) ∈ V (�).
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Remark 2.3 To be consistent with the backward Euler time discretization in Remark 2.2,
we again get rid of the timestep size k in displacement related terms and obtain

c(zpm − zpm+1,φ
p) + α(zpm − zpm+1,∇x · φu) + k

K
ν
(∇xz

p
m,∇xφ

p)

+ (∇xzum, σ (φu)) − α(∇xzum,φpI) + α〈zum,φpn〉�N = J ′U (U )(
)

∀
 = (φu,φp) ∈ V (�).

MORe DWR: model order reduction with dual-weighted residual error
estimates
The MORe DWR approach aims at evaluating the quantities of interest using a reduced-
order model, while guaranteeing the error due to this approximation. Thus, the difference
between the reduced-order-model (ROM) solutionUROM := UROM

kh ∈ XdG(0)
k (Tk , V ROM

h )
and the full-order-model (FOM) solution UFOM := UFOM

kh ∈ XdG(0)
k (Tk , V FOM

h ) with
V ROM
h ⊂ V FOM

h =: Vh is controlled by employing a dual-weighted residual method
[8,11,12]. To this end, we obtain an optimization problem in which the model error
between FOM and ROM, both measured in terms of some goal functional J (·), shall be
minimized:

J (UFOM) − J (UROM) (5)

subject to the constraint that the variational formulation of the poroelasticity problem (2)
is satisfied byUFOM i.e.,A(UFOM)(
) = F (
) for all test functions
 ∈ XdG(0)

k (Tk , V FOM
h ).

For more information on space-time error control, we refer the reader to [64,66,70,79].
We focus in this work on the enrichment of the reduced basis depending on the temporal
evolution of the quantities of interest. The reduced basis is refined in a goal-oriented way
to accurately and efficiently compute the solution over the whole temporal domain. In
principle coarsening would also be possible, but is not the objective in this work. For
coarsening, we would need to follow the work of Meyer and Matthies [52].

Space-time dual-weighted residual method

The two Lagrange functionals for the constrained optimization problem (5) are defined
as

L� : XdG(0)
k (Tk , V�

h ) × XdG(0)
k (Tk , V�

h ) → R,

(U�, Z�) �→ J (U�) − A(U�)(Z�) + F (Z�)

with � ∈ {FOM,ROM}. The stationary points (UFOM, ZFOM) and (UROM, ZROM) of the
Lagrange functionalsLFOM andLROM need to satisfy theKarush-Kuhn-Tucker first-order
optimality conditions.

Primal problem

Firstly, the stationary points are solution to the following primal problems

L′
�,Z(U

�, Z�)(δZ�) = −A(U�)(δZ�) + F (δZ�) = 0

∀δZ� ∈ XdG(0)
k (Tk , V�

h ), � ∈ {FOM,ROM}.
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The corresponding solutions denoted UFOM and UROM are the primal solutions. We
observe that the primal solution can be obtained by solving the original problem, i.e., the
quasi-static poroelasticity problem, forward in time as presented in Sect. 2.3.

Adjoint problem

Secondly, the stationary points must also satisfy the following adjoint (or dual) problems

L′
�,U (U

�, Z�)(δU�) = J ′U (U�)(δU�) − A(δU�)(Z�) = 0

∀δU� ∈ XdG(0)
k (Tk , V�

h ), � ∈ {FOM,ROM},

which give the adjoint solutions ZFOM and ZROM. Note that here we already use that the
poroelasticity equations are linear, which ensures that

A′
U (U )(δU,Z) = A(δU )(Z).

Hence, the adjoint solution is obtained by solving

A(δU )(Z) = J ′U (U )(δU ), (6)

which is backward in time as discussed in Sect. 2.5.

Remark 3.1 For linear goal functionals, the right-hand side of the adjoint problem (6)
reduces to

J ′U (U )(δU ) = J (δU )

and the adjoint problem does not depend on the primal solution anymore.

Error estimator

As a first result, we have

Proposition 3.1 The computable ROM error estimator is given by

J (UFOM) ≈ η := −A(UROM)(ZROM) + F (ZROM). (7)

Proof The proof follows from Theorem 4.2 from [32]. It holds

J (UFOM) − J (UROM)= −A(UROM)(ZFOM) + F (ZFOM)

= −A(UROM)(ZROM) + F (ZROM)

−A(UROM)(ZFOM − ZROM) + F (ZFOM − ZROM)

≈ −A(UROM)(ZROM) + F (ZROM) =: η. (8)

��

The previous result is assembled on each temporal element Im separately to localize the
error in time. More concretely, for poroelasticity the temporally-localized error estimator
reads:
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Proposition 3.2 Given the primal problem (2), the goal functional (3), and the corre-
sponding adjoint problem (6) with the adjoint bilinear form (4), and η from Proposition
3.1, the temporally-localized error estimator is given by

ηm := η|Im = −c(pm − pm−1, z
p
m−1) − α(∇x · um − ∇x · um−1, z

p
m−1)

− k · K
ν
(∇xpm,∇xz

p
m−1) − (σ (um),∇xzum−1)

+ α(pmI,∇xzum−1) − α〈pmn, zum−1〉�N + 〈t, zum−1〉�N ,

for m = 1, . . . ,M. Moreover, from (7), we have

J (UFOM) − J (UROM) ≈ η :=
M∑

m=1
ηm.

