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Abstract

This survey discusses a posteriori error estimation for model order reduction of
parametric systems, including linear and nonlinear, time-dependent and steady
systems. We focus on introducing the error estimators we have proposed in the past
few years and comparing them with the most related error estimators from the
literature. For a clearer comparison, we have translated some existing error bounds
proposed in function spaces into the vector space Cn and provide the corresponding
proofs in C

n. Some new insights into our proposed error estimators are explored.
Moreover, we review our newly proposed error estimator for nonlinear time-evolution
systems, which is applicable to reduced-order models solved by arbitrary
time-integration solvers. Our recent work on multi-fidelity error estimation is also briefly
discussed. Finally, we derive a new inf-sup-constant-free output error estimator for
nonlinear time-evolution systems. Numerical results for three examples show the
robustness of the new error estimator.
Keywords: A posteriori error estimation, Parametric systems, Model order reduction

Introduction
For every model order reduction (MOR) method or algorithm to be eventually used in
real applications, accuracy and efficiency of the method play key roles. While many MOR
methods are numerically shown efficient, not all of them are guaranteed to be reliable.
In other words, not all numerically demonstrated efficient MOR methods are associated
with computable error estimators, let alone fast-to-compute error estimators. This work
reviews a posteriori error estimators for projection-based MOR of parametric systems.
Many projection-based MOR methods for parametric systems [1] have been proposed,
for example, the multi-moment-matching methods [2, 3], methods based on (transfer
function, projection matrix, or manifold) interpolation [4–11], the proper orthogonal
decomposition (POD) methods [12–14], as well as the reduced basis methods [15–18].
We name those MOR methods for parametric systems pMOR methods. However, error
estimation for some of the pMORmethods are not yet widely discussed, for example, error
estimation for interpolation-based pMORmethods.While some a posteriori error bounds
[15, 17–28] are proposed for reduced-order models (ROMs) obtained from the reduced
basis method, most of them are derived using the weak form of the finite element method
(FEM). In contrast, we proposed some a posteriori error estimators [29–35] which are
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independent of the numerical discretization method. The error estimators are expressed
with the already discretized matrices and (nonlinear) vectors. Many of the existing error
bounds or error estimators are applicable to ROMs constructed via global projection
matrices, regardless which pMOR method is used for the ROM construction. For the
reduced basis method, the projection matrix and the ROM are usually constructed via a
greedy process. Multi-fidelity error estimation is recently proposed in [36] to accelerate
the greedy algorithm for constructing the projection matrix.
We further discuss a newly proposed error estimator [35] which is independent of the

numerical time-integration scheme and therefore is able to estimate the error of the ROM
solved with any time integrator. This is desired in many engineering applications, where
often commercial software is used to solve the original dynamical systems. Then it is
also desirable that the error estimator can be applied to measure the ROM error while
the ROM is solved with the same software. However, existing error estimators (bounds)
cannot achieve this, since theyusually require a pre-definednon-adaptive time-integration
scheme. This limits the wide use of the error estimators (bounds).
Finally, we propose an inf-sup-constant-free output error estimator for nonlinear time-

evolution systems, which avoids the computation of the smallest singular value σmin(μ)
of a large matrix at each queried sample of the parameter. This not only improves the
accuracy of the error estimator for problems with σmin(μ) close to zero, but also reduces
a large amount of computations, as computing the singular value needs computational
complexity of at least O(N ) for each parameter sample, where N is usually large.
Most of the error estimation methods reviewed in this work are based either on the

residual of the ROM approximation or on both the residual and a dual system. Such
techniques of using the residual of an approximate solution and a dual system, can be
traced back to error estimation for FEM approximations, see, e.g., [37].
For clarity, we summarize the new contributions of this survey, which cannot be found

in the referenced articles:

• Theorem 2. It transforms the error bound presented in function space in [19, 27] into
an error bound in the vector space Cn. New proofs are provided in Appendix.

• Theorem 4. It derives an error bound with quadratic decay in C
n.

• Theorem 5 and its proof. It uses a slightly different dual system (25) and a slightly
different auxiliary output ỹk (μ) to derive the same output error bound as in [29, 30].
Please see Remark 8 for the detailed differences.

• Theorem 7. It quantifies the state error estimator proposed in [38] with computable
upper and lower bounds.

• “Inf-sup-constant-free error estimator for time-evolution systems” section. It pro-
poses a new inf-sup-constant-free output error estimator for parametric time-
evolution systems.

In the next sections, we discuss error estimation for both time-evolution systems and
steady systems. “Problem formulation” section formulates the problems considered in this
work, including the original large-scale models and the corresponding ROMs. We first
review rigorous error bounds for both systems and provide some new proofs in “Rigor-
ous a posteriori error bounds” section. Then in “A posteriori error estimators” section,
we review error estimators which are not rigorous anymore, but decay faster than the
error bounds. The error estimators usually also have less computational complexity than
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the error bounds. “Error estimator for ROMs solved with any black-box time-integration
solver” section reviews the newly proposed error estimator that is applicable to black-box
solvers. The recently proposed multi-fidelity error estimation for large and complex sys-
tems is reviewed in “Multi-fidelity error estimation” section. It is shown that for some
complex systems, the greedy process of constructing the reduced basis can be largely
accelerated with multi-fidelity error estimation. “Inf-sup-constant-free error estimator
for time-evolution systems” section proposes a new inf-sup-constant-free output error
estimator for nonlinear time-evolution systems and presents numerical results. We con-
clude this survey in “Conclusion” section. This review is not exhaustive, but only contains
our contribution to this topic and the most related ones from the literature. Other error
estimators, in particular all error estimators for different types of systems, e.g., error esti-
mation for ROMs of second-order non-parametric systems [39, 40], are not discussed.
The proper generalized decomposition (PGD) method [41] known as a non-projection-
basedMORmethod, and the corresponding error estimation [42–44], are not considered
in this survey either. The list of abbreviations is provided as below:

• MOR: model order reduction
• POD: proper orthogonal decomposition
• FEM: finite element method
• PDEs: partial differential equations
• FOM: full-order model
• ROM: reduced-order model
• PGD: proper generalized decomposition
• IMEX: implicit–explicit
• RBF: radial basis function
• FFNN: feed forward neural network
• TC1: the first test case
• TC2: the second test case

Problem formulation
Consider the following parametric time-evolution system of differential algebraic equa-
tions (DAEs):

d
dt

E(μ)x(t,μ) = A(μ)x(t,μ) + f (x(t,μ),μ) + B(μ)u(t), x(0,μ) = x0(μ),

y(t,μ) = C(μ)x(t,μ),
(1)

where t ∈ [0, T ] and μ ∈ P ⊂ R
p, P is the parameter domain. x(μ) ∈ R

N is the state
vector of the system and E(μ),A(μ) ∈ R

N×N ,B(μ) ∈ R
N×nI ,C(μ) ∈ R

no×N ,∀μ ∈ P , are
the systemmatrices, f : RN ×P �→ R

N is the nonlinear system operator and u : t �→ R
nI

is the external input signal. Such systems often arise from discretizing partial differential
equations (PDEs) usingnumerical discretization schemes, or following somephysical laws.
System (1) is called the full-order model (FOM) when we discuss MOR. The number of
equations N in (1) is often very large to ensure high-resolution of the underlying physical
process.Numerically solving the FOMis expensive, especially formulti-query tasks, where
the FOM has to be solved at many instances of μ. When nI > 1 and nO > 1, the system
has multiple inputs and multiple outputs. Such problems are common in electrical or
electromagnetic simulation [36]. When we consider error estimation, we usually first
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assume nI = no = 1, then the obtained error estimation is extended to the more general
case nI > 1 and nO > 1. The extension is straightforward if the error is measured using
the matrix-max norm [31, 33, 38]. Therefore, if not mentioned explicitly, we consider the
case nI = no = 1 such that (1) can be written as

d
dt

E(μ)x(t,μ) = A(μ)x(t,μ) + f (x(t,μ),μ) + b(μ)u(t), x(0,μ) = x0(μ),

y(t,μ) = c(μ)x(t,μ).
(2)

Here, the input signal u(t) and the output response y(t,μ) become scalar-valued functions
of time and μ, respectively. Consequently, the system matrices b ∈ R

N and c ∈ R
N are

now vectors. All other quantities remain the same as in (1). We will briefly mention the
extension to nI > 1 and nO > 1 at proper places. Projection-based MOR techniques
obtain a ROM for (2) in the following form:

d
dt

Ê(μ)x̂(t,μ) = Â(μ)x̂(t,μ) + f̂ (Vx̂(t,μ),μ) + b̂(μ)u(t), x̂(0,μ) = WTx0(μ),

ŷ(t,μ) = ĉ(μ)x̂(t,μ),
(3)

where V ∈ R
N×n is the parameter μ-independent projection matrix, whose columns are

the reduced basis vectors.

Ê(μ) = WTE(μ)V, Â(μ) = WTA(μ)V, b̂(μ) = WTb(μ), ĉ(μ) = c(μ)V

are the reduced system matrices. f̂ (·, ·) = VT f (·, ·) is the reduced nonlinear vector. The
number of equations n in (3) should be much smaller than N in (2), i.e., n � N , so that
the ROM can be readily used for repeated simulations. When V = W, it is referred to
as Galerkin projection. We focus on Galerkin projection, though the error estimators
discussed in this work straightforwardly apply to Petrov–Galerkin projection, too.
For steady problems, the parametric system is time-independent,

f (x(μ),μ) = b(μ),

y(μ) = c(μ)x(μ),
(4)

where x(μ) ∈ R
N , and f : RN × C

p �→ R
N is the nonlinear system operator. Projection-

based pMOR obtains a steady parametric ROM as below,

f̂ (Vx̂(μ),μ) = b̂(μ),

ŷ(μ) = ĉ(μ)x̂(μ),
(5)

where f̂ (·, ·) = VT f (·, ·). When the system is linear, the steady system then becomes

M(μ)x(μ) = b(μ),

y(μ) = c(μ)x(μ),
(6)

whereM(μ) ∈ R
N×N ,∀μ ∈ P . The corresponding steady parametric ROM is

M̂(μ)x̂(μ) = b̂(μ),

ŷ(μ) = ĉ(μ)x̂(μ),
(7)

where M̂(μ) = VTM(μ)V.
In the following, we mainly discuss error estimation on the solutions obtained from the

ROMs (3) and (7). The norm ‖ · ‖ refers to the vector 2-norm or matrix spectral norm
all through the article. The ROM in (3) or (7) is constructed using a global reduced basis
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V. The error estimation methods reviewed in this work could be applied to measure the
error of the ROM obtained using a global reduced basis, irrespective of the method used
to construct the reduced basis. In this sense, the error estimationmethods are generic and
could be applicable to multi-moment-matching methods, POD methods, reduced basis
methods and some interpolation-based methods.

Remark 1 We point out that if the FOMs (1), (2), (4), (6) are obtained from numerical
discretization of PDEs, the error estimation discussed in this work and those inmost of the
referenced works in the introduction, do not involve the discretization error. This is the
case for most of the reduced basis method in the literature. As the spatial discretization
and the model reduction are mostly two separate steps, this is common practice. We
note that in case of knowledge of the discretization error, e.g., in adaptive FEM, one can
adapt the model reduction error tolerance to this error so that model reduction does not
contribute further to the magnitude of the approximation error, by, e.g., choosing the
model reduction tolerance to be 1–2 orders of magnitude lower than the discretization
error. This is common practice, but beyond the scope of this paper. For works on error
estimation including both the discretization error and the ROMerror, please refer to [45–
47]. The error estimation reviewed in this work could be combined with the discretization
error estimator [37] to realize adaptivity of the mesh size by checking the two estimated
errors respectively, during a joint greedy process for both spatial discretization andMOR.
Moreover, there are FOMs that are not derived by numerical discretization of PDEs,
rather from some physical laws, for example, themodified nodal analysis (MNA) in circuit
simulation directly results in systems ofDAEs. For such systems, we consider the solutions
to the FOMs as the exact solutions.

