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Abstract

We present a Reduced Order Model (ROM) which exploits recent developments in
Physics Informed Neural Networks (PINNs) for solving inverse problems for the
Navier–Stokes equations (NSE). In the proposed approach, the presence of simulated
data for the fluid dynamics fields is assumed. A POD-Galerkin ROM is then constructed
by applying POD on the snapshots matrices of the fluid fields and performing a
Galerkin projection of the NSE (or the modified equations in case of turbulence
modeling) onto the POD reduced basis. A POD-Galerkin PINN ROM is then derived by
introducing deep neural networks which approximate the reduced outputs with the
input being time and/or parameters of the model. The neural networks incorporate the
physical equations (the POD-Galerkin reduced equations) into their structure as part of
the loss function. Using this approach, the reduced model is able to approximate
unknown parameters such as physical constants or the boundary conditions. A
demonstration of the applicability of the proposed ROM is illustrated by three cases
which are the steady flow around a backward step, the flow around a circular cylinder
and the unsteady turbulent flow around a surface mounted cubic obstacle.

Keywords: Proper orthogonal decomposition, Inverse problems, Physics-based
machine learning, Navier–Stokes equations

Introduction and literature overview
In recent decades, research into numerical methods for solving systems of Partial Dif-
ferential Equations (PDEs) has been growing rapidly. Popular methods include the finite
difference (FDM), the finite element (FEM), the finite volume (FVM), and the spectral ele-
ment method (SEM). However, running computational simulations using those numeri-
cal methods can be very expensive, especially in high dimensions. The situation becomes
worse when simulations have to be run several times with several different input con-
figurations (as in repetitive computational environment). These common settings can be
observed in various fields such as Uncertainty Quantification (UQ), sensitivity analysis,
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real-time control problems, optimization, prediction andparameter estimation/inference.
In such circumstances, running simulations using the classical numericalmethods for each
different input value could be deemed prohibitive. Therefore, numerical techniqueswhich
could bring a reduction in the computational cost are needed. Reduced Order Methods
(ROMs) represent a suitable tool for achieving the goal of having computational speed-up
and providing accurate solutions to the problems of interest. These methods have been
applied to a variety of mathematical problems, for greater details on ROMs we refer the
reader to [1–5]. In this article we focus on ROMs for fluid dynamics problems in the
context of the reduction of the Navier–Stokes Equations (NSE).
In reduced ordermodeling, projection-based ROMs [6,7] represent a popular technique

for the construction of surrogate reduced models, these ROMs have been applied in
several fields suchas civil engineering, aerospace engineering andnuclear engineering.The
reduction in the projection-basedROMs is achieved by finding the reduced solutionwhich
lies in a subspace of a much smaller dimension Nr , Nr � Nh, where Nh is the dimension
of the original space constructed by the Full Order Model (FOM). The dimension of the
FOM(i.e.Nh) represents the number of unknowns or degrees of freedom in the discretized
problem. In a projection-based ROM, there are twomain ingredients: (i) low dimensional
spaces called the reduced spaces which are often generated using a set of snapshots (which
are FOM solutions obtained for different values of time and/or parameter) and (ii) a
Galerkinor aPetrov–Galerkinprojection for the constructionof a lowdimensionalNr×Nr
problem whose solution is the ROM one. In the context of Parameterized PDEs (PPDEs),
projection-based ROMs have been exploited for achieving a solution-space reduction by
relying on greedy algorithms [8,9] or ProperOrthogonalDecomposition (POD) [10–14] to
generate the reduced space. The application of the PODmethod together with a Galerkin
projection technique results in the so-called POD-Galerkin ROM. This type of ROMs
has been used extensively for the reduction of PPDEs, for more details on POD-Galerkin
ROMs we refer the reader to [11–13,15–17].
There are several challenges for the construction of efficient POD-Galerkin ROMs for

the Navier–Stokes equations. The treatment of the turbulence phenomenon at both the
FOMand theROMlevels is one of them. In thiswork, turbulence is tackled at the full order
level throughmodeling strategies. In other words, turbulent flows are not solved using the
Direct Numerical Simulations (DNS) approach because of the enormous computational
resources needed to simulate these flows for the problems of interest. In particular, turbu-
lence modeling is done with the help of the Reynolds Averaging Navier–Stokes (RANS)
[18] equations and the Large Eddy Simulations (LES) [19,20] approaches. The RANS
approach is based on solving the NSE for the time-averaged part of the fluid fields, where
it basically assumes that time fluctuations are of no significant interest. On the other hand,
the LES approach is based on filtering the Navier–Stokes equations to some scale, then
the large scales are simulated while the small scales are modeled.
Beside the issue of turbulence, the treatment at the reduced order level of the nonlinear

convective term in the NSE is important and might affect the efficiency of the ROM.
In several contributions, the ROM formulation approximates the nonlinear term using
a third order tensor [21–24], this tensor has a dimension of Nu × Nu × Nu, where Nu
is the number of reduced velocity unknowns. However, this approach of dealing with
the nonlinear term could raise the computational burden when the number of reduced
unknowns increases. Hyper-reduction techniques could be used for the approximation of
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the nonlinear term such as the EIMorDEIMmethods [25,26]. In order to implement EIM
or DEIM, an expensive pre-processing is required to obtain a version of parameterized
operators [27]. The Gappy-POD approach also can be employed [28].
Reduced order models have been also constructed using data-driven techniques as in