The superscripts indicating reduced-order-model solutions for both the primal and
dual solutions are omitted for a clearer presentation. The (reciprocal) effectivity index [6],
which is the ratio between the estimated and the true errors, i.e.,

Ieff :=
∣
∣∣∣
J (UFOM) − J (UROM)

η

∣
∣∣∣ (9)

is used to measure the quality of our error estimator. We desire Ieff ≈ 1 since then the
error estimator can reliably predict the reduced-order-modeling error. We refer to [31]
for two-sided proofs of discretization errorsmeasured in goal functionals using saturation
assumptions.We also observe that the effectivity index Ieff is close to one in the numerical
tests in Sect. 4. Finally, the quality of the adaptive enrichemnt is measured in terms of the
indicator index [62]:

Iind := |J (UFOM) − J (UROM)|
∑M

m=1 |ηm| . (10)

Error estimator-based ROM updates

In this section, we give a compact summary of our novel approach of a goal-oriented incre-
mental reduced-ordermodel from [32] and discuss its extension to porousmedia settings.
In the MORe DWR method, we marry a reduced-order model with a dual-weighted-
residual-based error estimator and an incremental version of the POD algorithm. The
goal is then to use the error estimator to identify when the solution behavior is not cap-
tured accurately by the reduced basis, such that it is incrementally enriched on-the-fly
with new full-order-model snapshots. The approach is particularly cheap because the
FOM snapshots are computed only for one temporal element.
In more detail, we apply our findings on error control of Sect. 3.1 to a backward Euler

reduced-ordermodel of poroelasticity. Further, an incremental basis generation ismanda-
tory for the method to reduce computational operations and thus to be fast, which we
realize by means of an incremental SVD. The incremental SVD is presented in Sect. 3.3.1.
In this context, we also introduce the incremental POD as a trimmed version of the incre-
mental SVD. Subsequently, the overall MORe DWR framework is depicted in Sect. 3.4,
where all the ingredients are assembled and the final algorithm is presented.
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In summary, our novel approach avoids a computationally heavy offline phase and
directly solves the reduced model. Our approach can be thought of as a replacement for
traditional full-order-model simulations, since we highly reduce the computational cost,
while controlling the error between the full-order (FOM) and the reduced-order model
(ROM).

Incremental proper orthogonal decomposition

The proper orthogonal decomposition (POD) [7,15,25,27,30,39,45,47,61,68,80] can be
employed to project the differential equation onto a lower-dimensional solutionmanifold.
In traditional applications of POD, one first collects full-order solution snapshots

U (t0), U (t1), . . . , U (tM),

and finds the POD basis by computing the singular value decomposition

Y :=
[
U (t0) U (t1) . . . U (tM)

]
= ��
T

with orthogonal matrices � ∈ R
n×d,
 ∈ R

(M+1)×d and � = diag(σ1, . . . , σd) ∈ R
d×d .

Here, n is the number of spatial degrees of freedom, M + 1 is the number of FOM
snapshots, and d ≤ min(n,M + 1). The SVD is then being truncated to the size N � d
using a retained energy criterion, cf. [36,38,47] e.g.,

ε(N ) =
∑N

i=1 σ 2
i∑d

i=1 σ 2
i

=
∑N

i=1 σ 2
i∑M+1

i=1 ||Ui||2Rn
< 99.9%. (11)

For coupled problems with several PDEs, like poroelasticity, we could again perform the

SVD of the snapshot matrix Y consisting of the entire solution vectors U (ti) =
(
u(ti)
p(ti)

)

,

but we choose to create separate SVDs for displacement u(ti) and pressure p(ti) such that
POD bases with various sizes can be used for the different solution components.
Instead of building repeatedly a reduced basis from scratch, we suggest updating an

already existing truncated SVD (tSVD) or solely its left-singular (POD) vectors according
tomodifications of the snapshotmatrixwithout recomputing thewhole tSVDor requiring
access to the snapshot matrix [32,46]. The POD becomes incremental by appending
additional snapshots to the initial snapshot matrix. This difference between the classical
SVD and incremental SVD (iSVD) is illustrated in Fig. 1. In this context, we rely on the
general approach of an additive rank-b modification of the SVD, mainly developed by
[23,24] and applied to the model-order reduction of fluid flows in [46].
Let Y ∈ R

n×m̃ be a given snapshot matrix that includes m̃ > 0 snapshots. Usually, m̃ is
equal or connected to the number of already computed time steps. Further, we have the
rank-N tSVD ��
T of the matrix Y . Additionally, let b ∈ N newly computed snapshots
{U1, . . . , Ub} be stored in the bunch matrix