Rigorous a posteriori error bounds
This section reviews rigorous a posteriori error bounds for estimating the ROM error,
which are upper bounds of the true errors and therefore are rigorous. For time-evolution
systems, most of the approaches estimate the error at discrete time instances. There are
error bounds for state error and error bounds for output error. Output error bounds
usually need a dual system to achieve faster decay. We review the error bound for time-
evolution systems and steady systems in separate subsections.

Error bounds for time-evolution systems

The standard error estimation approaches proposed for the reduced basis method are
residual-based [17–19, 23, 24]. In order to derive the error bound, knowledge of the
temporal discretization scheme used to integrate the FOM and the ROM is assumed, e.g.,
using implicit Euler, Crank-Nicolson method, or an implicit–explicit (IMEX) method.
Computing the error bound involves determining the residual vector r(μ) ∈ R

N at each
time instance. Some goal-oriented output error estimation approaches also require the
residual of a dual system.
Suppose (2) is discretized in time using a first-order IMEX scheme [48]. The linear part

is discretized implicitly, while the nonlinear vector f (x(t,μ),μ) is evaluated explicitly. The
resulting discretized system is

At (μ)xk (μ) = E(μ)xk−1(μ) + δt
(
f (xk−1(μ),μ) + b(μ)uk

)
,

yk (μ) = c(μ)xk (μ), k = 0, . . . , K
(8)
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withAt (μ) := E(μ)−δtA(μ). Here, δt is the temporal discretization step. Error estimation
methods discussed in this work may also apply to time-varying δt. For simplicity, we use
δt to represent the time-varying case, too. The ROM (3) can be discretized in the same
way as

Ât (μ)x̂k (μ) = Ê(μ)x̂k−1(μ) + δt
(
f̂ (Vx̂k−1(μ),μ) + b̂(μ)uk

)
,

ŷk (μ) = ĉx̂k (μ), k = 0, . . . , K,
(9)

where Ât (μ) := Ê(μ) − δtÂ(μ). The residual from the ROM approximation is computed
by substituting the approximate state vector x̃k (μ) := Vx̂k (μ) into (8). The resulting
residual at the k-th time step, rk (μ) is

rk (μ) := E(μ)x̃k−1(μ) + δt
(
f (x̃k−1(μ),μ) + b(μ)uk

) − At (μ)x̃k (μ). (10)

The nonlinear part of the ROM (9) is not yet hyperreduced. When hyperreduction [49,
50], e.g., discrete empirical interpolation (DEIM), is applied to (9), we get the ROM in the
form,

Ât (μ)x̂k (μ) = Ê(μ)x̂k−1(μ) + δt
(
VTIk

f (μ) + b̂(μ)uk
)
,

ŷk (μ) = ĉx̂k (μ), k = 0, . . . , K,
(11)

where Ik
f (μ) is an approximation of f (Vx̂k (μ),μ). It is clear that in order to obtain the

residual rk (μ), the temporal discretization scheme for the ROMshould be the same as that
for the FOM so that x̃k (μ) in (10) and xk (μ) in (8) correspond to the same time instance
tk .

State error bound

An a posteriori error bound �(μ) for the approximation error ek (μ) := xk (μ) − x̃k (μ)
can be computed based on the residual as below.

Theorem 1 (Residual-basederrorbound)Suppose that thenonlinearquantity f (x(t,μ),μ)
is Lipschitz continuous in the first argument for all μ such that there exists a constant Lf
for which

‖f (x(t,μ),μ) − f (x̃(t,μ),μ)‖ ≤ Lf‖x(t,μ) − x̃(t,μ)‖,∀t ≥ 0,μ ∈ P .

Further assume that for any parameter μ the projection error at the first time step is
‖e0(μ)‖ = ‖x0(μ)− x̃0(μ)‖ = ‖x0(μ)−VVTx0(μ)‖, andAt (μ) is invertible, ∀μ ∈ P . The
error of the approximate state vector x̃ at the k-th time step, ‖ek (μ)‖ = ‖xk (μ) − x̃k (μ)‖
is given by:

‖ek (μ)‖ ≤ �k (μ) := ξ (μ)k‖e0(μ)‖2 +
k∑

i=1
ζ (μ) · ξ (μ)k−i · ‖ri(μ)‖, (12)

where ζ (μ) := ‖At (μ)−1‖ and ξ (μ) := ‖At (μ)−1E(μ)‖ + δtLf‖At (μ)−1‖.

Proof A proof for the above theorem can be found in [35]. ��

Remark 2 When the systemhasmultiple inputs, then the state error boundcorresponding
to each column of B(μ) can be obtained from Theorem 1. The final state error is taken as
the maximum over all the column-wise derived state error bounds.
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In [16, 18, 19, 51], similar state error bounds using the residual rk (μ) are derived, where
only linear systems are considered in [16, 18]. The error bound proposed in [19] for non-
linear systems includes the error of hyperreduction for the nonlinear function f (x(t,μ),μ),
such that there is an additional term in the error bound. The error bound [19] is expressed
in function space, and is not straightforward to be translated into the vector space Cn as
we consider here. An error bound in the vector spaceCn by considering hyperreduction is
provided in [29, 52]. A state error bound based on implicit temporal discretization scheme
is proposed in [51], where the hyperreduction error is also considered. In summary, all
the error bounds discussed in [16, 18, 19, 29, 51, 52] and the one in Theorem 1 involve
summing up the residual rk (μ) at discrete time steps.

Remark 3 In [24], state error bound for the linear version of the time-continuous ROM
in (3) is derived, i.e., the nonlinear functions in (2) and in (3) are both assumed to be zero.
The error bound is also a function of continuous time and continuous parameter. The
sum of the residual ‖ri(μ)‖ over discrete time steps becomes the integral of the residual
over the time interval [0, T ].

Output error bound

A straightforward output error bound for the output error

eko (μ) := yk (μ) − ŷk (μ) = cxk (μ) − cx̃k (μ)

can be derived from (12) of Theorem 1 by noticing that ‖eko (μ)‖ ≤ ‖c‖‖ek (μ)‖ [24].
Finally, we have

‖eko (μ)‖ ≤ ‖c‖(ξ (μ)k‖e0(μ)‖2 +
k∑

i=1
ζ (μ) · ξ (μ)k−i · ‖ri(μ)‖). (13)

The above output error bound is nevertheless rather conservative, especially when ‖c‖ is
large.Moreover, the error bound depends only on ‖ri(μ)‖, i.e., the primal residual, leading
to a linear decay.
Primal-dual-based output error bounds are obtained in [19, 24, 26, 27] for linear time-

evolution systems, so that the resulting error bounds possess quadratic decay w.r.t. both
the primal residual and the dual residual. The output error bound in [19, 26, 27] is
described in function space based on the weak form of the original PDEs. To be consistent
with the system (9) using matrices and vectors, we transform the error bound in [19] into
the vector space Cn for the ROM in (9). Theorem 2 shows the interpreted error bound.
The assumptions of the theorem correspond to those assumptions in [19] in function
space. No additional or stronger limitations are assumed in Theorem 2. Although the
proof for the theorem can be done by more or less using the idea of the proof in [19], it is
very different and is therefore provided in this work. Note that the proof in [19] is divided
into several lemmas, thus consists of a sequence of proofs.

Theorem 2 (Output error bound for linear systems) Given a linear FOM in (8), where
f (xk (μ),μ) = 0, consider the output error of its ROM in (9) where f̂ (Vx̂k (μ),μ) = 0.
Assume that there is no error at the initial condition, e0(μ) = x0(μ)− x̃0(μ) = 0, and both
the matrices −A(μ) and E(μ) are symmetric positive definite. An error bound for the error
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of a corrected output of the ROM is

|yk (μ) − ŷkc (μ)| ≤ �(μ) ·
⎛

⎝
k∑

i=1
‖ri(μ)‖2

⎞

⎠

1/2

·
⎛

⎝
k−1∑

j=0
‖rK−k+j

du (μ)‖2 + δKdu(μ)

⎞

⎠

1/2

,

(14)

where ŷkc (μ) = ŷk (μ)+
k−1∑

j=0
(x̃K−k+j

du (μ))T rj(μ) is a corrected output of ŷk (μ). Here, ‖rjdu(μ)‖
denotes the residual at the j-th time instance induced by the ROM of the dual system

At (μ)Txkdu(μ) = E(μ)Txk+1
du (μ),

E(μ)TxKdu(μ) = c(μ)T , k = K − 1, . . . , 0,
(15)

and �(μ) is a parameter-dependent scalar. δKdu(μ) is a scaled upper bound for the dual
ROM state error ‖xKdu(μ) − Vdux̂Kdu(μ)‖2 at the final time step t = tK . The dual ROM is
defined as

Âdu(μ)x̂kdu(μ) = Êdu(μ)x̂k+1
du (μ),

Êdu(μ)x̂Kdu(μ) = ĉdu(μ), k = K − 1, . . . , 0,
(16)

where Âdu(μ) = VT
duAt (μ)TVdu, Êdu(μ) = VT

duE(μ)
TVdu, ĉdu = VT

duc(μ)
T .

Proof See Appendix. ��

Remark 4 For multiple input and multiple output systems, an output error bound corre-
sponding to each column of B(μ) and each row of C(μ) can be derived from Theorem 2.
Then the final output error bound is taken as the maximum over all column-row-wise
derived output error bounds. Please refer to a more detailed derivation for steady systems
in the next “Error bounds for steady systems” section.

Remark 5 In [24], a similar primal-dual based output error bound is obtained for the
time-continuous ROM in (3). The output error bound estimates the output error at the
final time T . The sums of the primal residual r(μ)k and the dual-residual rkdu over time
instances in (14) then become two integrals integrating the time variable from 0 to T. The
initial approximation error ‖e0(μ)‖2 was assumed to be zero in [19], while it exists in the
error bound in [24]. �(μ) is also differently defined in [24]. In contrast to [24] where the
error estimation is derived in the vector space Cn, in [26] a time-continuous output error
bound is derived in the function space based on the weak form of the original PDEs. The
error bounds proposed in [15, 24, 27] are also reviewed in the survey paper [28] on the
reduced basis method.

Remark 6 Theorem 2 is restricted in the sense that both E(μ) and −A(μ) are assumed
to be symmetric positive definite. Our proposed error estimators to be discussed in “A
posteriori error estimators” section do not need this assumption.

The primal-dual based output error bound in (14) has a quadratic behavior in the sense
that it is the multiplication of the primal residuals with the dual-residuals. Therefore, it
is expected that the error bound decays faster than the primal-only output error bound
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in (13). Note that all the above reviewed error bounds estimate the error by accumulating
the residuals over time.

Error bounds for steady systems

In this subsection, we discuss error bounds for steady systems as in (6). Analogous to the
time-evolution systems, the error bounds for both the state error and the output error
also rely on the spectral norm of ‖M−1(μ)‖, i.e., the smallest singular value of the matrix
M(μ) for any given μ.

State error bound

The state error bound for the state error e(μ) = x(μ) − Vx̂(μ) can be easily derived by
noticing that

M(μ)e(μ) = M(μ)x(μ) − M(μ)Vx̂(μ),

= b(μ) − M(μ)Vx̂(μ)︸ ︷︷ ︸
=:r(μ)

.