[29–35]. In these ROMs, the identification of the reduced solutions is done using data-
driven approaches such as regression-based methods, interpolation techniques or Neural
Networks (NNs). In addition, hybrid reduced order models which merge projection-
based ROMs and data-driven ROMs have been proposed [24,36–41]. The latter ROMs
include the use of calibration methods, the introduction of correction terms which can
be approximated by the snapshots data, and the employment of data-driven techniques
for the approximation of only the turbulent/eddy viscosity in the case of turbulent flows.
Deep learning approaches have also been used in ROMs in order to perform nonlinear
dimensionality reduction [42–44].
In recent years, several contributions have aimed at using machine learning techniques

for solving PDEs arising from physical problems. This field of scientific computing is often
termedas physics-basedmachine learning.Wegive a brief overviewof relatedworks in this
field. Early work in [45] presents neural minimization algorithms for solving differential
equations. The work in [46] presents an approach for solving ODEs and PDEs using
feedforward neural networks which is based on approximating the solution function by a
trial function that has twoparts.Thefirst partwhichhasno tunableparameters satisfies the
initial/boundary conditions, while the second part contains all the adjustable parameters
which are determined by training the feedforward neural network. The construction of
the second term is made in a way that guarantees no contribution to the initial/boundary
conditions.
Physics-Informed Neural Networks (PINNs) have been proposed in [47] for solving

general nonlinear PDEs as well as inverse problems which involve PDEs. The approach
in [47] consists of approximating the solution function of the general PDEs by deep
neural networks, the trainable parameters of these NNs are then learned by minimizing
a loss function that takes into consideration initial/boundary data and at the same time
penalizes the departure from the equationswhichmodel the physical problem.The PINNs
are based on two different approaches, namely continuous time and discrete timemodels.
The continuous model PINNs allow to infer the solution of the PDE across all time and
space. On the other hand, PINNs with the discrete time model approach employ implicit
Runge–Kutta time stepping schemeswith unlimited number of stages for the prediction of
the solution at large time steps without compromising the accuracy of the approximation.
The PINNs presented in [47] were extended to coupled multi-physics problems in [48],

where the latter work presents another application of PINNs for solving inverse prob-
lems for a Fluid Structure Interaction (FSI) problem. In [49], the authors present a Deep
Galerkin Method (DGM) for the approximation of high-dimensional PDEs with a deep
neural network, where they solve high-dimensional free boundary PDEs in 200 dimen-
sions. PINNs for solving the Reynolds-averagedNavier–Stokes equations for incompress-
ible turbulent flows are proposed in [50].
A recent work [51] proposes a reduced basis method based on the use of PINNs for

solving PPDEs. This work shows that training the PINNs by only minimizing the loss
function that corresponds to the reduced equations does not give as accurate results as
the ones obtained by the projection of FOM solution onto the reduced space. The authors
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indicate that for complex nonlinear problems, the PINNs trained only on the reduced
equations are not accurate in approximating the original high fidelity solution. This is
justified by the fact that the reduced equations do not take into account the impact of the
truncated modes on the resolved ones. On the other hand, the authors demonstrate that
the PINNs trained on both the output data labels and the reduced equations are more
accurate.
The work in this paper aims at employing reduced order modeling coupled with PINNs

for solving inverse problems. By solving an inverse problem, we attempt to infer unknown
inputs or parameters from a given set of observations of the output (output data). For a
review on inverse problems, we refer the reader to [52,53]. Research into inverse problems
in a Bayesian setting has been conducted extensively, for example see [54–58]. Reduced
order methods and dimension reduction techniques have been used previously for the
estimation of unknownparameters in inverse problems. Thework [59] presents a Bayesian
approach for solving nonlinear inverse problems with the help of a Galerkin projection.
In [60], stochastic reduced order models were proposed for solving inverse problems.
Active subspaces were utilized for the reduction of the parameter space in a UQ problem
for turbulent combustion simulations [61]. In [62], a hybrid data-driven/projection-based
reduced order model is proposed for the Bayesian solution of inverse problems. The work
in [63] proposes a nonlinear reduced order model for large-scale inverse problems in
a Bayesian inference setting. Another approach [64] combines the nonlinear Landweber
methodwith adaptive online reduced basis updates for solving the inverse problem related
to the construction of the conductivity in the steady heat equation. The authors in [65]
present a reduction approach of a parameterized forward model, which is utilized for
obtaining a surrogate model in a Bayesian inverse problem setting, the inversion is done
during the online stage by using the surrogate model constructed via the projection of the
forward model onto the reduced spaces.
Here, we present a model for solving inverse problems in a reduced order setting. The

approach is based on integrating the structure of the POD-Galerkin ROMs into physics-
informed neural networks (PINNs). In particular, we propose to incorporate the POD-
Galerkin reduced order equations into the loss function of the PINNs. Consequently, the
task of inferring any parameter or physical unknown which is present in the FOM equa-
tionswill become feasible, thanks to the possibility of introducing additional parameters in
the neural networks and making them trainable at low computational cost. The unknown
parameters could be physical constants such as the physical viscosity or boundary/initial
conditions or the velocity at the inlet in inlet/outlet fluid problems. The approach devel-
oped in this work is termed POD-Galerkin PINN ROM and is based on assimilating
reduced simulated data into the physical model represented by the POD-Galerkin differ-
ential algebraic system. The latter reduced simulated data is obtained from the Galerkin
projection of the available FOM data onto the POD reduced spaces.
This new methodology introduces a significant reduction of the computational cost