B =
[
u1 . . . ub

]
∈ R

n×b. (12)

We aim to compute the tSVD that is updated by the information contained in the bunch
matrix B according to

�̃�̃
̃T = Ỹ =
[
Y B

]
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Fig. 1 Methodology of SVD (top) and incremental SVD (bottom)

without explicitly recomputing Y or Ỹ due to performance and memory reasons which
was the original motivation of Brand’s work on the incremental SVD, cf. [23,24]. We skip
the technical derivations of the incremental SVD in this work and instead summarize the
incremental POD routine in Algorithm 1. A prototypical implementation of the incre-
mental POD in Python can be found at https://github.com/Hendrik240298/Incremental_
POD and for a mathematical deep dive into the theory behind the incremental POD, we
refer the reader to [46][Section 2.2] and [32][Section 4.2.1].

Algorithm 1 Incremental POD update
Input: Reduced basis matrix �N ∈ R

n×N , singular value vector � = [σ1, . . . , σN ] ∈ R
N ,

bunch matrix B ∈ R
n×b, and energy threshold ε ∈ [0, 1].

Output: Reduced basis matrix �̃N ∈ R
n×Ñ , singular value vector �̃ = [σ̃1, . . . , σ̃Ñ ]

1: H = �T
NB

2: P = B − �NH
3: [QP, RP] = QR(P)
4: Q = [�N QP]

5: F =
[
diag(�) H

0 RP

]

6: if Q not orthogonal then
7: [Q, R] = QR(Q)
8: F = RF
9: [� ′,�′] = SVD(F )

10: Ñ = min
{

N ∈ N

∣
∣∣∣
∣
ε(N ) ≥ ε, 1 ≤ N ≤ d

}

11: �̃ = diag(�′)(1 : Ñ )
12: �̃N = Q� ′(:, 1 : Ñ )

Goal-oriented error-controlled incremental ROM

This section outlines how goal-oriented error control (Sect. 3.1) drives the incremental
reduced-order model (Sect. 3.3.1).

TheMORe DWR algorithm

The overall procedure is illustrated in Fig. 2.

https://github.com/Hendrik240298/Incremental_POD
https://github.com/Hendrik240298/Incremental_POD
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Fig. 2 Schematic representation of MORe DWR algorithm

The aim is to solve the reduced-order model and adaptively enrich the reduced basis
by means of the iPOD with full-order solutions until a given estimated error tolerance
is reached for the chosen goal functional. The approach is designed to work without
any prior knowledge or exploration of the solution manifold, while also attempting to
minimize the number of full-order solves. The error associated with the reduced solution
is estimated on each temporal element. The new full-order solution used for the basis
enrichment is computed on the temporal element with the largest error. So, two full-order
solves are conducted for each enrichment. We observe that this procedure is perfectly
compatible with the adaptive basis selection based onDWR estimates presented byMeyer
andMatthies in [52] to reduce the dimension of the reduced space. Thus, if incorporated it
would be possible to either enrich or downsize the reduced basis according to the problem
statement. The resulting approach is detailed inAlgorithm2. The reduced primal and dual
solutions are used to provide a fast error estimation. Thus, the incremental ROMhas both
a primal and a dual reduced basis as input in the form of the reduced basis matrix.

Initialization

If no prior information is available, the bases are initialized by computing the primal and
dual solution snapshots on the first temporal element. If prior reduced bases are available
e.g., from a previous simulation on a different parameter configuration or some (very
cheap) coarse-grid solution in the context of a multigrid idea, prior bases are used as an
initial guess and are then altered by the goal-oriented adaptation. Thus, the MORe DWR
approach is totally appropriate for reduced-order modeling of parameterized problems.
The method can be an efficient substitute for the full-order model, as it builds a reduced
basis tailored to a quantity of interest with a minimum of FOM solves.
Nevertheless, in the scenario without prior knowledge, we observed an issue when

exclusively the first dual FOM solution (t = T ) is utilized for the basis generation. We
identified a significant discrepancy between the error estimates and the real errors, which
is demonstrated and further described in Fig. 8. Tomitigate this issue, further assessments
utilizing the final dual snapshots for the basis enrichment at the first temporal elements
(t = 0) were conducted, which consistently improved the accuracy of the error estimates.
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Nonetheless, a practical constraint is posed, as these snapshots are not readily accessi-
ble without completing the whole dual FOM solution process. Thus, a computationally
efficient surrogate to bypass the need for the full-order solution process is required. For
this, the dual FOM is substituted by the dual ROM, which is already computed during
the enrichment process and only the last dual solution steps are conducted by the dual
FOM. Given that the inconsistency in the estimate predominantly emerges during the
initial enrichment iterations, we have optimized the process by confining the additional
dual ROM enrichment solely to these early iterations for efficiency.