Finally,

‖e(μ)‖ = ‖M(μ)−1r(μ)‖ ≤ ‖M(μ)−1‖‖r(μ)‖. (17)

Similar error bounds for the state error have been proposed for the reduced-basis method
[17, 18] based on the weak form of the PDEs and they are written in the functional
form. Here, we derive the error bound in the vector space Cn for the spatially descritzed
system (6) written using matrices and vectors. For systems with multiple inputs, b(μ) is a
matrix, then e(μ) is also a matrix. Considering the i-th column ei(μ) of e(μ), we get [38]

‖ei(μ)‖ ≤ ‖M(μ)−1‖‖ri(μ)‖, (18)

where ri(μ) is the i-th column of r(μ) The final bound �s(μ) is then defined as �s(μ) :=
maxi ‖ei(μ)‖ for multiple input systems. In [17, 23, 53], error bounds for the nonlinear
steady systems (4) and (5) are also obtained, where ‖M(μ)−1‖ on the right-hand side
of (18) is replaced by the smallest singular value of a properly defined Jacobian matrix in
[17], whereas in [23], it is replaced by a lower bound on the coercivity constant of a linear
operator. In [53], with some assumptions, ‖e(μ)‖ is bounded as

‖e(μ)‖ ≤ 2(‖ê(μ)‖ + ‖Jf (μ)−1‖‖rr(μ)‖), (19)

where ê(μ) is a properly computed approximation of e(μ) which is the solution to the
residual system

Jf (μ)e(μ) = r(μ).

Here, Jf (μ) is the Jacobian matrix of f in (4) w.r.t. x̂(μ). In (19), rr(μ) := r(μ) − Jf ê(μ) is
the residual induced by the approximation ê(μ) to e(μ).
In summary, the error bound �s(μ) as well as the error bounds derived in [17, 18, 23]

all depend on the spectral norm of a properly defined matrix, or a coercivity constant
(usually a lower bound of it), which entail computational complexity depending on the
large dimension N . Sometimes, ‖M(μ)−1‖ or the coercivity constant is so small leading
to very rough error estimation.
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Output error bound

Analogous to the time-evolution systems, estimating the output error y(μ)− ŷ(μ) for the
ROM (7) is also based on a dual system and its ROM defined respectively as

MT (μ)xdu(μ) = cT (μ), (20)

M̂(μ)x̂du(μ) = ĉ(μ), (21)

where M̂(μ) = VT
duM

T (μ)Vdu, ĉ(μ) = VT
duc

T (μ).The followingTheoremstates anoutput
error bound using the dual system (20) and its ROM (21).

Theorem 3 (Output error bound for linear steady systems [32, 33]) The output error
|eo(μ)| := |y(μ) − ŷ(μ)| of the ROM (7) is bounded by

|eo(μ)| ≤ ‖rdu(μ)‖‖r(μ)‖/‖M−1(μ)‖ + ‖[Vdux̂du(μ)]T r(μ)‖. (22)

Here rdu(μ) = cT (μ) − MT (μ)Vdux̂du(μ).

Proof See [33]. ��

The above primal-dual based output error bound is motivated by the primal-dual error
bounds early proposed in [20–22], etc, though the derivations in [20–22] are in function
space and therefore are different. An even earlier proposed primal-dual based output
error bound in function space can be found in [25]. For systems with multiple inputs and
multiple outputs, an error bound with matrix-max norm can be derived [33]. To this end,
we first get the error bound for the (i, j)-th entry of the output eo(μ) matrix, which can be
straightforwardly derived from (22), i.e.,

|eo(μ)i,j| ≤ ‖rdu,i(μ)‖‖rj(μ)‖/‖M−1(μ)‖ + ‖[Vdux̂du(μ)]T rj(μ)‖, (23)

where rdu,i(μ) := cTi (μ) − MT (μ)Vdux̂du,i(μ) is derived from the i-th row cTi (μ) of the
matrix c(μ) and rj(μ) := bj(μ)−M(μ)Vx̂j(μ) is defined by the j-th column bj(μ) of b(μ).
Here, x̂du,i(μ) and x̂j(μ) are the i-th and j-th columns of x̂du(μ) and x̂(μ), respectively.
The error bound for ‖eo(μ)‖max is defined as

‖eo(μ)‖max ≤ max
1≤i≤nO,1≤j≤nI

‖eo(μ)i,j‖.

The error bounds in (22) and (23) do not quadratically decay, since there is a second
term which is not a quadratic function of the two residual norms. However, with some
modifications or assumptions, we can derive error bounds that are quadratic.

Theorem 4 (Output error bound for linear steady systems with quadratic behavior) If
b(μ) = cT (μ),

|eo(μ)| ≤ ‖rdu(μ)‖‖r(μ)‖/‖M−1(μ)‖. (24)

When b(μ) = cT (μ), if we modify the output of the ROM in (7) to ȳ(μ) = ŷ(μ) +
(Vdux̂du)T r(μ), then the output error bound for the output error y(μ) − ȳ(μ) becomes

|y(μ) − ȳ(μ)| ≤ ‖rdu(μ)‖‖r(μ)‖/‖M−1(μ)‖.

Proof When b(μ) = cT (μ), the dual system (20) is the same as the primal system (6),
so that Vdu = V and x̂du(μ) = x̂(μ). This leads to ‖[Vdux̂du(μ)]T r(μ)‖ = 0 in (22) or
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‖[Vdux̂du(μ)]T rj(μ)‖ = 0 in (23). When b(μ) = cT (μ), we have

‖y(μ) − ȳ(μ)‖ = ‖c(μ)(x(μ) − Vx̂(μ)) − (Vdux̂du)T r(μ)‖,
= ‖c(μ)M(μ)−1[M(μ)x(μ) − M(μ)Vx̂(μ)] − (Vdux̂du)T r(μ)‖,
= ‖c(μ)M(μ)−1r(μ) − (Vdux̂du)T r(μ)‖,
= ‖[M(μ)−T c(μ)T − (Vdux̂du)]T r(μ)‖,
= ‖M(μ)−T [c(μ)T − M(μ)T (Vdux̂du)]T r(μ)‖,
= ‖M(μ)−1rdu(μ)T r(μ)‖,
≤ ‖M(μ)−1‖‖rdu(μ)‖‖r(μ)‖.

��
With the corrected output, the output error bound has a quadratic behavior. The same

technique was previously used in [20–22, 25] for error analysis in function space. The
error bound in (24) is in agreement with the analysis in, e.g., [20]. It is worth pointing out
that using a corrected output to obtain error estimation with quadratic decay was early
proposed for the finite element method (FEM) [37]. Analogous to the state error bound
in (18), the smallest singular value ofM(μ) for any given μ must be computed in order to
compute the output error bound.

A posteriori error estimators
This section discusses a posteriori error estimators that may loose the rigorousness of
the error bound. However, these error estimators try to reduce the big gap between the
error bounds and the true error occurring in many problems. Usually the ratio error bound

true error
or error estimator

true error is considered as the effectivity of an error bound/estimator. A posteriori
error estimators discussed in this section are aimed to have effectivities error estimator

true error closer
to 1 as compared to those error bound

true error of the error bounds. At the same time, they usually
have less computational complexity than the error bound. In the following subsections,
we also separately discuss error estimation for time-evolution systems and that for steady
systems.

Error estimators for time-evolution systems

The error estimators discussed in this subsection aim to estimate the error of the time-
discrete ROM in (9). The works in [29–31] propose output error estimators which avoid
accumulating (summing up) the residuals over the time evolution, resulting in much
tighter error estimators than the primal-dual based error bounds in “Error bounds for
time-evolution systems” section. Furthermore, the output error estimators in [29, 30]
apply to both nonlinear and linear systems. For nonlinear systems, the error estimators
could also include the approximation error of hyperreduction. We review those error
estimators in the following theorems.

Output error estimators

The output error estimators needs a dual system defined as,

At (μ)Txkdu(μ) = c(μ)T . (25)

The ROM of the dual system can be derived by

Ât (μ)x̂kdu(μ) = ĉ(μ), (26)
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where Ât (μ) = VT
duAt (μ)TVdu, ĉ(μ) = VT

duc(μ)
T .

Remark 7 The dual system defined in (25) is slightly different from that in [29–31], where
the right-hand side is−c(μ)T instead of c(μ)T . To be consistent with the definition of the
corrected output ȳ(μ) for the steady systems in Theorem 4, we use the dual system (25),
based on which the corrected output for the nonlinear time-evolution systems to be
defined later will have a uniform form as the corrected output for the steady systems.

The residual induced by the approximate solution Vdux̂du computed from the ROM
in (26) is

rkdu(μ) := c(μ)T − At (μ)TVdux̂kdu(μ). (27)

Define an auxiliary residual:

r̃k (μ) := E(μ)xk−1 + δt
(
f (xk−1(μ),μ) + b(μ)uk (μ)

) − At (μ)x̃k .

It can be seen that the differences of r̃k (μ) from rk (μ) in (10) are that f (x̃k−1(μ)) in rk (μ)
is replaced by f (xk−1(μ),μ), i.e., f applied to the true solution xk−1(μ) and E(μ)x̃k−1(μ)
is replaced by E(μ)xk−1(μ). With r̃k (μ), we will derive a direct relation between r̃k (μ)
and the state error xk (μ)− x̃k (μ). This relation will aid the derivation of the output error
estimation.

Theorem 5 (Primal-dual based output error estimator [29, 30]) For the time-discrete
FOM (8) and the time-discrete ROM (9), assume that At (μ) is invertible for any μ ∈ P ,
then the output error eko (μ) = yk (μ) − ŷk (μ) at the time instance tk can be bounded as

|eko (μ)| ≤ ρ̃(μ)	k (μ)‖rk (μ)‖, k = 1, . . . , K, (28)

where ρ̃k (μ) = ‖r̃k (μ)‖/‖rk (μ)‖ and 	k (μ) = ‖At (μ)−1‖‖rkdu(μ)‖ + ‖Vdux̂kdu(μ)‖.

Proof From the dual system (25), we have

(xkdu(μ))
TAt (μ) = c(μ). (29)

Multiplying xk (μ) − x̃k (μ) from the right on both sides of (29), we get

(xkdu(μ))
TAt (μ)[xk (μ) − x̃k (μ)] = c(μ)[xk (μ) − x̃k (μ)].

Recalling the definition of r̃k (μ) in (7), we have

r̃k (μ) = At (μ)[xk (μ) − x̃k (μ)].

We combine the above two equations to obtain

(xkdu(μ))
T r̃k (μ) = c(μ)[xk (μ) − x̃k (μ)] (30)

Defining a new vector ỹk (μ) = ŷk (μ) + (Vdux̂kdu(μ))
T r̃k (μ) yields

|yk (μ) − ỹk (μ)| = |c(μ)[xk (μ) − x̃k (μ)] − (Vdux̂kdu(μ))
T r̃k (μ)|

= |(xkdu(μ))T r̃k (μ) − (Vdux̂kdu(μ))
T r̃k (μ)| (using Eq. (30))

(31)

Inserting the relation

At (μ)T [xkdu(μ) − Vdux̂kdu(μ)] = rkdu(μ),
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into (31), leads to

|yk (μ) − ỹk (μ)| = |[rkdu(μ)]T [At (μ)]−1r̃k (μ)|
≤ ‖[At (μ)]−1‖‖rkdu(μ)‖‖r̃k (μ)‖.