associated with solving inverse problems for theNSE. In fact, the use of the PINNs directly
at the full order level for inferring unknown parameters in themathematical fluid problem
could be of significant computational cost. This is due to the number of degrees of freedom
in the available full order data, in turbulent 3D problems this number is of the order 106

or higher. On the other hand, the proposed approach deals with the inference problem
by introducing two levels of approximation. The first level is represented by the dimen-
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sionality reduction performed by the POD and the Galerkin projection which results in
a POD-Galerkin ROM, while in the second approximation level neural networks for the
approximation of the reduced fluid variables are utilized. By doing so, one may leverage
the power of the PINNs in inferring unknown parameters by solving the optimization
problem (which has reduced number of unknowns and hence low computational cost) in
which the goal is to minimize the error committed in approximating the (reduced) data
and the error caused by the violation of the physics (the reduced POD-Galerkin equa-
tions). It is worth mentioning that after the training of the PINNs in the offline stage,
the POD-Galerkin PINN ROM will still be able to do fast online forward computations
without the need to re-train the neural networks.
This article is organized as follows: “The problem setup: parameterized Navier–Stokes

equations” section introduces the full order model and addresses the incompressible
Navier–Stokes equations. In “The reducedordermodel (ROM)” section, the reducedorder
model structure and methodology is presented. Firstly, the proper orthogonal decompo-
sition method is recalled, then we present the non-intrusive reduced order model devel-
oped in this work to treat inverse problems in a reduced setting in the context of the NSE.
“Numerical results” section gives three numerical examples that illustrate the results of
the parameter identification using the reduction approach proposed in this work. The
first example is the steady case of the flow past a backward step in a laminar setting, while
the second one is the turbulent case of the flow around a circular cylinder and the last
example deals with a more complex 3D turbulent case which is the flow around a surface
mounted cubic box.

The problem setup: parameterized Navier–Stokes equations
The NSE are ubiquitous in science and engineering where they describe the physics of
many phenomena such as modeling the air flow around an airfoil, the flow in boat wakes
and the motion of bluff bodies inserted in fluid flows. In this work, the focus is on the
parameterized unsteady NSE, the mathematical formulation of the problem reads as fol-
lows: Given the fluid spatial domain � ∈ R

d , with d = 2 or 3 and the time window [0, T ]
under consideration, find the vectorial velocity field u : � × [0, T ] �→ R

d and the scalar
pressure field p : � × [0, T ] �→ R such that:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t + ∇ · (u ⊗ u) − ∇ · ν

(
∇u + (∇u)T

)
= −∇p in � × [0, T ],

∇ · u = 0 in � × [0, T ],

u(t, x;μ) = f (x,μ) on �inlet × [0, T ],

u(t, x;μ) = 0 on �0 × [0, T ],

(ν∇u − pI )n = 0 on �outlet × [0, T ],

u(0, x) = R(x) in (�, 0),

(1)

where t is the time, x is the spatial variable vector and� = �inlet∪�0∪�outlet is the bound-
ary of the fluid domain �. The three parts that form the boundary are called �inlet, �outlet
and �0, they correspond to the inlet boundary, the outlet boundary and the physical walls,
respectively. The fluid kinematic viscosity is denoted by ν and is constant across the spa-
tial domain. The function f includes the boundary conditions for the non-homogeneous
boundary. The initial velocity field is given by the function R(x). The normal unit vector
is denoted by n. We remark that the velocity and the pressure fields depend on time,



Hijazi et al. AdvancedModeling and Simulation in Engineering Sciences           (2023) 10:5 Page 6 of 38

space and the parameter μ ∈ P ⊂ R
q , where P is a q-dimensional parameter space, the

dependencies are dropped for making the notation concise.
The governing equations of (1) are discretized using the FVM [66]. In this work, the

numerical solver used for solving the NSE is the finite volume C++ library OpenFOAM®

(OF) [67]. For more details on the finite volume discretization and the techniques used by
OpenFOAM, we refer the reader to [68].
Thefluiddynamicsproblemswhich thiswork aimat tackling include turbulent problems

or problems with moderate to high Reynolds number Re = U∞L
ν

, where L andU∞ are the
characteristic length and velocity of the particular fluid problem, respectively. Flows with
low values of Reynolds number are called laminar flows in which fluid moves smoothly or
in regular paths, laminar flows are also characterized by having highmomentum diffusion
and low convection. In contrast to laminar flows, turbulent flows are chaoticwhere sudden
changes in the velocity and the pressure fields are more common. Turbulent flows can be
frequently observed in real life applications, examples include external flows over airplanes
or ships and oceanic and atmospheric currents. Therefore, it is important tomention how
turbulence is treated at both the FOM and ROM levels.
At the FOM level, turbulence is not solved directly using the so-called DNS approach,