Adaptive algorithm

At each MORe DWR iteration, the primal and dual reduced bases are enriched for the
temporal element mmax corresponding to the highest relative error comparing the local
relative error

ηrelm = ηm

J (UROM) + ∑M
l=1 ηl

(13)

associatedwith any temporal elementm. Because the full-order solutions are not available,
the error is normalized according to

J (UFOM) ≈ J (UROM) + η = J (UROM) +
M∑

l=1
ηl . (14)

The adaptive MORe DWR algorithm is stopped according to the global relative error
estimator

ηrel = η

J (UFOM)
≈

∑M
m=1 ηm

J (UROM) + ∑M
m=1 ηm

< TOLrel (15)

with TOLrel a user-chosen threshold. This ensures that the relative error over the entire
temporal domain is below a given tolerance, whereas in [32] we ensured that the local
relative error is below a given tolerance. However, enforcing the accuracy locally is a more
greedy approach, which leads to more full-order-model solves.

Remark 3.2 The additional enrichment of the dual space to provide an accurate estima-
tion of the error is omitted in Algorithm 2 and in Fig. 2 for the sake of clarity. This dual
enrichment takes place after line 12 in Algorithm 2 and after enriching the primal and
dual reduced bases in Fig. 2. The supplementary enrichment is based on the FOM solution
of the dual problem for a few time steps, corresponding to the few last time steps of the
dual problem i.e., the few first time steps of the primal problem. As the dual problem is
backward in time, it starts from the ROM solution at t = tl with l ∈ N and the solution
is computed for tl−1, tl−2, …, t0. The dual reduced basis is then enriched with these addi-
tional snapshots. This procedure is applied only in the few first MORe DWR iterations
prior to the update of the reduced system components and the error estimator.

Numerical tests
The MORe DWR framework is numerically substantiated on two different problem con-
figurations. The Mandel problem [1,26,29,51,73] (see also [33,35,40,50,78] and more
recently also for nonlinear poroelasticity [73]) is first considered as a benchmark for
two-dimensional poroelasticity and a linear goal functional. In Mandel’s problem one
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Algorithm 2MORe DWR algorithm
Input: Initial condition U0 := U (t0), primal and dual reduced basis matrices (�pu

Nu
p
,�pp

Np
p
)

and (�du
Nu
d
,�dp

Np
d
), energy iPOD threshold ε ∈ [0, 1], and error tolerance tol > 0.

Output: Primal and dual reduced basis matrices (�pu
Nu
p
,�pp

Np
p
) and (�du

Nu
d
,�dp

Np
d
) and reduced

primal solutions Um for all 1 ≤ m ≤ M.
1: while ηrel > tol do
2: for m = 1, 2, . . . ,M do � Primal ROM
3: Solve reduced primal system on Im for UROM

m

4: for m = M,M − 1, . . . , 1 do � Dual ROM
5: Solve reduced dual system on Im for ZROM

m−1

6: Compute error estimate: ηrel
7: if ηrel > tol then
8: Find temporal element with maximum error:mmax = arg max

1≤m≤L

∣∣∣
∣

ηm
J (UROM)+∑M

l=1 ηl

∣∣∣
∣

9: Solve primal full-order system on Immax for UFOM
mmax = (uFOM

mmax , p
FOM
mmax )

10: Update primal reduced basis:

�
pu
Nu
p

= iPOD(�pu
Nu
p
,�Nu

p , [u
FOM
mmax ], ε)

�
pp
Np
p

= iPOD(�pp
Np
p
,�Np

p
, [pFOM

mmax ], ε)

11: Solve dual full-order system on Immax for ZROM
mmax−1 = (zu,FOM

mmax−1, z
p,FOM
mmax−1)

12: Update dual reduced basis:

�
du
Nu
d

= iPOD(�du
Nu
d
,�Nu

d
, [zu,FOM

mmax−1], ε)

�
dp
Np
d

= iPOD(�dp
Np
d
,�Np

d
, [zp,FOM

mmax−1], ε)

13: Update reduced system components and error estimator

observes the so-called Mandel-Cryer effect [29,72] of a non-monotonic pressure evolu-
tion: first increasing pressure, followed by decreasing pressure. The second numerical
test is a three-dimensional footing problem inspired by [34]. Our computations have been
performed on anAMDEPYC 7H12 64-Core Processor. The FEM codes have been written
in FEniCS [4] and the reduced-order modeling has been performed with NumPy [41] and
SciPy [74].