(32)

Finally,

|yk (μ) − ŷk (μ)| ≤ ‖[At (μ)]−1‖‖rkdu(μ)‖‖r̃k (μ)‖ + |(Vdux̂kdu(μ))
T r̃k (μ)|

≤ ‖[At (μ)]−1‖‖rkdu(μ)‖‖r̃k (μ)‖ + ‖Vdux̂kdu(μ)‖‖r̃k (μ)‖.
Defining ρ̃k (μ) = ‖r̃k (μ)‖/‖rk (μ)‖, we obtain the desired error bound. ��

However, r̃k (μ) involves the true solution vector xk (μ), making ρ̃k (μ) not computable.
In [29, 30], the nonlinear function f (x(t,μ),μ) is assumed to be Lipschitz continuousw.r.t.
x(t,μ), in order to derive a computable estimation ρ(μ) for ρ̃k (μ). The output error can
then be estimated as [29, 30]

|yk (μ) − ŷk (μ)| ≈ ρ(μ)	k (μ)‖rk (μ)‖. (33)

The details of computing ρ(μ) can be found in [29, 30].

Remark 8 Recall that the dual system defined in (26) is a bit different, therefore the
proof in [29, 30] does not directly apply here. Although the proof above is similar to the
proofs in [29, 30], it is not the same. In particular the variable ỹk (μ) is different, which is
ỹk (μ) = ĉ(μ)T x̂k (μ) − (Vdux̂du(μ))T r̃k (μ) in [29, 30].

When hyperreduction is applied to the ROM (9), we get the hyperreduced ROM in (11).
An output error estimation for the hyperreduced ROM is derived in [29, 30] as

‖eko (μ)‖ ≈ ρ(μ)	k (μ)(‖rkI(μ)‖ + εkI(μ)), k = 1, . . . , K, (34)

where rkI(μ) := E(μ)Vx̂k−1(μ)+δt
(Ik−1

f (μ)+buk
)−AtVx̂k (μ), and εkI(μ) is an estimation

of the interpolation error ‖δt[f (xk (μ),μ)−Ik
f (μ)]‖. The quantity εkI(μ) can be computed

using, e.g., the technique in [51]. The output error estimators in (33) and (34) do not
include the sum of the residuals over time instances, and are expected to be much tighter
than the rigorous output error bound. In the numerical results in [29] for a linear system,
it is shown that the error estimator yields a more accurate estimation of the true error
than the error bound in [19, 27].

Remark 9 For multiple-input multiple-output systems, the corresponding output error
estimator can be obtained using the matrix-max norm as explained in (23) and (24).

The error estimators in (33) and (34) do not quadratically decay w.r.t. the two residuals
because of the second part in 	k (μ). In [31], we use a corrected output of the ROM, so
that the finally derived error estimator includes much less contribution of the second part
in 	k (μ). This makes the error estimator decay almost quadratic.
Define a corrected output ȳk (μ) = ŷk (μ)+ (Vdux̂kdu(μ))

T rk (μ) for the ROM in (9).With
the same assumptions as in Theorem 5, and the Lipschitz continuity of f (x(t,μ),μ), the
output error ēko (μ) = yk (μ) − ȳk (μ) can be estimated as [31]

‖ēko (μ)‖ ≈ 	̄k (μ)‖rk (μ)‖, k = 1, . . . , K, (35)

where 	̄k (μ) = ρ‖At (μ)−1‖‖rkdu(μ)‖ + |1 − ρ|‖Vdux̂kdu(μ)‖.
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Comparing the error estimator in (35) with that in (33), we find that the second non-
quadratic term is still there, but with a scaling factor |1− ρ| instead of ρ. It is analyzed in
[30] that under certain assumptions, when the POD-greedy algorithm used to compute
the projectionmatrixV converges, ρ gets closer to 1, meaning that |1−ρ|will be closer to
0. This makes the second part in (35) tend to zero, while the second part in (28) remains
away from zero. Therefore, the error estimator for the corrected output error should give a
tighter estimation. The derivation follows almost that in [31] and the proof for Theorem 5,
noticing that the dual system and the corrected output are slightly different from those in
[31]. We will not repeat it here.
With simple calculations, the corrected output error for the hyperreduced ROM in (11)

can be estimated as [31]

‖ēko (μ)‖ ≈ 	̄k (μ)‖rkI(μ)‖ + 	̄k (μ)εkI , k = 1, . . . , K. (36)

Error estimators for linear steady systems

Some error estimators [33, 34, 38, 54] for linear steady systems were proposed in order to
avoid estimating/computing the spectral norm ‖M(μ)−1‖ involved in the error bounds in
“Error bounds for steady systems” section. An approach based on randomized residuals
is proposed in [54], where some randomized systems are defined to get error estimators
for both the sate error and the output error. It is discussed in [34] and [38] that the error
estimators in [54] are theoretically less accurate than the estimators proposed in [33, 38].
The error estimators in [54] more easily underestimate the true error than the estimators
in [33, 38], which is also numerically demonstrated in [33, 38]. Here we review the error
estimators proposed in our recent work [33, 34, 38].

State error estimators

The error estimator proposed in [38] estimates the state error for linear steady systems
For the FOM in (6), the error e(μ) := x(μ) − Vx̂(μ) of the approximate state Vx̂(μ)
computed by the ROM (7) can be estimated as

|e(μ)| ≈ |Vr x̂r(μ)|, (37)

where x̂r(μ) is the solution to the following ROM

Mr(μ)x̂r(μ) = r̂(μ). (38)

Here, Mr(μ) = VT
r M(μ)Vr , r̂(μ) = Vrr(μ) with Vr being properly derived, and r(μ) =

b(μ) − M(μ)Vx̂(μ). The system (38) is the ROM of the following residual system

M(μ)xr(μ) = r(μ). (39)

Remark 10 Wenote that a similar techniqueofusing anapproximate solution to a residual
system, as an error estimator for the state error,was already proposed for the finite element
method (FEM) (see [37] and the references therein). There, the approximate solution was
not obtained from a ROM of the residual system.

The accuracy of the error estimator |Vr x̂r(μ)| in (37) is quantified in [38]:

Theorem 6 (Quantifying the error estimator [38]) The state error |e(μ)| is lower and
upper bounded as

|Vr x̂r(μ)| − δ(μ) ≤ |e(μ)| ≤ |Vr x̂r(μ)| + δ(μ),
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where δ(μ) = |xr(μ) − Vr x̂r(μ)|.
Whenever the ROM (38) of the residual system is accurate enough, δ(μ) will be small.

However, how to further quantify the error δ(μ) is left open. We derive the following
theorem with computable upper and lower bounds.

Theorem 7 (Quantifying the error estimator with computable upper and lower bound)
The state error |e(μ)| is lower and upper bounded as

|Vr x̂r(μ)| − δ̄(μ) ≤ |e(μ)| ≤ |Vr x̂r(μ)| + δ̄(μ), (40)

where δ̄(μ) = ‖M(μ)−1‖‖rr(μ)‖.
Proof The proof can be easily done. We notice that

M(μ)[xr(μ) − Vr x̂r(μ)] = rr(μ),

with rr(μ) := r(μ) − M(μ)Vr x̂r(μ). Then

δ(μ) = ‖M(μ)−1rr(μ)‖ ≤ ‖M(μ)−1‖‖rr(μ)‖ = δ̄(μ).

��
Note that for linear systems, the upper bound in (40) is only half the upper bound in (19).

Output error esitmators

The error estimators in [33, 34] estimate the error eo(μ) := y(μ)− ŷ(μ) of the output ŷ(μ)
computed from the ROM (7). In [34], we derive the following primal-dual based output
error estimator

|eo(μ)| ≈ |[Vdux̂du(μ)]T r(μ)| =: �o1 (μ),

where x̂du(μ) is the solution to the reduced dual system

M̂du(μ)x̂du = ĉdu(μ), (41)

and M̂du(μ) = VT
duM(μ)TVdu, ĉdu(μ) = VT

duc(μ)
T . The reduced dual system is a ROM

of the dual system,

M(μ)Txdu = c(μ)T . (42)

Remark 11 In [37] and the references therein, the FEM approximation error was esti-
mated also using a similarly defined dual system in the function space. However, the
approximate solution to the dual system is not the solution of the ROM for the dual
system. The approximate dual solution is then multiplied with the residual of the FEM
approximation to the original PDEs to constitute a primal-dual based error estimator for
the output error of the FEM approximation.

The randomized output error estimator in [54] is based on the output error estimator
�o1 (μ). On the one hand, it is analysed in [34] that �o1 (μ) is more accurate than the
randomized output error estimator; on the other hand, it is also numerically demonstrated
in [34] that�o1 (μ) is nevertheless less accurate than the other estimators proposed in [33,
34]. In the following, we first introduce the primal-dual output error estimator in [33],
which involves a dual-residual system defined as

M(μ)Txrdu (μ) = rdu(μ),



Feng et al. AdvancedModeling and Simulation in Engineering Sciences           (2024) 11:5 Page 16 of 34

and its ROM

M̂rdu (μ)x̂rdu (μ) = r̂du(μ),

where M̂rdu (μ) = VT
rduM(μ)Vrdu , r̂du(μ) = VT

rdurdu(μ), with Vrdu being properly com-
puted. The dual-residual rdu(μ) := c(μ)T − M(μ)TVdux̂du is the residual induced by
the approximate solution Vdux̂du computed from the dual ROM (41). A primal-dual and
dual-residual based output error estimator proposed in [33] is stated as following. For the
FOM in (6), the output error eo(μ) of the ROM (7) can be estimated as

|eo(μ)| ≈ |[Vdux̂du(μ)]T r(μ)| + |(Vrdu x̂rdu )
T r(μ)| =: �o2 (μ). (43)

The error estimator �o2 (μ) in (43) has an additional term |(Vrdu x̂rdu (μ))T r(μ)| as com-
pared to �o1 (μ). Now we discuss the accuracy of both estimators through the next The-
orems.

Theorem 8 (Quantifying the output error estimator �o1 (μ) [34]) The output error eo(μ)
is bounded as

�o1 (μ) − δ1(μ) ≤ |eo(μ)| ≤ �o1 (μ) + δ1(μ),

where δ1(μ) := |[xdu(μ) − Vdux̂du(μ)]T r(μ)| = |rdu(μ)T (M(μ))−1r(μ)|.

Proof See [34]. ��

Theorem 9 (Quantifying the output error estimator �o2 (μ) [34]) The output error eo(μ)
is bounded as

�o2 (μ) − δ1(μ) − |(Vrdu x̂rdu )
T r(μ)| ≤ |eo(μ)| ≤ �o2 (μ) + δ2(μ),

where δ2(μ) := |[xrdu (μ) − Vrdu x̂rdu (μ)]T r(μ)|.

Proof See [34]. ��
We can observe that

δ2(μ) = |[xrdu (μ) − Vrdu x̂rdu (μ)]
T r(μ)|,

= |[M(μ)Txrdu (μ) − M(μ)TVrdu x̂rdu (μ)]
T (M(μ))−1r(μ)|,

= |[rdu(μ) − M(μ)TVrdu x̂rdu (μ)]
T (M(μ))−1r(μ)|,

= |rrdu (μ)T (M(μ))−1r(μ)|,
where rrdu (μ) := rdu(μ)−M(μ)TVrdu x̂rdu (μ) is the residual induced by the reduced dual-
residual system.
We can further derive upper bounds for δ1(μ) and δ2(μ), respectively. Actually,

δ1(μ) ≤ ‖rdu(μ)‖‖(M(μ))−1‖‖r(μ)‖ =: δ̄1(μ),

δ2(μ) ≤ ‖rrdu (μ)‖‖(M(μ))−1‖‖r(μ)‖ =: δ̄2(μ).