instead it is modeled using modeling strategies, namely the Reynolds Averaged Navier–
Stokes equations (RANS) and the Large Eddy Simulation (LES). In both cases, one
resorts to closure models which introduce an additional viscosity term known as the
eddy/turbulent viscosity (denoted by νt ) which has the same unit as the physical kinematic
viscosity ν [69]. The estimation of the eddy viscosity requires the use of the so-called clo-
sure turbulence models. These models approximate νt as a function of other turbulence
variables such as the turbulent kinetic energy k , where they resolve one ormore transport-
diffusion PDE for the additional turbulence variables. Examples of such closure models
under the RANS approach include the one equation Spalart–Allmaras (S–A) turbulence
model [70] and the two equations k − ε [71] and SST k − ω turbulence models [72],
where ε and ω stand for the turbulent dissipation and the specific turbulent dissipation
rate, respectively. As for the LES turbulence models, the Smagorinsky model [73] is a well
known LES model, other models are the dynamic eddy viscosity model proposed in [74]
and the one equation model named “dynamicKEqn” [75] which has been utilized in this
work. Closure turbulencemodels are also often termed as Eddy ViscosityModels (EVMs).
For a comprehensive review on the issue of turbulence modeling, we refer the reader to
[18,19].
We report here as an example the modified equations after employing the RANS

approach complemented by the k − ω turbulence model:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t + ∇ · (u ⊗ u) = ∇ ·

[
−pI + (ν + νt )

(
∇u + (∇u)T

)]
in � × [0, T ],

∇ · u = 0 in � × [0, T ],

u(t, x) = f (x,μ) on �In × [0, T ],

u(t, x) = 0 on �0 × [0, T ],

(ν∇u − pI )n = 0 on �Out × [0, T ],

u(0, x) = R(x) in (�, 0),

νt = F (k,ω), in �,

Transport-Diffusion equation for k,

Transport-Diffusion equation for ω,

(2)

where F is an algebraic function that relates νt with the turbulence variables k and ω.
LES closure models result in a similar modified momentum equation for the NSE. We
remark that in any of the turbulencemodeling strategies mentioned above, there exists an
additional vector field term in the momentum equation which is ∇ ·

[
νt

(
∇u + (∇u)T

)]
.

The latter term will be referred to as the turbulent term in this work.

The reduced order model (ROM)
This section presents the reduced ordermodel (ROM) constructed for the reduction of the
NSE addressed in the previous section. An effective ROM is sought for the approximation
of the solutions of the parameterizedNSE (1) and (2) for both laminar and turbulent flows.
Therefore, theROMwill take into consideration the features of the full ordermodel (FOM)
including turbulence treatmentwhen applicable. The ROMwill then be used in parameter
estimation/inference tasks.
The main assumption in reduced order modeling is that the dynamics of the FOM are

governed by few dominant modes, and therefore, an accurate reproduction of the full
order solution is possible when one combines appropriately those dominant modes. This
assumption represents a cornerstone in the construction of ROMs and mathematically it
implies that the FOM solution fields of the velocity and pressure can be approximated as
sum of spatial modes multiplied by temporal coefficients, i.e.:

u(x, t;μ) ≈
Nu∑

i=1
ai(t;μ)φi(x), p(x, t;μ) ≈

Np∑

i=1
bi(t;μ)χi(x), (3)

where the reduced velocity and reduced pressure modes are denoted by φi(x) and χi(x),
respectively. The reduced modes of both variables depend only on the spatial variables.
The coefficients ai(t;μ) and bi(t;μ) represent the i-th reduced solution for velocity and
pressure, respectively, they depend on both time t and the parameter μ. Several methods
and approaches can be applied for the generation of the reduced order spaces of the
velocity and pressure defined by Vrb = span {φi}Nu

i=1 andQrb = span {χi}Np
i=1, respectively.

The method chosen in this work for the generation of the reduced space is POD [21,22]
applied directly on the set of all realizations of the solution fields which might correspond
to different values of the parameters and/or time.
Efficient reduced order models rely on the notion of having two decoupled phases

termed as the offline and the online phases. In the offline phase, the training procedure of
the ROM is carried out. This includes sampling the parameter space and then simulating
the FOM in order to generate the snapshots which are used later for the generation
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of the reduced order space (here the POD space). Hence, the offline stage consists of
computing the POD modes and all reduced quantities, which form the reduced system
and are dependent on the POD modes. The offline phase is known to have a significant
computational cost due to the fact that the offline computations depend on the FOM
dimension. However, the offline phase must be carried out just once for a given choice of
the ROM dimension. The final result of the offline stage is the reduced order system of
equations.
The online stage utilizes the ROM and hence results in fast computations which are

dependent only on the dimension of the ROM. Ideally, the online stage should not depend
on any aspect of the full order computational model such as accessing the original finite
volumemesh. During the online stage, the solution of the reduced order problem is found
by solving the low dimensional system produced during the offline stage.
In this work, POD is used for the generation of the reduced order spaces of both the

velocity and pressure. After sampling the parameter space, the FOMdescribed in is solved
for each value of the parameter μ ∈ PM = {μ1, ...μM} and solutions are acquired at the
desired time instants {t1, t2, . . . , tNT } ⊂ [0, T ]. This yields a total ofNs = M∗NT snapshots
which form the following snapshots matrices for velocity and pressure:

Su = {u(x, t1;μ1), . . . ,u(x, tNT ;μM)} ∈ R
Nh
u×Ns , (4)

Sp = {p(x, t1;μ1), . . . , p(x, tNT ;μM)} ∈ R
Nh
p ×Ns . (5)

ThePODvelocity andpressuremodes are then computedusing themethodof snapshots
[76]. As for the identification of the reduced coefficients of the velocity and pressure in
(3), we utilize feedforward neural networks to achieve this task in the online stage.
Inmore details, we use Physics InformedNeural Networks (PINNs) to solve the reduced

problem. Firstly, the reduced equations are obtained by performing a Galerkin projection
of the FOM equations onto the POD spaces of the velocity and pressure. Then, one may
encode these reduced equations as a part of the loss function which has to be minimized
by the neural network optimizer. The resulted non-intrusive reduced ordermodel merges
aspects of POD-Galerkin ROMswith Physics-InformedNeural Networks (PINNs), there-
fore, it is termed here as POD-Galerkin PINNROM. This reduced ordermodel is designed
to solve inverse problems for the Navier–Stokes equations. The goal is to identify/infer
unknown parameters or inputs in a mathematical models by comparing the predictions
of these models with real or simulated measurements or outputs. The inference task is
carried out by leveraging the features of neural networks which allow for the introduc-
tion of additional trainable weights. These new weights are present in the loss function
through the reduced equations which makes it possible to compute gradients of the loss
with respect to these weights and consequently to optimize their value. In rest of this
section we describe the construction of the proposed ROM.
The construction of a POD-Galerkin ROM for the Navier–Stokes equations starts by

projecting the momentum equation onto the reduced space spanned by the velocity POD
modes [φi]Nu

i=1, i.e.:(

φi,
∂u
∂t

+ ∇ · (u ⊗ u) − ∇ · ν
(
∇u + (∇u)T

)
+ ∇p

)

L2(�)
= 0. (6)

After inserting the reduced approximation of the velocity and pressure, we obtain the
following ODEs which represent the reduced momentum equation:

ȧ = ν(B + BT )a − aTCa − Hb, (7)
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where each of B,BT ,C and H is either a reduced order matrix or tensor. These terms
are computed as follows:

(B)ij =
(
φi,∇ · ∇φj

)

L2(�)
, (8)

(BT )ij =
(
φi,∇ · (∇φT

j )
)

L2(�)
, (9)

(C)ijk = (
φi,∇ · (φj ⊗ φk )

)

L2(�) , (10)

(H )ij = (
φi,∇χj

)

L2(�) . (11)

Wenote that the treatment of non-convective term in the reducedmomentum equation
above is done by the use of the third-order tensor C . This approach might lead to a
substantial increase in the computational cost of solving the reduced problem when the
number of the reduced velocity unknowns Nu grows. This approach approximates the
projection of the non-linear term ∇ · (u ⊗ u) onto the velocity POD mode φi as follows:

(φi,∇ · (u ⊗ u))L2(�) ≈ aTCi••a. (12)

However, we propose to utilize a different approach in which we add a variable for
the approximation of the convective term in the reduced momentum equation named c,
where:

(φi,∇ · (u ⊗ u))L2(�) = ci, (13)

the additional variable c represents the projection of the non-linear vector field∇ · (u⊗u)
(which can be retrieved/isolated from any velocity snapshot) onto the velocity PODmodes
[φi]

Nu
i=1. The final form of the reduced momentum equation is then given by

ȧ = ν(B + BT )a − c − Hb. (14)

An additional set of reduced equations can be obtained by the employment of either the
supremizer enrichment approach [77,78] or by considering a reduced version of the Pois-
son Equation for Pressure (PPE) [22,79,80]. The supremizer approach computes artificial
velocity-like modes which are termed the supremizers and then it enriches the original
velocity PODmodes with the newly computed supremizers in a way that ensures the ful-
fillment of a reduced version of the inf-sup condition. The additional velocity-like fields
or the supremizers are computed by solving the following problems:

⎧
⎨

⎩


si = −∇χi in �, ∀χi ∈ V
p
POD,

si = 0 on ∂�.
(15)

After that the velocity POD space is enriched with the supremizer modes:

Ṽ
u
POD = [φ1, . . . ,φNu ] ⊕ [s1, . . . , sNS ] ∈ R

Nh
u×(Nu+NS ). (16)

The original velocity POD modes are divergence free by construction since they are
just a linear combination of the velocity snapshots. This implies that the projection of the
continuity equation onto the pressure modes before enriching the velocity POD space
would have added no reduced equations. The newly added supremizer modes are not
divergence free, therefore, the continuity equation could be utilized for obtaining an
additional set of scalar reduced algebraic equations, as follows:

(χi,∇ · u)L2(�) = 0. (17)
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The final POD-Galerkin ROM with the supremizer enrichment approach is given by

Mȧ = ν(B + BT )a − c − Hb, (18a)

Pa = 0, (18b)

with two additional reduced matrices M and P. The first matrix M is the mass matrix,
which is not unitary anymore as a result of the additional supremizer modes. The matrix
P is called the divergence reduced matrix. The entries of the additional matrices are given
by:

(M)ij = (
φi,φj

)