Mandel problem in 2D

Let � := (0m, 100m)× (0m, 20m) and I := (0 s, 5 000 000 s) ≈ (0 ,58 d) with boundaries
as shown in Fig. 3.
The initial and boundary conditions are given by

p(·, 0) = p0(·) = 0 in � × {0},
u(·, 0) = u0(·) = 0 in � × {0},

K
ν

∇xp · n = 0 on ∂� \ �right × I, (No flow condition, homogeneous Neumann)

σ (u) · n = −t̄ey on �top × I, (Traction condition, inhomogeneous Neumann)
p = 0 on �right × I, (Constant zero pressure, homogeneous Dirichlet)

σ (u) · n = 0 on �right × I, (Traction free, homogeneous Neumann)
uy = 0 and ∂yux = 0 on �bottom×I, (Confined conditions, mixed Dirichlet/Neumann)
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Fig. 3 Domain for Mandel’s problem

Table 1 Parameters in Mandel’s problem

Parameter Value

M 1.75 × 107 Pa
c 1/M

α 1 Pam
ν 1 × 10−3m2s−1

K 1 × 10−13m2

ρ 1kgm−3

t̄ 1 × 107 Pam
μ 1 × 108

λ 2
3 × 108

ux = 0 and ∂xuy = 0 on �left × I. (Confined conditions, mixed Dirichlet/Neumann)

This results in the spatial function spaces (then modified in Section 2.1) being given by

Vu := {u ∈ H1(�)2 |uy = 0 on �bottom, ux = 0 on �left},
Vp := {p ∈ H1(�) | p = 0 on �right}.

The parameters for Mandel’s problem are summarized in Table 1.
In space, we use Taylor-Hood elements, i.e., quadratic finite elements for the dis-
placements u and linear finite elements for the pressure p. For this numerical test, a
fixed spatial mesh with 80 spatial cells in the x-direction and 16 spatial cells in the
y-direction is designed, which leads to an isotropic mesh with 10, 626 DoFs for dis-
placement and 1, 377 DoFs for pressure. For the temporal discretization, the end time
is T = 5 000 000 s ≈ 58 days with 5, 000 temporal elements i.e., the chosen time step size
k = 1000 s. For the quantity of interest, we choose the time-integrated pressure acting on
the bottom boundary i.e.,

J (U ) :=
∫

I

∫

�bottom

p dx dt.

Further, for the MORe DWR enrichment, we choose 1 − 10−7 and 1 − 10−11 for the
primal displacement and pressure energy tolerances (11). Accordingly, the dual energy
tolerances are both set to 1− 10−9. As argued in Sect. 3.4, it is crucial to have a dual space
large enough for estimating accurately the error. Thus, the reduced dual basis is enriched
during the first MORe DWR loops from the snapshots of the full-order dual solution on
the first time steps [t0, t�−1] i.e., for the last time points of the dual problem which is
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Fig. 4 Adaptivity in the MORe DWR method of Mandel’s problem

Table 2 Performance of MORe DWR method for the Mandel problem depending on the tolerance
in the goal functional

TOLrel [%] erel [%] Speedup FOM solves ROM size Ieff Iind

0.1 0.123 8.5 97 5 / 33 + 37 / 26 1.399 1.377

1 0.821 9.5 83 5 / 26 + 34 / 25 1.089 1.092

2 2.03 10.1 77 5 / 24 + 33 / 25 1.038 1.042

5 4.89 11.2 69 5 / 21 + 31 / 23 1.052 1.054

10 10.7 12.7 59 4 / 16 + 27 / 20 1.113 1.110

20 19.6 14.3 51 4 / 13 + 24 / 18 1.143 1.142

formulated backward in time. Here, it is enriched for the first five MORe DWR iterations
based on the snapshots corresponding with [t0, t4] in the primal temporal discretization.
First, the adaptive enrichments of themethod are shown in Fig. 4. The true relative error

between the reference full-order solution and the reduced-order solution is given by

erel := |J (UFOM) − J (UROM)|
|J (UFOM)| .

Here, we observe a clear decrease with the iterations of the MORe DWR algorithm;
see Fig. 4a. In contrast to the original MORe DWR paper [32], the relative error is now
much closer to or even slightly exceeds the error tolerance. This can be explained by
the fact that we do not enforce the error tolerance on each temporal element, but only
on the whole integrated time domain. The estimated relative error is very close to the
true error after iteration 2. Thereafter, only slight deviations can be noticed locally. On
the contrary, a large discrepancy can be observed between the true and estimated errors
for the first iterations, where the estimate yields significant underestimations due to the
inaccuracy of the dual reduced space. The target tolerance of 0.1% is reached after 36
iterations. For larger error tolerances, the algorithm would terminate sooner e.g., for 1%
relative error, we need 29 iterations, for 5% error we need 22 iterations and for 20%
error only 13 iterations are required (see Table 2). The enrichment of the POD basis is
illustrated in Fig. 4b. The primal reduced spaces increased progressively and regularly with
the iterations. We observe that the primal pressure solution requires significantly more
modes than the primal displacement. This implies that the choice of separating the bases
for displacement and pressure is beneficial. Interestingly, the dual displacement solution
(37 modes) requires more POD modes than the primal displacement solution (5 modes),
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Fig. 5 Goal functionals for Mandel’s problem and different relative error tolerances