Although we have no proof yet, it is expected that ‖rrdu (μ)‖ ≤ ‖rdu‖ in general, since rrdu
is the residual induced by the ROM of the dual-residual system whose right-hand side is
rdu. Finally, we should have δ̄2(μ) ≤ δ̄1(μ), indicating that�o2 (μ) should bemore accurate
than �o1 (μ). On the other hand, we know that

|eo| − δ̄1(μ) ≤ �o1 (μ),

|eo| − δ̄2(μ) ≤ �o2 (μ).
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Then δ̄2(μ) ≤ δ̄1(μ) implies that underestimation of the true error by �o2 (μ) should be
less than by �o1 (μ).
In [34], we have further proposed another output error estimator variant�o3 (μ), which

has less computational complexity than�o2 (μ), but has similar, or sometimes even better
accuracy. It does not depend on the dual system and/or dual-residual system as �o1 (μ)
and �o2 (μ), but depends on the primal-residual system in (39). �o3 (μ) is defined as

|eo(μ)| ≈ |c(μ)Vr x̂r(μ)| =: �o3 (μ). (44)

Comparing�o3 (μ) with the state error estimator |Vr x̂r(μ)| in (37), we see that there is only
a difference of the output matrix c(μ). Both are derived by employing the primal-residual
system (39).

Theorem 10 (Quantifying the output error estimator�o3 (μ) [34])The output error eo(μ)
is bounded as

�o3 (μ) − δ3(μ) ≤ |eo(μ)| ≤ �o3 (μ) + δ3(μ),

where δ3(μ) := |c(μ)[xr(μ) − Vr x̂r(μ)]|.
With simple calculations, an upper bound of δ3(μ) can be derived as

δ3(μ) ≤ δ̄3(μ) := ‖c(μ)‖‖M(μ)−1‖‖rr(μ)‖ = ‖c(μ)‖δ̄(μ) (Theorem 7).

It can be easily seen that computing �o3 (μ) needs only to compute one additional ROM,
i.e., the ROM of the primal-residual system (38), while computing �o2 (μ) needs to com-
pute two additional ROMs. Theoretically, the upper bound δ̄2(μ) should decay faster than
the upper bound δ̄3(μ), implicating that �o2 (μ) should be more accurate than �o3 (μ).
However, from our numerical simulations on several different problems [34], �o3 (μ) is
even more accurate than �o2 (μ).

Error estimator for ROMs solved with any black-box time-integration solver
The error bounds and error estimators reviewed in the previous sections are all residual
based. In particular, for time-evolution systems, the error bound and estimators need
to compute the residual rk (μ) at corresponding time instances tk , k = 1, . . . , K . It is
clear that to compute rk (μ), the temporal discretization scheme applied to the FOM
must be known, so that rk (μ) (10) can be derived by inserting the approximate solution
x̃k (μ) into the temporal discretization scheme, e.g., (8) and by subtracting the left-hand
side of the first equation from its right-hand side. Moreover, the temporal discretization
scheme (8) for the ROM (3) must be the same as that for the FOM tomake sure that x̃k (μ)
computed from the ROM (8) corresponds to the true solution xk (μ) at the same time
instance tk . These two requirements on the FOM and the ROM become limitations for
the error bounds (estimators) when the FOM is simulated by a black-box time-integration
solver and/or when the ROM is also desired to be solved using the same black-box time-
integration solver.
In [35], we propose a new error estimator which is applicable to the situation where

both the FOM and the ROM are solved by a black-box solver. We take use of a user-
defined implicit–explicit (IMEX) temporal discretization scheme to derive the new error
estimator. Although potentially any IMEX scheme can be applied, we consider the first-
order IMEX scheme (8) in this survey. Note that the second-order IMEX scheme is also
used in [35].
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Since the first-order IMEX scheme (8) differs from the black-box solver, we have a defect
or a mismatch when we insert the solution snapshots xk (μ) computed from the black-box
solver into the first-order IMEX scheme.

dk (μ) := At (μ)xk (μ) − E(μ)xk−1(μ) + δt
(
f (xk−1(μ),μ) + b(μ)uk

)
.

Although the time-integration scheme of the black-box solver is invisible, we can use the
solution snapshots xk (μ), k = 0, . . . , K , at some samples of μ to learn the defect vector.
We then use dk (μ) to correct the user-defined scheme (8), such that its solution recovers
the solution xk (μ) computed by a black-box solver and the temporal discretization scheme
of the black-box solver thenbecomes visible via the corrected time-discrete FOMasbelow,

At (μ)xkc (μ) = E(μ)xk−1
c (μ) + δt

(
f (xk−1

c (μ),μ) + b(μ)uk
) + dk (μ),

ykc (μ) = c(μ)xkc (μ).
(45)

It is clear that if dk (μ) can be accurately learned, then not only xkc (μ) in (45) recovers
xk (μ), but also the FOM in (45) is equivalent to the temporal discretization scheme of the
black-box solver. The ROM of the FOM in (45) can be obtained as

Ât (μ)x̂kc (μ) = Ê(μ)x̂k−1
c (μ) + δt

(
f̂ (Vx̂k−1

c (μ),μ) + b̂(μ)uk
) + d̂k (μ),

ŷkc (μ) = ĉx̂kc ,
(46)

where Ât (μ), Ê(μ), f̂ (·, ·), b̂(μ), ĉ(μ) are defined as in (3) and d̂k (μ) = VTdk (μ). We make
use of both the corrected FOM (45) and the corresponding ROM (46) to derive output
error estimation for the output error |yk (μ) − ŷk (μ)|, where yk (μ) and ŷk (μ) are the
outputs of the FOM in (2) and the ROM in (3) at any time instance tk , respectively. Both
systems can be solved using any black-box solver.
Given the FOM in (2), assuming that At (μ) is non-singular for all μ ∈ P , the nonlinear

function f (x(t,μ),μ) is Lipschitz continuousw.r.t.x(t,μ), and thedefect vectord(μ) canbe
accurately learned, then the output error |yk (μ)− ŷk (μ)| of the ROM (3) can be estimated
as [35]

|yk (μ) − ŷk (μ)| ≈ 	̄k (μ)‖rkc (μ)‖ + ‖ȳkc (μ) − ŷk (μ)‖, (47)

where rkc (μ) := E(μ)Vx̂k−1
c (μ)+δt(f (Vx̂k−1

c (μ),μ)+b(μ)uk )+dk (μ)−At (μ)Vx̂kc (μ) is the
residual induced by the d-corrected ROM (46), and ȳkc (μ) := ŷkc (μ)+ (Vdux̂kdu(μ))

T rkc (μ)
is a corrected output of the d-corrected ROM in (46). 	̄k (μ), V,Vdu, x̂kdu(μ) and rkdu(μ)
are defined as before.
The corrected output ȳkc (μ) := ŷkc (μ) + (Vdux̂kdu(μ))

T rkc (μ) is defined a bit differently
as in [35], where ȳkc (μ) := ŷkc (μ) − (Vdux̂kdu(μ))

T rkc (μ). Its corresponding dual system in
[35]:

At (μ)Txdu(μ) = −cT (μ)

is also slightly different from that in (25). Please also refer toRemark7.However, derivation
of the error estimator is very similar as that in [35] and is not repeated here.
When hyperreduction is considered, the ROM (3) becomes

d
dt

Ê(μ)x̂(μ) = Â(μ)x̂(μ) + VTIf (μ) + b̂(μ)u(t), x̂(0) = VTx0,

ŷ(μ) = ĉ(μ)x̂(μ),
(48)
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Algorithm 1 The weak greedy algorithm
Input: the FOM, a training set � composed of parameter samples taken from the parameter
domain P , error tolerance tol< 1, �(μ) to estimate the error.
Output: Projection matrix V.
1. Choose initial parameter μ∗ ∈ �. V ← ∅, ε = 1.
2. While ε >tol
3. Compute the snapshot(s) x(μ∗) by solving the FOM at μ = μ∗.
4. Update V by V = orth{V, x(μ∗)}, (e.g., using the modified Gram-Schmidt process with
deflation.)
5. Compute μ∗ such that μ∗ = arg max

μ∈�
�(μ).

6. ε = �(μ∗).
7. End.

where If (μ) approximates f (Vx̂,μ) via hperreduction. The corresponding d-corrected
ROM is

Ât (μ)x̂kc (μ) = E(μ)x̂k−1
c (μ) + δt

(
VTIk

f (μ) + b̂(μ)uk
) + d̂k (μ), x̂c(0) = VTx0,

ŷkc (μ) = ĉx̂kc , (49)

which is the d-corrected hyperreduced ROM. Error estimation for the output error of the
ROM (48) is stated as

|yk (μ) − ŷk (μ)| ≈ 	̄k (μ)(‖rkc,I(μ)‖ + εkI(μ)) + ‖ȳkc (μ) − ŷk (μ)‖, (50)

where rkc,I(μ) := E(μ)Vx̂k−1
c (μ) + δt(Ik

f (μ) + b(μ)uk ) + dk (μ) − At (μ)Vx̂kc (μ) is the
residual induced by the d-corrected ROM (49), and εkI(μ) is the hyperreduction error
defined as before.
Now we come to the problem of accurately learning d(μ), so that (47) gives an accurate

error estimation for ROMs solved with black-box solvers. In [35], we have used proper
orthogonal decomposition (POD) combined with radial basis function (RBF) interpola-
tion orwith feed forward neural network (FFNN) to learnd(μ). POD is first used to project
d(μ) ∈ R

N onto a lower-dimensional subspace. RBF or FFNN is then used to learn the
projected short vector d̂(μ) ∈ R

nd , nd � N , where d(μ) ≈ Vd d̂(μ), Vd ∈ R
N×nd is

computed from a two-stage singular value decomposition (SVD) of the snapshot matrix
D := [d0(μ1), . . . ,dK (μ1), . . . ,d0(μs), . . . ,dK (μs)]. Each di(μj) is the defect vector evalu-
ated at time instance ti and parameter sample μj . All details can be found in [35].

Remark 12 While the new error estimator is based on our earlier proposed output error
estimator in [31], the idea can be directly applied to derive a posteriori state error estima-
tors (bounds).

Multi-fidelity error estimation
This section briefly reviews our recentmulti-fidelity error estimation used for accelerating
the weak greedy algorithm.Weak greedy algorithms are often used to iteratively construct
the reduced basis (V) for MOR of parametric steady systems. A sketch of the algorithm is
given as Algorithm 1.
Some key points for the greedy algorithm to converge fast are: a properly chosen training

set �, an efficient and fast-to-compute error estimator (bound) �(μ). For some complex
problems, although the cardinality of the training set � is not large, computing �(μ)
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over � at each iteration is slow. In [36], we propose the concept of multi-fidelity error
estimation to accelerate the greedy iteration.
We start with a rough training set �c with even smaller cardinality, i.e. |�c| ≤ |�|,

and try to evaluate �(μ) only over �c at each greedy iteration. At the same time, a
surrogate estimator is constructed based on the already available values of �(μ) over �c.
This surrogate is supposed to be more cheaply computed than �(μ), so that it can be
fast evaluated over a fine training set �f with much larger cardinality than |�|. Using
the results of the surrogate estimator over �f , we enrich �c with the parameter sample
selected by the surrogate. The selected parameter sample corresponds to the largest value
of the surrogate. The parameter sample that corresponds to the smallest value of �(μ)
over �c is simultaneously removed from �c. This way, we can always keep �c small
over iterations, but �c is kept being updated to only contain those important parameter
samples. In the greedy process, those samples correspond to large ROM errors and are
good candidates for greedy parameter selection in the next iterations.
This process of using a surrogate estimator in the greedy algorithm was originally pro-

posed in [55] for time-evolution nonlinear systems. In [36], we define this as bi-fidelity
error estimation, since both the original estimator �(μ) and a surrogate estimator are
used for estimating the error in the greedy process. Based on that, we further propose
multi-fidelity error estimation which depends on the structure of the original error esti-
mator�(μ) [36]. Taking the output error estimator�o3 (μ) as an example, two projection
matrices V and Vr should be constructed in order to compute �o3 (μ). When we replace
�(μ) in Algorithm 1 with �o3 (μ), we need to iteratively update both V and Vr with snap-
shots by solving the FOM in (6) at two greedily selected parameter samples twice. If at a
certain stage, e.g., when the estimated ROM error is smaller than a small value θ < 1, but
is still larger than the error tolerance tol, we stop updating Vr , then the FOM in (39) at
one of the two selected parameter samples does not have to be solved. Consequently, we
have saved runtime of solving a large FOM at the subsequent iterations. At the same time,
the original �o3 (μ) is degraded to a low fidelity error estimator ��

o3 (μ). The surrogate
estimator is then constructed based on this low fidelity estimator at the latter stage of the
greedy process. Finally, we have employed the original estimator �o3 (μ), a low-fidelity
estimator ��

o3 (μ), and their respective surrogates in the whole greedy process. We call
this multi-fidelity error estimation. We sketch this concept in Fig. 1. It is shown in [36]
that the greedy process employing multi-fidelity error estimation is much faster than the
standard weak greedy algorithm for some large-scale time-delay systems with hundreds
of delays.
The error estimators presented in the previous sections have been numerically com-

pared in the individual papers. For an overview, we list them as below. Here, the sections
are those in this survey where the corresponding error estimators are reviewed.