L2(�) , (19)

(P)ij = (
χi,∇ · φj

)

L2(�) . (20)

In the turbulent case, an additional term in the reducedmomentumequationwill appear.
This term corresponds to the projection of the added turbulence modeling term in the
momentum equation (in the RANS or the LES formulation at the FOM level) onto the
velocity POD modes. The turbulent POD-Galerkin ROM with the employment of the
supremizer enrichment approach is given by

Mȧ = ν(B + BT )a − c − Hb + h, (21a)

Pa = 0, (21b)

where h is the turbulent reduced variable.
At this point, we describe the structure of the PINNs which are used to approximate the

solutionof thePOD-GalerkinROMs.ThePINNshave as input the timeand theparameter.
The outputs are the reduced velocity, pressure, convective and turbulent terms denoted
by a, b, c and h, respectively. The dimension of each of these output terms is Nu except
for the reduced pressure which is of Np dimension.
The starting point of the PINN training is the computation of output label data. This

data consist of the L2 projection coefficients for each of the FOM variables fields onto the
velocity or pressure POD basis. The velocity L2 projection coefficients are computed as
follows:

R � aji,L2 =
(
Si
u,φj

)

L2(�)
, for i = 1, 2, . . . , Ns, j = 1, 2, . . . , Nu, (22)

similarly the pressure coefficients are given by:

R � bji,L2 =
(
Si
p,χj

)

L2(�)
, for i = 1, 2, . . . , Ns, j = 1, 2, . . . , Np. (23)

Then, the FOM vectorial fields of the convective and turbulent terms are retrieved from
the original snapshots of the velocity, pressure and the turbulent eddy viscosity. Then,
one may compute the projection of these vectorial fields onto the velocity POD modes
[φi]

Nu
i=1. This yields the output data for the vectors c and h which are also needed for the

training of the PINN. The additional coefficients are given by:

R � cji,L2 =
(
∇ · (Si

u ⊗ Si
u),φj

)

L2(�)
, for i = 1, 2, . . . , Ns, j = 1, 2, . . . , Nu, (24)

R � hji,L2 =
(
Si
t ,φj

)

L2(�)
, for i = 1, 2, . . . , Ns, j = 1, 2, . . . , Nu, (25)
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where Si
t is the i-th snapshot of the turbulent additional term in the FOM formulation of

the RANS or the LES turbulence modeling approach.
The input and output data matrices Ã ∈ R

Ns×(q+1) and G̃ ∈ R
Ns×(3Nu+Np) are given

by

Ã =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

μ1 t1
μ1 t2
...

...
μ1 tNT

μ2 t1
μ2 t2
...

...
μ2 tNT
...

...
μM t1
μM t2
...

...
μM tNT

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (26)

G̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a11,L2 . . . aNu
1,L2 b11,L2 . . . bNp

1,L2 h11,L2 . . . hNu
1,L2 c11,L2 . . . cNu

1,L2

a12,L2 . . . aNu
2,L2 b12,L2 . . . bNp

2,L2 h12,L2 . . . hNu
2,L2 c12,L2 . . . cNu

2,L2
... . . .

...
... . . .

...
... . . .

...
... . . .

...
a1Ns,L2

. . . aNu
Ns,L2

b1Ns,L2
. . . bNp

Ns,L2
h1Ns,L2

. . . hNu
Ns,L2

c1Ns,L2
. . . cNu

Ns,L2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (27)

The number of PINN outputs is more than the number of outputs in the POD-NN
case [33] because of the introduction of the additional terms which appear in the reduced
momentum equation as part of the PINN output. The current setting ensures that the
dimension of the reduced problem scales linearly with the number of reduced variables
of both velocity and pressure. The POD-Galerkin PINN ROM is then constructed by
training deep neural networks whose input is time and parameter and whose output is the
reduced velocity, pressure, convective and turbulent terms. The loss function which has
to be minimized will be a weighted loss that takes into consideration the available data
and the POD-Galerkin formulation imposed by the algebraic differential system in (21).
The training procedure utilizes the training set {ln, rn = F (ln)}Ns

n=1, where {ln}Ns
n=1 is the

set of input vectors, {rn}Ns
n=1 is the set of output or target vectors andF is the function that

relates the input to the output in the neural network. Each row of the matrices defined
above Ã and G̃ represent a sample (recall that the number of samples was Ns = M ∗NT ).
The input and output vectors are defined as ln = Ã(n, :) and rn = G̃(n, :), respectively.
The overall loss function can be written as follows

E(w) = Edata(w) + α1E1(w) + α2E2(w), (28)
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where

Edata(w) =
Ns∑

n=1

1
3Nu + Np

3Nu+Np∑

k=1
{yk (ln,w) − rnk }2, (29)

E1(w) =
Ns∑

n=1

1
Nu

Nu∑

k=1
{Ra

k (l
n, y,w)}2, (30)

E2(w) =
Ns∑

n=1

1
Np

Np∑

k=1
{Rb

k (l
n, y,w)}2, (31)

and

Ra = −MȧPINN + ν(B + BT )aPINN − cPINN − HbPINN + hPINN ∈ R
Nu , (32)

Rb = PaPINN ∈ R
Np , (33)

y = [aPINN, bPINN,hPINN, cPINN] ∈ R
3Nu+Np . (34)