whereas the dual pressure solution (26 modes) requires less POD modes than the primal
pressure solution (33 modes). We also see that the sizes of the dual bases increase faster
than in the primal case during the first 5 iterations as we enforce an additional dual basis
enrichment. But, its slope decreases after these initial enrichments.
The time trajectories of the goal functional from the full-order solution Uh and the

reduced-order solution UN are compared for each temporal element in Fig. 5. For these
comparisons, we choose relative error tolerances between 0.1% and 20%. Both quantity
of interest trajectories are almost indistinguishable for tolerances between 0.1% and 2%.
Some differences appear between the full-order and the reduced-order results for larger
relative error tolerances. They might be seen as a too large error. However, for certain
real-world applications an error of e.g., 10% might still be acceptable for an appealing
computational cost. We can see that choosing the relative error tolerance, the MORe
DWR approach allows to control the quality of the approximation of the true quantity of
interest, even within a reduced-order solution framework.
Table 2 gives an overview of the results obtained for the Mandel problem using the

MORe DWR algorithm with various error tolerances TOLrel between 0.1% and 20%. For
each tolerance value, the relative true error erel is given as well as the computational
speedup, the total number of FOM solves, the POD basis sizes for the primal displace-
ment/pressure and the dual displacement/pressure, the effectivity index Ieff from (9) and
the indicator index Iind defined in (10). Here, the number of FOM solves sums up all
primal and dual solves and the basis sizes are shown in the pattern: primal displacement
/ primal pressure + dual displacement / dual pressure.
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Fig. 6 Domain for 3D footing problem

The relative error as well as the speedup increase with a rise in tolerance. The relative
error is rather close to the error tolerance, but sometimes slightly exceeds it. Indeed,
here error estimates are employed, not error bounds. This can be explained by the fact
that we do not enforce the error tolerance on each temporal element, but only on the
whole integrated time domain. In contrast, enforcing the error tolerance on each temporal
element leads tomuch lower error than the error tolerance [32]. The speedup is explained
by the decreasing amount of FOM solves and smaller POD bases for both the primal
and dual problems, as well as displacement and pressure w.r.t. the given tolerance. The
effectivity index and the indicator index are close to 1 as expected for a linear PDE and goal
functional. This validates the usage of dual-weighted residual error estimates to control
the reduced-order-modeling error because the estimated error accurately approximates
the true error.

Footing problem in 3D

In this second numerical example, a three-dimensional footing problem inspired by [34] is
studied. Let � := (−32m, 32m) × (−32m, 32m) × (0m, 64m) and I := (0 s, 5 000 000 s)
with boundaries as shown in Fig. 6.
The initial and boundary conditions are given by

p(0) = p0 = 0 in � × {0},
u(0) = u0 = 0 in � × {0},
K
ν

∇xp · n = 0 on ∂� \ �bottom × I, (No flow condition, homogeneous Neumann)

σ (u) · n = −t̄ez on �compression × I, (Traction condition, inhomogeneous Neumann)
σ (u) · n = 0 on �top \ �compression × I, (Traction-free, homogeneous Neumann)
p = 0 on �bottom × I, (Constant zero pressure, homogeneous Dirichlet)
u = 0 on �bottom × I, (Fixed displacements, homogeneous Dirichlet)
σ (u) · n = 0 on �wall × I, (Traction-free, homogeneous Neumann)

This results in the spatial function spaces (then modified in Sect. 2.1) being given by

Vu := {u ∈ H1(�)3 |u = 0 on �bottom},
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Vp := {p ∈ H1(�) | p = 0 on �bottom}.

The material parameters as listed in Table 1 are used again.
As before, Taylor-Hood elements, namely quadratic finite elements in space for the

displacement u and linear finite elements for the pressure p, are employed. The spatial
mesh is fixed, it comprises 16 spatial cells in each direction i.e., an isotropic mesh with
107, 811DoFs for displacement and 4, 913DoFs for pressure. The temporal domain from0
to the end timeT = 5 000 000 s ≈ 58 d is discretizedwith 5, 000 temporal elements, which
leads to a time step size k = 1000 s. For the goal functional, we choose the time-integrated
pressure acting at the compression boundary i.e.,

J (U ) :=
∫

I

∫

�compression
p dx dt.