• In [29, 30], the error estimator proposed there (“Error estimators for time-evolution
systems” section) is numerically compared with the error bound in [19, 27] (“Error
bounds for time-evolution systems” section) for parametric time-evolution systems.

• In [31], the error estimator with corrected output (“Error estimators for time-evolu-
tion systems” section) is numerically compared with the error estimator in [29, 30]
for parametric time-evolution systems.
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Fig. 1 The concept of multi-fidelity error estimation in a greedy process, where �(μ) represents any original
error estimator, ��(μ) is a low-fidelity error estimator when we stop updating partial information of �(μ), and
�s(μ) is a surrogate of �(μ). Likewise, ��

s (μ) is a surrogate of �
�(μ). tol and ε are defined in Algorithm 1, tol

< θ < 1 is a user-defined small value

• In [38], theproposed state error estimator (“Error estimators for linear steady systems”
section) is compared with the state error bound (“Error bounds for steady systems”
section) for parametric steady systems from computational electromagnetics.

• In [33], a newly proposed output error estimator �o1 (μ) (“Error estimators for linear
steady systems” section) is compared with the output error bound (22) in [32] “Error
bounds for steady systems” section) for parametric linear steady systems. It is also
compared with an existing randomized error estimator from [54].

• In [34], some more output error estimators are proposed and compared with each
other; they are also compared with the output error estimator �o1 (μ) proposed in
[33] (“Error estimators for linear steady systems” section).

• In [35], a new error estimator (“Error estimator for ROMs solved with any black-box
time-integration solver” section) which is applicable to the situation where both the
FOM and the ROM are solved by a black-box solver, is compared with the output
error estimator in [31] for parametric nonlinear time-evolution systems.

• In [36], the multi-fidelity error estimation (“Multi-fidelity error estimation” section)
is numerically compared with the standard greedy process with only a single high-
fidelity error estimator for time-delay systems with more than one hundred delays.

Inf-sup-constant-free error estimator for time-evolution systems
While the error estimators for time-evolution systems described in “Error estimators for
time-evolution systems” section are accurate, their computation involves the quantities
	k (μ) and 	̄k (μ) for which the term ‖At (μ)−1‖ = 1

σmin(At (μ))
needs to be evaluated for

every μ, where σmin(At (μ)) is the smallest singular value of the matrix At (μ). In function
space, σmin(At (μ)) corresponds to the inf-sup-constant of a linear operator [56]. This
poses two challenges. Firstly, the complexity of computing the smallest singular value is at
least linearly dependent onN for each parameter sample.When the number of parameter
samples is high (typical for problems with several parameters or parameters having a wide
range), this can lead to significant increase of the offline computational cost. Secondly, for
some applications the matrix At (μ) could be poorly conditioned, leading to σmin(At (μ))
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close to zero, which could lead to blow up of the estimated error. While methods exist in
the literature [56–58] to address the increased computational cost, these approaches are
somewhat heuristic and a careful tuning of the involved parameters needs to be done to
achieve good results. In the following theorem, we derive a new output error estimator
applicable to time-evolution systems avoiding the inf-sup constant.

Remark 13 For the sake of exposition, we derive the new inf-sup-constant-free error
estimator basedon thederivationof theoutput error estimator inTheorem5.But, a similar
process can be repeated to derive inf-sup-constant-free versions of the error estimators
presented in (34), (35) and (36). Furthermore, a straightforward extension of the inf-sup-
constant-free output error estimator is applicable to the output error estimator in (47)
and (50) which deals with the case of black-box time-integration solvers.

Theorem 11 (Primal-dual inf-sup-constant-free output error estimator) For the time dis-
crete FOM (8) and the time-discrete ROM (9), assume the time step δt is constant, so that
At (μ) does not change with time. Let all the assumptions in Theorem 5 be met, the output
error eko (μ) = yk (μ) − ŷk (μ) at the time instance tk can be bounded as

|eko (μ)| ≤ ρ̃(μ)	̆k (μ)‖rk (μ)‖, k = 1, . . . , K,

where ρ̃k (μ) := ‖r̃k (μ)‖/‖rk (μ)‖ and 	̆k (μ) = ‖edu‖ + ‖Vdux̂du(μ)‖ with edu :=
At (μ)−1rdu(μ). Here, x̂du(μ) and rdu(μ) are defined in (26) and (27), respectively.

Proof We start with the expression of (32) from Theorem 5 and write

|yk (μ) − ỹk (μ)| = |[rdu(μ)]T [At (μ)]−1r̃k (μ)|
≤ ‖([At (μ)]−T rdu(μ)

)T‖‖r̃k (μ)‖.
SinceAt (μ) does not depend on time, we can safely remove the superscript k from rdu(μ).
Unlike what is done in (32) we do not apply the matrix sub-multiplicative property in the
second line for the term ‖[At (μ)]−T rkdu(μ)‖. The expression [At (μ)]−T rdu(μ) =: edu(μ)
is seen to be the solution of the linear system

[At (μ)]Tedu(μ) = rdu(μ). (51)

We call the above linear system the dual-residual system corresponding to the dual
system (25). Using this dual-residual system and the expression ỹ(μ) = ŷk (μ) +
(Vdux̂du(μ))T r̃k (μ) we write

|yk (μ) − ŷk (μ)| ≤ ‖edu(μ)T‖‖r̃k (μ)‖ + |(Vdux̂du(μ))T r̃k (μ)|
≤ ‖edu(μ)‖‖r̃k (μ)‖ + ‖Vdux̂du(μ)‖‖r̃k (μ)‖
= (‖edu(μ)‖ + ‖Vdux̂du(μ)‖)‖r̃k (μ)‖,

where x̂du(μ) does not changewith time, so that the superscript k is also removed.Defining
	̆(μ) := ‖edu(μ)‖+‖Vdux̂du(μ)‖ and using ρ̃k (μ) = ‖r̃k (μ)‖/‖rk (μ)‖, we get the desired
error bound. ��

Finally, we approximate the ratio ρ̃k (μ) with the quantity ρ(μ) to obtain the inf-sup-
constant-free output error estimator as

|yk (μ) − ŷk (μ)| ≈ ρ(μ)	̆(μ)‖rk (μ)‖ =: �iscf(μ), (52)
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Algorithm 2 Simultaneous construction of the projection bases for the inf-sup-constant-
free output error estimator applicable to time-evolution systems
Input: Dual system matrices At (μ)T , c(μ)T , a training set � composed of parameter samples
taken from the parameter domain P , error tolerance tol < 1.
Output: Projection matrices Vdu and Ve.
1. Choose initial parametersμ∗ ∈ � andμ∗

e ∈ �withμ∗ = μ∗
e . SetVdu ← ∅,V0

e ← ∅,Ve ← ∅,
ε = 1.
2. While ε > tol
3. Compute the dual system snapshot(s) xdu(μ) by solving the FOM (25) at μ = μ∗.
4. Update Vdu by Vdu = orth{Vdu, xdu(μ∗)} (e.g., using the modified Gram-Schmidt process
with deflation.)
5. Compute the dual system snapshot(s) xdu(μ) by solving the FOM (25) at μ = μ∗

e .
6. UpdateV0

e byV0
e = orth{V0

e , xdu(μ∗
e )} (e.g., using themodifiedGram-Schmidt process with

deflation.)
7. Form Ve: Ve = orth{Vdu,V0

e }.
8. Compute μ∗ such that

μ∗ = arg max
μ∈�

‖Veêdu(μ)‖

where êdu(μ) is obtained by solving the ROM (53).
9. Compute μ∗

e from � following

μ∗
e = arg max

μ∈�
‖rdu(μ) − [At (μ)]TVeêdu(μ)‖

and ensuring μ∗
e = μ∗.

10. ε = ‖Veêdu(μ∗)‖.
11. End.

Computational aspects

In (52), evaluating 	̆(μ) involves determining ‖edu(μ)‖ by solving the dual-residual sys-
tem (51) for every parameter sample μ. This step can be computationally expensive.
To address this, we propose to obtain a ROM for (51) such that we can approximate
edu(μ) ≈ Veêdu(μ). The ROM reads

[Âe(μ)]T êdu(μ) = r̂du(μ), (53)

where Âe(μ) = VT
e At (μ)Ve, r̂du(μ) = VT

e rdu(μ). The dual-residual rdu(μ) is the residual
induced by the approximate solution Vdux̂du(μ) computed from the dual ROM (26). We
propose a greedy algorithm in whichVe and the projectionmatrixVdu for the dual system
ROM (26) are constructed simultaneously. For an appropriately computed Ve, we have
‖edu(μ)‖ ≈ ‖Veêdu(μ)‖ and hence the inf-sup-constant-free error estimator (52) can be
further approximated as

|yk (μ) − ŷk (μ)| ≈ ρ(μ)	̆k
e (μ)‖rk (μ)‖ =: �̃iscf(μ), (54)

with 	̆e(μ) := ‖Veêdu(μ)‖ + ‖Vdux̂du(μ)‖. Next, the greedy algorithm to simultaneously
construct Vdu and Ve is detailed.

Simultaneous and greedy construction ofVdu andVe

The greedy algorithm is sketched in Algorithm 2. The inputs to the algorithm are the
system matrices corresponding to the dual system, viz., At (μ)T , c(μ)T , a properly chosen
training set � and a tolerance tol. The outputs resulting from the algorithm are the two
projection bases Vdu and Ve which are needed to evaluate 	̆e(μ) in the inf-sup-constant-
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free error estimator (54). In Step 1, the initial greedy parametersμ∗ andμ∗
e are initialized,

ensuring that μ∗ = μ∗
e . The projection matrices Vdu,V0

e and Ve are initialized as empty
matrices. In Steps 3 and 5, the FOM (25) is evaluated at μ∗ and μ∗

e , respectively. The
resulting dual system snapshots are then used to update Vdu and V0

e in Steps 4 and
6, respectively, using e.g., the modified Gram-Schmidt process with deflation. Step 7
involves constructing the projection matrix Ve. Following this, the ROM in (53) is solved
to evaluate ‖Veêdu(μ)‖ ∀μ ∈ �, which is then used as an error estimator to choose the
next greedy parameter μ∗ in Step 8. Furthermore, in Step 9, the norm of the residual
‖rdu(μ) − [At (μ)]TVeêdu(μ)‖ induced by the ROM (53) of the dual-residual system is
evaluated to determine the second greedy parameter μ∗

e for the next iteration. In Step 10,
the maximum estimated error at the current iteration is set to be the maximum estimated
error in Step 8, i.e., ε = ‖Veêdu(μ)‖.
Remark 14 In Step 8, we have used the criterion ‖Veêdu(μ)‖ to select the parameter μ∗

for constructing Vdu for the ROM (26). Recalling the state error estimator (37) for steady
parametric systems proposed in (37), it is easy to see that ‖Veêdu(μ)‖ is exactly the state
error estimator for the state error ‖xdu(μ) − x̂du(μ)‖ of the ROM (26). We use this state
error estimator to iteratively construct the projection matrix Vdu for the ROM (26). In
order to evaluate the state error estimator, we also need to construct Ve. In [38], we have
explained how to construct Ve in detail. In particular, a different criterion is used for
greedy construction of Ve, i.e. the norm ‖rdu(μ) − [At (μ)]TVeêdu(μ)‖ to avoid μ∗ = μ∗

e .
The vector rdu(μ) − [At (μ)]TVeêdu(μ) is nothing but the residual vector induced by the
ROM (53) of the dual-residual system (51).