The two loss functions E1 and E2 enforce the reduced equations given by the POD-
Galerkin model. The two weighting coefficients α1 and α2 are tuned heuristically depend-
ing on the problem but are also in general trainable. The above formulation gives the
PINN the ability to estimate unknown parameters which are present in the POD-Galerkin
formulation, such parameters might include for example the physical viscosity ν. The
approximation of the time derivative of the reduced velocity ȧPINN which appears in Ra is
done with the help of automatic differentiation [81]. Automatic differentiation represents
a crucial tool in PINNs, where it is capable of differentiating the neural networks with
respect to their input coordinates and model parameters, the latter model parameters
do not include only the weights and biases stacked in the vector w but also any other
unknown physical quantity in the model.
It is worth mentioning that the POD-Galerkin PINN ROM could incorporate physical

constraints related to the velocity at the boundary. In fact, it is common to have inhomoge-
neousDirichlet boundary conditions for the velocity field at specific parts of the boundary.
This is typical in inlet–outlet problems such as the flow around a circular cylinder or the
flow past a backward step. In these circumstances, an additional effort has to be made for
the treatment of the inhomogeneous velocity boundary conditions at the ROM level. The
common strategies for tackling this issue are the lifting function method [82–84] and the
penalty method [85–89]. A brief description of the two methods will be given and then
the strategy of incorporating them inside the PINN formulation will be addressed.
The lifting function method treats the non-homogeneous Dirichlet boundary condi-

tion through the introduction of a lifting function (or several lifting functions). In this
method the inhomogeneity is transferred to the lifting function and a new set of veloc-
ity snapshots is created. The POD procedure is then performed on the newly created
set of velocity snapshots (which have homogeneous Dirichlet boundary conditions). This
results in velocity PODmodes which have also homogeneous boundary conditions at the
Dirichlet boundary. We remark that the lifting function must satisfy certain conditions
such as being divergence free. This function is also added to the velocity PODbasis. Unlike
the lifting method, the penalty method does not involve any modification on the veloc-
ity snapshots. The penalty method enforces the inhomogeneous boundary condition by
the introduction of an additional term in the reduced momentum equation, this term
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corresponds to the projection of a function (which has zero value everywhere except on
the Dirichlet boundary) onto the velocity POD modes. The penalty method modifies the
POD-Galerkin ROM as follows:

Mȧ = ν(B + BT )a − c − Hb + h + τ (UBCD − Ea) , (35a)

Pa = 0, (35b)

where UBC is the velocity value at the Dirichlet boundary �D, and τ is the penalization
factor whose value is tuned heuristically. Higher values of τ generally tend to enforce the
boundary conditions in a stronger fashion. The additional reduced operatorsD and E are
defined as follows:

(D)i = (φi)L2(�D) , (36)

(E)ij = (
φi,φj

)

L2(�D) . (37)

In (35), we assumed to have only one inhomogeneous boundary condition at the Dirich-
let boundary, however, a generalization for more than one condition can be done [90].
The POD-Galerkin PINN model can be adopted to the penalty method by including the
additional constraint as a separate loss function denoted by E3(w) defined as follows:

E3(w) =
Ns∑

n=1

1
Nu

Nu∑

k=1
{Rc

k (l
n, y,w)}2, (38)

with

Rc = UBCD − EaPINN ∈ R
Nu . (39)

As for the case of the lifting function method, the homogenization procedure leads to the
transfer of the inhomogeneous Dirichlet boundary conditions from the velocity snapshots
to the lifting functions. Therefore, the lifting velocity mode will have a normalized version
of the velocity at the Dirichlet boundary at the inlet.1

The reduced approximation of the velocity field is modified to the following one:

u(x, t;μ) ≈ alφl(x) +
Nu∑

i=1
aui (t;μ)φi(x) +

NS∑

i=1
aSi (t;μ)si(x), (40)

where a = [al, au1 , . . . , a
u
Nu
, aS1 , . . . , a

S
NS
] ∈ R

1+Nu+NS , here the upper-subscript in aui and
aSi refer to the reduced coefficients corresponding to the original velocity PODmodes and
the supremizer added ones, respectively. The coefficient al is the one that corresponds to
the lifting mode and represents as mentioned a normalized version of the velocity at �D.
In this case, the reduced operators Ra and Rb from (32) and (33) in the PINN formulation
become:

Ra = −M[al,aPINN]+ν(B+BT )[al,aPINN] − cPINN − HbPINN+hPINN ∈ R
Nu ,

(41)

Rb = P[al,aPINN] ∈ R
Np , (42)

1The velocity POD modes including the lifting function are normalized and this causes al to be a normalized version
of the velocity at the inlet.
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Hence, we observe that the PINNs are able to incorporate the velocity at the boundary in
their formulation using both the lifting function and penalty methods, making it possible
to learn these physical parameters through the training procedure and the optimization
of the total loss function.