A linear system of equations with 112, 724 unknowns is obtained, which has to be
solved for each temporal element. The previous 2D Mandel problem was solved with
a direct solver. Due to the much larger size of the equation system, we now have to
resort to an iterative solution scheme for maintaining a low computational cost. The
equation system is not symmetric and the memory for the calculations is not limited;
thus we choose the generalized minimal residual method (GMRES). Specifically, SciPy
[74] implementation of GMRES is utilized with a tolerance for convergence of 5 · 10−8.
For the preconditioning of the system, we have tested a diagonal Jacobi preconditioner
as well as the smoothed aggregation algebraic multigrid (SA-AMG) method utilizing the
implementationprovidedby [13]. Both approaches have beenbenchmarkedon the footing
problem for the first 500 temporal elements. The SA-AMG ansatz needs a mean iteration
count of 6.33 for convergence per temporal element solve, while the Jacobi preconditioner
requires 283.81 iterations to reach the same accuracy. Although the number of iterations
is significantly lower for the SA-AMGmethod, the mean wall time per temporal element
solve is 93.37 s for the SA-AMG approach, but only 3.89 s for the Jacobi preconditioner.
The Jacobi preconditioner is significantly faster than the SA-AMG method in our case,
most likely due to easier parallelization capabilities on multicore machines. Thus, the
Jacobi preconditioner is employed for this application case.
Similar to Mandel’s problem, we choose 1 − 10−7 and 1 − 10−11 for the primal dis-

placement and pressure energy tolerance (11). Again, the dual energy tolerances are both
set to 1 − 10−9. As argued in Sect. 3.4, the dual spaces are enriched with additional dual
full-order solutions. In this case, we perform this additional enrichment for the first 8
MORe DWR iterations and include the dual solutions for the last five time steps of the
dual problem i.e., the time steps [t0, t4] of the primal problem discretization.
The adaptive enrichment of themethod is illustrated in Fig. 7. The relative error between

the full-order and reduced-order solutions, as well as the error estimator is shown in
Fig. 7a. We observe a similar behavior for the first iterations as in Mandel’s problem: a
discrepancybetween the estimate and the error,with a severeunderestimationof the error.
Thereafter, both quantities align for the rest of the iterations. In addition, we see a sharp
decline after 18 iterations that is followed by a non-monotonic behavior, highlighting the
greedy enrichment process of the MORe DWRmethod.
The evolution of the size of the primal/dual POD bases for displacement/pressure is

shown in Fig. 7b.We see again a steep increase in the dual POD sizes in the first iterations
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Fig. 7 Adaptivity in the MORe DWR method of the 3D footing problem

Fig. 8 Adaptivity in the MORe DWR method of the 3D footing problem without additional dual basis enrichments

that then flattens out and is finally surpassed by the primal pressure POD size. The size
of the primal displacement POD size is almost constant, with a maximum of 4.
Next, in Fig. 8 we compare the latter results with theMOReDWRmethod neglecting the

additional dual reduced space enrichment proposed in Sect. 3.4. Aminimumnumber of 20
iterations is enforced to ensure the consistencyof the results because it is expected fromthe
previous study that the error is severely underestimated during the first iterations without
extra enrichment (Fig. 7a). Figure 8a compares the relative error between the full-order
and reduced-order solutions with its estimate over the course of MORe DWR iterations.
In contrast to the results in Fig. 7a, we observe that the first phase of discrepancy between
the estimate and the error, with the typical severe underestimation of the error, lasts
much longer with more variation. The true error and its estimate align after 35 iterations.
Thereafter, the error estimate is as accurate as when using the extra dual enrichment.
Thus, the extra enrichment of the dual basis appears necessary for an accurate error
estimate from the early stage of the algorithm. The ROM solution that complies to a
tolerance of 0.5% is obtained with a total of 104 FOM evaluations (52 primal plus 52 dual
evaluations) without the dual enrichment, whereas only 80 FOM evaluations (20 primal
plus 20 dual plus 40 extra dual) were required with the enriched dual basis. Thus, although
we added dual FOM evaluations in the first iterations of the extra-enriched approach, the
trade-off seems beneficial, as this approach reduces the total number of iterations and
thus the computational costs.
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Fig. 9 Goal functionals for the 3D footing problem, depending on the tolerance in the goal functional