To obtain the ROM (3) corresponding to the FOM (2), we apply the adaptive POD-
Greedy algorithm [31] to construct the projection matrix V. As the first test case (TC1),
we apply the adaptive POD-Greedy algorithm which uses the output error estimator pre-
sented in Theorem 5. For the second test case (TC2), we apply the adaptive POD-Greedy
algorithm with the new inf-sup-constant-free error estimator �̃iscf(μ) (54). To compute
the projection bases for evaluating (54), we make use of Algorithm 2. We first run Algo-
rithm 2 to obtain the projectionmatricesVdu,Ve, as well as the reduced quantities x̂du(μ),
êdu(μ) corresponding to Vdu,Ve. During each iteration of the POD-Greedy algorithm,
those quantities are then used to compute the output error estimator �̃iscf(μ) (54).

Numerical examples

Next, we illustrate the benefits of using the inf-sup-constant-free error estimator �̃iscf(μ)
in (54) with two numerical examples: the Burgers’ equation and the FitzHugh–Nagumo
equations. It is demonstrated that, firstly, the inf-sup-constant-free error estimator offers
accurate performance when used in the POD-greedy algorithm to construct V. Secondly,
the new approach yields a significant reduction of the offline computational costs by
avoiding solving several large-scale eigenvalueproblems forobtaining the inf-sup constant.
For the adaptive POD-Greedy greedy algorithm, we plot themaximum estimated errors

computed using the respective error estimators for TC1 and TC2 over the training set �

at every iteration. We define this as:

εmax := max
μ∈�

�(μ),

where �(μ) is either (33) in case of TC1 or (54) in case of TC2.
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1-D Burgers’ equation

The viscous Burgers’ equation defined in the 1-D domain � := [0, 1] is given by

∂v
∂t

+ v
∂v
∂z

= μ
∂2v
∂2z

, (55)

v(z, 0) = sin(2πz),

v(0, t) = v(1, t) = 0

with v := v(z, t) ∈ R denoting the state variable, z ∈ � is the spatial variable and the
time variable t ∈ [0, 2]. We spatially discretize (55) with the finite difference method. The
mesh size is �z = 0.001, which results in a discretized FOM of dimension N = 4000. As
the variable parameter, we consider the viscosityμ ∈ P := [0.005, 1]. The output variable
of interest is the value of the state at the node just before the right boundary. The ROM
tolerance is set to be tol = 1×10−4.We generate 100 sample points inP using np.logspace
in python, out of which 80 randomly chosen samples constitute the training set.
For TC1, we first use the standard greedy Algorithm 1 to compute the projection basis

Vdu for the ROM of the dual system. The error estimator used in Algorithm 1 is the state
error bound (17) so that the inf-sup constants ‖[At (μ)]−1‖ ∀μ ∈ � are pre-computed
before starting the greedy iteration. These are then used to evaluate the output error esti-
mator (33) during the POD-greedy algorithm for constructingV. The greedy Algorithm 1
for constructing Vdu converges in 1.1 s. However, computing the inf-sup constants took
164.8 s. For solving the eigenvalue problem at every parameter, wemake use of the scipy
library for Python. The POD-greedy needs 255.7 s to converge, with the ROM dimension
n = 4.
In the case of TC2, Algorithm 2 is first used to compute the projection basesVdu andVe

simultaneously. This requires a total time of 0.98 s. The POD-greedy algorithm using the
inf-sup-constant-free error estimator takes the same 255.7 s to converge. The final ROM
dimension is also n = 4. Convergence of the POD-greedy algorithm for ROMs generation
in the case of TC1 and TC2 is plotted in Fig. 2. It is clear that using the inf-sup-constant-

Fig. 2 1-D Burgers’ equation: error (estimator) decay for TC1 and TC2
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free error estimator results in little loss of accuracy in the error estimation, while speeding
up the offline basis generation by 1.6×.

2-D Burgers’ equation

We next consider the 2-D coupled Burgers’ equation in the square domain � := [0, 2] ×
[0, 2]. The governing equations are as follows:

∂v1
∂t

+ v1
∂v1
∂z1

+ v2
∂v1
∂z2

= μ

(
∂2v1
∂2z1

+ ∂2v1
∂2z2

)
, (56a)

∂v2
∂t

+ v1
∂v2
∂z1

+ v2
∂v2
∂z2

= μ

(
∂2v2
∂2z1

+ ∂2v2
∂2z2

)
. (56b)

We impose the following Dirichlet boundary conditions:

v1(0, z2, t) = 0, v1(2, z2, t) = 0;

v1(z1, 0, t) = 0, v1(z1, 2, t) = 0;

v2(0, z2, t) = 0, v2(2, z2, t) = 0;

v2(z1, 0, t) = 0, v2(z1, 2, t) = 0.

The initial conditions at time t = 0 are given by

v1(z1, z2, t = 0) = φ1,

v2(z1, z2, t = 0) = φ2

with φ1 = φ2 = 10 e−(z1−0.8)2−(z2−1.0)2 . In (56), v1(z1, z2, t) and v2(z1, z2, t) denote the
state variables and represent, respectively, the velocity components in the canonical x
and y directions. Further, (z1, z2) ∈ � and t ∈ [0, 1]. Similar to the 1-D case, we spatially
discretize the 2-D Burgers’ equation using the finite difference method with a step size
�z1 = �z2 = 0.011 (90 divisions along both x-axis and y-axis). This results in a coupled
FOM of dimension N = 2 · 8100. The viscosity μ ∈ P := [0.01, 1] is the parameter
of interest. As the output, we take the mean of x-component velocities in the region
�̃ := [0.7, 1.4] × [0.7, 1.4]. A first-order implicit–explicit scheme with time step size
�t = 0.0025 is used. The ROM tolerance is tol = 1 × 10−3. We generate 60 logspace-
sampled (withnp.logspace inpython)points fromP , out ofwhich48 samples are randomly
chosen to constitute the training set.
For TC1, the computation of the dual system projection matrix Vdu takes 36.5 s and

computing the inf-sup-constant by solving an eigenvalue problem for every parameter in
the training set � took 3, 380 seconds. Following this, Algorithm 1 is used to obtain the
projection matrix V. It requires 5, 808 seconds to reach the desired tolerance of 1 × 10−3

in 11 iterations. The ROM dimension is n = 44.
The simultaneous generation of Vdu and Ve with Algorithm 2 needs 63 s in case of

TC2. The POD-Greedy algorithm using the inf-sup-constant-free error estimator takes
5, 811 seconds, which is close to the time taken by the greedy algorithm in case of TC1.
The resulting ROM has the same dimension as before, viz., n = 44. The convergence of
the estimated and true errors of TC1 and TC2 are plotted in Fig. 3. Evidently, the use of
the inf-sup-constant-free output error estimator results in no loss of the accuracy of the
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Fig. 3 2-D Burgers’ equation: error (estimator) decay for TC1 and TC2

estimated error. The overall speedup achieved in case of TC2 is 1.6-fold, compared to the
offline time for TC1. However, since the system is of much larger dimension than the 1-D
case, the offline time of computing the inf-sup-constants takes much longer time: 3,380 s.
This certifies that using the inf-sup-constant-free error estimator has saved almost one
hour of offline computational time.

FitzHugh–Nagumo equations

The FitzHugh–Nagumo system models the response of an excitable neuron or cell under
an external stimulus. It finds applications in a variety of fields such as cardiac electro-
physiology and brain modeling. The nonlinear coupled system of two partial differential
equations defined in the domain � := [0, L] is given below:

ε
∂v1(z, t)

∂t
= ε2

∂2v1(z, t)
∂z2

+ f (v1(z, t)) − v2(z, t) + c,

∂v2(z, t)
∂t

= b v1(z, t) − γ v2(z, t) + c,
(57)

with boundary conditions

∂

∂z
v1(0, t) = −Iext(t),

∂

∂z
v1(L, t) = 0,

and initial conditions

v1(z, 0) = 0.001, v2(z, 0) = 0.001.

In the above equations, v1(z, t) and v2(z, t) represent the electric potential and the recovery
rate of the potential, respectively. The spatial variable is denoted by z ∈ � and the
time t ∈ [0, 5]. The nonlinear term is represented by f (v1(z, t)) := v1(v1 − 0.1)(1 − v1).
The external stimulus is Iext(t) = 50000t3e−15t . The system has four free parameters
ε, c, b, γ . We fix b = 0.5 and γ = 2 while the two free parameters are μ = [ε, c] ∈ P :=
[0.01, 0.04] × [0.025, 0.075]. A finite difference scheme is employed to spatially discretize
(57) with 2048 nodes used for each variable leading to a FOMof dimensionN = 4096.We
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Fig. 4 FitzHugh–Nagumo equation: error (estimator) decay for TC1 and TC2

sample 100 parameters uniformly from the domain P and randomly choose 70 samples
from that to form the training set �. The temporal discretization is done on a uniform
grid with δt = 0.01. The output variables of interest are the values of the two state
variables at the node next to the leftmost boundary. The greedy algorithm tolerance is set
as tol = 1 × 10−3.
As done for the previous example, we first consider TC1 for the FitzHugh–Nagumo

system. In this example, the greedy algorithm needs 1.6 s to obtain Vdu while computing
the inf-sup constants takes 174.7 s. The POD-greedy algorithm based on the error esti-
mator in Theorem 5 converges to the desired tolerance in 8 iterations, taking 291.2 s. The
resulting ROM is of dimension n = 48.
Applying TC2 to this example, Algorithm 2 requires just 3.6 s to obtain Vdu and Vd .

The POD-greedy algorithm converges in 8 iterations and the runtime is 292 s. The ROM
dimension is again n = 48. The convergence of the POD-greedy algorithm for ROM
generation in the case of TC1 and TC2 is plotted in Fig. 4. Likewise, using the inf-sup-
constant-free error estimator results in no loss of accuracy, but ends up with 1.6× speed-
ups. For both examples, the inf-sup constants, i.e., the smallest singular values of A(μ) at
all the training samples of μ are close to 1, so that the effectivity of the inf-sup-constant-
free error estimator in TC2 has almost no difference from that in TC1. This can be seen
from Figs. 2-4.