In addition, the development of the POD bases in case of no additional dual enrichment
is shown in Fig. 8b. In contrast to Fig. 7b, except for the primal displacement, all the
POD bases start growing at nearly the same rate. The dual pressure basis size stagnates
after 42 iterations, and the primal displacement has, after 7 iterations, a constant size of
4. Comparing the POD basis sizes for both approaches for a relative tolerance of 0.5%,
the final dual POD basis sizes are nearly the same. In contrast, in the case of the extra
enrichment, the primal pressure POD size of 19 is considerably smaller than the 47modes
needed when neglecting this enrichment.
The time trajectory of the goal functional from the reduced-order solution is compared

with the trajectory given by the full-order solution for error tolerances between 0.1% and
20% in Fig. 9. The trajectories of quantities of interest are nearly identical for a tolerance
of 0.1%. Differences emerge between the full-order and reduced-order goal functionals
for larger tolerances. In essence, the reduced-order solution reaches the accuracy chosen
by the user.
The time trajectories of the goal functional from the reduced-order solution is com-

pared with the trajectory given by the full-order solution for error tolerances between
0.1% and 20% in Fig. 9. The trajectories of both quantities of interest are nearly identical
for a tolerance of 0.1%. Differences emerge between the full-order and reduced-order
goal functionals for larger tolerances. In essence, the reduced-order solution reaches the
accuracy chosen by the user.
In Table 3, we give an overview of the simulation results of the three-dimensional

footing problem for different error tolerances between 0.1% and 20%. Tolerances are
chosen based on their potential applicability in real-world scenarios. Lower tolerances
could necessitate too many POD modes for the reduced-order model, rendering it less
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Table 3 Performance of MORe DWR method for the 3D footing problem, depending on the
tolerance in the goal functional

TOLrel [%] erel [%] Speedup FOM solves ROM size Ieff Iind

0.1 0.0971 8.6 220 4 / 55 + 53 / 28 0.999 1.207

0.5 0.5333 21.2 80 4 / 19 + 38 / 27 1.068 3.441

1 0.579 22.4 78 4 / 18 + 38 / 26 1.084 3.378

2 0.579 21.7 78 4 / 18 + 38 / 26 1.084 3.378

5 0.579 22.2 78 4 / 18 + 38 / 26 1.084 3.378

10 8.49 22.4 76 4 / 17 + 38 / 26 1.008 1.099

20 19.9 26.2 66 3 / 13 + 33 / 24 1.005 1.031

efficient. The tolerances are met besides in the case of 0.5%, where the error is slightly
underestimated.Weobserve thatwith a rise in the tolerance, the relative error aswell as the
speedup increase.We note that the algorithmhas the same behavior for the tolerances 1%,
2% and 5%. Indeed, these tolerances are reached within the same number of MORe DWR
iterations, yielding all other quantities to be the same. This behavior can be explained
by the sharp decline in the error after 19 MORe DWR iterations, c.f. Figure 7a. The
evaluation of the dual-weighted residual error estimates by means of the effectivity and
indicator indices shows that the estimate integrated over the temporal domain is almost
perfect, as the effectivity index is near 1.0 in all cases. However, the indicator indices vary
from 1.00 up to 3.44 which translates to inaccurate temporal error localizations in the
case of high indicator indices.

Conclusion
We developed an adaptive incremental reduced-order (MORe DWR) model for single-
phase flow problems in porous media, namely the Biot system. To this end, we fur-
ther developed and extended our prior work [32]. Therein, the following ingredients are
combined. First, a space-time formulation and Galerkin space-time finite element dis-
cretization for the coupled problem. Second, a ROM method based on an incremental
POD. Third, a goal-oriented a posteriori error estimator using the dual-weighted resid-
ual method for adaptively refining the ROM bases. The efficiency of the methodology
has been demonstrated, by using the incremental ROM for the two-dimensional Mandel
benchmark and a three-dimensional footing problem. The algorithm is stopped according
to the total relative error considering the whole temporal domain. The speed-ups offered
by this approach compared with the reference full-order approach vary from 8.5x in two
dimensions for the smaller relative tolerances, to 26.2x for the three-dimensional casewith
large relative tolerances. The accuracy of the error estimator has been improved by addi-
tional enrichment of the dual reduced bases. The true error and the error estimator almost
coincide with effectivity indices close to one, which makes the error estimates reliable. It
is important to note that the reduced-order model starts with no other prior information
than a single primal snapshot and a dual FOMsnapshot.Hence, the full-ordermodel needs
to be queried in the online stage to gather snapshots for basis enrichment. Consequently,
our approach could be further sped up by efficient full-order model solvers. Therefore, for
the three-dimensional test, we used GMRES as our iterative solver and compared a simple
diagonal Jacobi preconditioner and an algebraic multigrid preconditioner. An aspect for
future work is the combination of temporal adaptivity and reduced basis adaptivity. The



Fischer et al. AdvancedModeling and Simulation in Engineering Sciences           (2024) 11:9 Page 25 of 27

MORe DWR algorithm already requires the solution of the primal and dual problems.
This additional computational effort can be reused to refine the temporal mesh adaptively
using the dual-weighted residual method and could reduce the number of time steps, thus
further speeding up the computations.
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