Conclusion
A posteriori error estimation is vital not only to quantify the accuracy of ROMs but
also to construct ROMs of small dimension, in a computationally efficient and adaptive
manner. In this review, we have presented a wide range of a posteriori error estimators
applicable to (non)-linear parametric systems, covering both steady and time-dependent
systems. Furthermore, we have also discussedmulti-fidelity error estimators as ameans to
improve the computational efficiency of error estimation.As a novel contribution,we have
introduced an inf-sup-constant-free output error estimator that is applicable to nonlinear
time-dependent systems. This new error estimator is attractive for its improved efficiency
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and also its ability to be applicable to systems with a potentially ill-conditioned left hand
side matrix, e.g. At (μ) with smallest singular values being close to zeros. Results on three
numerical examples were used to illustrate the reduced computational costs offered by
the inf-sup-constant-free output error estimator, which is achieved with smaller effort but
with little loss of accuracy. Going ahead, we envisage an important potential for accurate
error estimation in applications such as digital twins where model updates can be done
on-the-fly based on the accuracy quantified by error estimators.
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Appendix: Proof of Theorem 2
Proof To simplify the proof, we first define an auxiliary dual solution xkdu,L(μ) :=
xK−L+k−1
du (μ),∀L < K which is a time-shift of xkdu(μ), then it is easy to see that xkdu,L(μ)

satisfies the following dual system:

At (μ)Txkdu,L(μ) = E(μ)Txk+1
du,L(μ),

E(μ)TxL+1
du,L(μ) = c(μ)T , k = L, . . . , 0,∀L < K.

(58)

The final condition of xkdu,L(μ) is at time tL+1, and coincides with the final condition of
xKdu(μ) at time tK .
Multiplying ej(μ) := (xj(μ) − x̃j(μ)) from the left on both sides of the first equation

in (58), and recalling At (μ) = E(μ) − δtA(μ), we obtain

[ej(μ)]TE(μ)Txjdu,L(μ) − δt[ej(μ)]TA(μ)Txjdu,L(μ) = [ej(μ)]TE(μ)Txj+1
du,L(μ).

Then we have

[ej(μ)]TE(μ)T [xjdu,L(μ) − xj+1
du,L(μ)] − δt[ej(μ)]TA(μ)Txjdu,L(μ) = 0.

Summing the above equation from j = 0 to j = L, we get
L∑

j=0
[ej(μ)]TE(μ)T [xjdu,L(μ) − xj+1

du,L(μ)] −
L∑

j=0
δt[ej(μ)]TA(μ)Txjdu,L(μ) = 0.
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Reformulating the first sum and using the assumption e0(μ) = 0 lead to
L−1∑

j=0
[ej+1(μ) − ej(μ)]TE(μ)Txj+1

du,L(μ) − [eL(μ)]TE(μ)TxL+1
du,L(μ)

−
L∑

j=1
δt[ej(μ)]TA(μ)Txjdu,L(μ) = 0.

From the second equation in (58), we see that E(μ)TxL+1
du,L(μ) is actually the final condition

at time tL+1. Therefore, E(μ)TxL+1
du,L(μ) = c(μ)T . Replacing E(μ)TxL+1

du,L(μ) in the above
equation with c(μ)T , we get

L−1∑

j=0
[ej+1(μ) − ej(μ)]TE(μ)Txj+1

du,L(μ) − [eL(μ)]T c(μ)T

−
L∑

j=1
δt[ej(μ)]TA(μ)Txjdu,L(μ) = 0.

(59)

Now from the primal system (8) and its ROM (9), we can get the error system,

E(μ)ej+1(μ) − δtA(μ)ej+1(μ) = E(μ)ej(μ) + rj+1(μ),

where we have used At (μ) = E(μ) − δtA(μ) and rj+1(μ) = E(μ)x̃j(μ) + δtb(μ)uj+1 −
At (μ)x̃j+1(μ) for linear systems. Multiplying [xj+1

du,L(μ)]
T from the left on both sides of the

above equation, we get,

[xj+1
du,L(μ)]

TE(μ)ej+1(μ) − [xj+1
du,L(μ)]

T δtA(μ)ej+1(μ)

= [xj+1
du,L(μ)]

TE(μ)ej(μ) + [xj+1
du,L(μ)]

T rj+1(μ)
)
.

Summing up both sides of the above equation from j = 0 to j = L − 1, we obtain
L−1∑

j=0
[xj+1

du,L(μ)]
TE(μ)[ej+1(μ) − ej(μ)] −

L−1∑

j=0
[xj+1

du,L(μ)]
T δtA(μ)ej+1(μ)

=
L−1∑

j=0
[xj+1

du,L(μ)]
T rj+1(μ)

)
(60)

Comparing (59) with (60), we derive

c(μ)eL(μ) =
L∑

j=1
[xjdu,L(μ)]

T rj(μ).

Recall xjdu,L(μ) = xK−L+j−1
du (μ), then

c(μ)eL(μ) =
L∑

j=1
[xK−L+j−1

du (μ)]T rj(μ).

Taking L = k results in

yk (μ) − ŷk (μ) = c(μ)ek (μ) =
k∑

j=1
[xK−k+j−1

du (μ)]T rj(μ). (61)

From the definition of the corrected output ŷkc (μ), we get

yk (μ) − ŷkc (μ) = yk (μ) − ŷk (μ) −
k∑

j=1
[x̃K−k+j−1

du (μ)]T rj(μ). (62)
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Combing (61) with (62) leads to

|yk (μ) − ŷkc (μ)| = |
k∑

j=1
[eK−k+j−1

du (μ)]T rj(μ))|,

where eK−k+j−1
du (μ) = xK−k+j−1

du (μ) − x̃K−k+j−1
du (μ) is the dual error induced by the

ROM (16) of the dual system. Employing the Cauch-Schwarz inequality results in

|yk (μ) − ŷkc (μ)| ≤
⎛

⎝
k∑

j=1
‖rj(μ)‖2

⎞

⎠

1/2 ⎛

⎝
k∑

j=1
‖eK−k+j−1

du ‖2
⎞

⎠

1/2

. (63)

Now we look for an upper bound of
(

k∑

j=1
‖eK−k+j−1

du (μ)‖2
)1/2

, that is, an upper bound of
(
k−1∑

j=0
‖eK−k+j

du (μ)‖2
)1/2

. From thedual system (15) and itsROM(16),we get thedual-error

system,

E(μ)Tejdu(μ) − δtA(μ)Tejdu(μ) = E(μ)Tej+1
du (μ) + rjdu(μ), j = K − 1, . . . , 0,

where rjdu(μ) := E(μ)T x̃j+1
du (μ) − At (μ)T x̃

j
du(μ), and x̃du(μ) = Vdux̂

j
du(μ). Multiplying

[ejdu(μ)]
T from the left on both sides of the above error equation gives

[ejdu(μ)]
TE(μ)Tejdu(μ) − δt[ejdu(μ)]

TA(μ)Tejdu(μ)

= [ejdu(μ)]
TE(μ)Tej+1

du (μ) + [ejdu(μ)]
T rjdu(μ),

≤ ([ejdu(μ)]
TE(μ)Tejdu(μ))

1/2([ej+1
du (μ)]TE(μ)Tej+1

du (μ))1/2 + ‖ejdu(μ)‖‖rjdu(μ)‖,
≤ 1

2
[ejdu(μ)]

TE(μ)Tejdu(μ) + 1
2
[ej+1

du (μ)]TE(μ)Tej+1
du (μ) + ‖ejdu(μ)‖‖rjdu(μ)‖.

Here, since E(μ) is symmetric positive definite, vTE(μ)Tw defines an inner product
(v,w)E,∀v,w ∈ R

N , so that the first inequality is derived from the Cauchy-Schwarz
inequality. The second inequality has used 2ab ≤ a2 + b2(a, b ∈ R). We further apply
the inequality 2|a||b| ≤ 1

γ 2 a2 + γ 2b2(γ ∈ R+) to the third term ‖ejdu(μ)‖‖rjdu(μ)‖ on the
right-hand side of the above inequality with γ = (δtλAmin(μ))

1/2 to obtain

[ejdu(μ)]
TE(μ)Tejdu(μ) − δt[ejdu(μ)]

TA(μ)Tejdu(μ)

≤ 1
2
[ejdu(μ)]

TE(μ)Tejdu(μ) + 1
2
[ej+1

du (μ)]TE(μ)Tej+1
du (μ)

+ 1
2δtλAmin(μ)

‖rjdu(μ)‖2 + 1/2δtλAmin(μ)‖ejdu(μ)‖2,

where λAmin(μ) > 0 is the smallest eigenvalue of −A(μ). Since −A(μ) is symmetric posi-
tive definite, we have that −[ejdu(μ)]

TA(μ)Tejdu(μ) ≥ λAmin(μ)‖ejdu(μ)‖2, then the above
inequality gives

[ejdu(μ)]
TE(μ)Tejdu(μ) − [ej+1

du (μ)]TE(μ)Tej+1
du (μ)

≤ 1
δtλAmin(μ)

‖rjdu(μ)‖2 − δtλAmin(μ)‖ejdu(μ)‖2.

Summing up both sides of the above inequality from j = K − k to K − 1 results in

[eK−k
du (μ)]TE(μ)TeK−k

du (μ) − [eKdu(μ)]
TE(μ)TeKdu(μ)

≤
K−1∑

j=K−k

1
δtλAmin(μ)

‖rjdu(μ)‖2 −
K−1∑

j=K−k
δtλAmin(μ)‖ejdu(μ)‖2.
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The above inequality is further reformulated into

K−1∑

j=K−k
δtλAmin(μ)‖ejdu(μ)‖2 + [eK−k

du (μ)]TE(μ)TeK−k
du (μ)

≤
K−1∑

j=K−k

1
δtλAmin(μ)

‖rjdu(μ)‖2 + [eKdu(μ)]
TE(μ)TeKdu(μ).

With the assumption that E(μ) is symmetric positive definite, we can safely remove
[eK−k

du (μ)]TE(μ)TeK−k
du (μ) ≥ 0 from the above inequality and obtain

K−1∑

j=K−k
δtλAmin(μ)‖ejdu(μ)‖2 ≤

K−1∑

j=K−k

1
δtλAmin(μ)

‖rjdu(μ)‖2 + [eKdu(μ)]
TE(μ)TeKdu(μ).

Equivalently,

k−1∑

j=0
δtλAmin(μ)‖eK−k+j

du (μ)‖2≤
k−1∑

j=0

1
δtλAmin(μ)

‖rK−k+j
du (μ)‖2+[eKdu(μ)]

TE(μ)TeKdu(μ).

(64)

From the final condition of the dual system (15) and its ROM (16), we obtain

E(μ)TeKdu(μ) = rKdu(μ),

where rKdu(μ) = cT (μ) − E(μ)T x̃Kdu(μ), so that

‖eKdu(μ)‖2 ≤ ‖E(μ)−T‖‖rKdu(μ)‖.
Then

[eKdu(μ)]
TE(μ)TeKdu(μ) ≤ ‖eKdu(μ)‖2‖E(μ)T‖ ≤ ‖E(μ)T‖‖E(μ)−T‖‖rKdu(μ)‖.

Inserting this inequality into (64), and noticing that σ̄ (μ) := σmaxE(μ)/σminE(μ) =
‖E(μ)T‖‖E(μ)−T‖, we get

k−1∑

j=0
‖eK−k+j

du (μ)‖2 ≤
k−1∑

j=0

1
(δt)2(λAmin(μ))2

‖rK−k+j
du (μ)‖2 + σ̄ (μ)

δtλAmin
‖rKdu(μ)‖, (65)

where σmaxE(μ) and σminE(μ) are the largest and smallest singular values of E(μ), respec-
tively. Combining (65) with (63) results in

|yk (μ) − ŷkc (μ)| ≤
⎛

⎝
k∑

j=1
‖rj(μ)‖2

⎞

⎠

1/2

�(μ)

⎛

⎝
k−1∑

j=0
‖rK−k+j

du (μ)‖2 + δKdu(μ)

⎞

⎠

1/2

,

where �(μ) := 1
δtλAmin(μ)

and δKdu(μ) := σ̄ (μ)
�(μ)‖rKdu(μ)‖. ��
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