Numerical results
This section presents the application of the POD-Galerkin PINN reduced ordermodels on
three problems with unknown inputs or parameters. The first problem is the benchmark
case of the flow past a backward step. In the first problem the POD-Galerkin PINNmodel
is used for solving inverse and forward problems in the parameterized setting. The second
one is the flow around a circular cylinder in a turbulent setting modeled by the RANS
approach, in this problemwe consider a situation of incomplete data, where the ROMwill
be used to infer an unknown input value and its corresponding missing output data. The
last problem is the 3D flow around a surface mounted cube, this problem is a turbulent
one with a large number of degrees of freedom, where turbulence is modeled using the
LES turbulence approach. In the latter problem, the POD-Galerkin PINN ROM is used
for the identification of the physical viscosity which is assumed to be unknown. This is
done by assuming the presence of simulated data for the velocity, pressure and the eddy
viscosity fields. The full order solver utilized is OpenFOAM® (OF) [67] which is an open-
source C++-based library for solving fluid problems with the finite volume method. At
the reduced order level, the POD modes and the L2 projection coefficients needed for
the training of the PINNs are computed using the library ITHACA-FV [91] which is also
based on C++, while the training of the neural network is done using the Python library
TensorFlow V2 [92].

Steady case: The Flow past a backward step

We consider the application of the POD-Galerkin PINN based reduced order model
to the benchmark case of the flow past a backward step. The problem is studied here
in laminar steady setting with physical parameterization. In Fig. 1, the computational
domain is depicted, onemay see the lengths of the different parts of the domain expressed
in terms of the characteristic length L = 1m. The boundary conditions for both the
velocity and pressure fields are reported in the latter figure. The objective is to utilize the
POD-Galerkin PINN model for solving inverse problems, these inverse problems involve
the estimation of certain physical parameters such as the velocity at the inlet or the
physical viscosity. In the current setting, the physical viscosity ν is parameterized, where
it is varied in the range of [0.02, 7.1]m2/s. The velocity at the inlet is fixed at 1m/s, this
gives a parameterized Reynolds number which lies in the range of [0.1408, 50]. As for the
numerical schemes used at the FOM level, a 1-st order bounded Gauss upwind scheme is
used to approximate the convective term. The gradients are approximated using a Gauss
linear scheme, while a Gauss linear scheme with non-orthogonal correction has been
utilized for the approximation of the Laplacian terms.
The offline stage starts by collecting snapshots for different values of the parameter ν,

in particular 150 samples were drawn from the range [0.02, 7.1] and for each viscosity
sample, the FOM was run using the SIMPLE solver. The snapshots of velocity, pressure
and flux fields were stored for the computation of the POD modes and the reduced
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Fig. 1 The computational domain used in the numerical simulations of the flow past a backward step, all
lengths are described in terms of the characteristic length L that is equal to 1 meter

Fig. 2 The cumulative ignored eigenvalues decay for the first numerical case of the flow past a backward step. In
this figure, the solid black line refers to the velocity eigenvalues and the dashed blue line corresponds to the
pressure eigenvalues

operators involved in the formulation of the POD-Galerkin PINNmodel. Firstly, the non-
homogeneous velocity boundary condition at the inlet is treated with the help of the
lifting function method. In particular, the average of the velocity snapshots computed
for different values of the parameter is computed and then used as the lifting function.
The lifting function is then subtracted from the original snapshots which lead to the
creation of a new set of homogenized velocity snapshots (velocity snapshots which have
homogeneous Dirichlet boundary condition at the inlet). At this stage one can apply the
POD procedure on the snapshots matrices of both the homogenized velocity and the
pressure. The cumulative eigenvalues decay can be seen in Fig. 2, where the cumulative
eigenvalue decay for the pressure is observed to be slower. The second step involves
the computation of the supremizer modes which can be done by solving the supremizer
problems corresponding to each pressure POD mode. The velocity POD space is then
enriched by the supremizermodes. The convective part of each snapshots is then retrieved
for later use during the training stage of the neural network.
At this point, we describe the numerical tests which will be done in this subsection. The

first test has two objectives which are:

• To estimate a physical unknown which is the velocity at the boundary, where we
assume for this test that this value is unknown. The identification of this physical
unknown is carried out by the POD-Galerkin PINN model.
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• To approximate the velocity and pressure fields for test values of the physical viscosity
ν which were not seen during the offline stage.

The two objectives are achieved simultaneously by training only once the PINN
informed by the POD-Galerkin system using the training data and then performing a
prediction task for the test data.
In the second test, the input test data of the physical viscosity mentioned above will be

assumed to be unknown and then the POD-Galerkin PINN model will be used to solve
the inverse problems associated with the latter test data while assuming that the velocity
at the inlet is known.
It is important to mention that the velocity at the boundary is embedded in the POD-

Galerkin PINN formulation. In fact, the first coefficient of the reduced velocity vector a,
namely al corresponds to a normalized version of the velocity at the inlet. The reduced
approximation of the velocity in this example read as in (40).
The next step is to compute the reduced operators which appear in the following POD-

Galerkin system that defines the reduced equations:

ν(B + BT )a − c − Hb = 0, (43a)

Pa = 0. (43b)

The input of the PINN is the physical viscosity ν and its output is formed by the reduced
velocity (except the lifting coefficient al), reduced pressure and the reduced convective
term. The number of the PINN output variables is No = 3Nu + 3NS + Np + 1.
To solve the inverseproblem involved and to approximate the relationbetween thephys-

ical viscosity and the reduced velocity and pressure, we put forward a physics informed
neural network which has 10 layers with each layer containing 100 neurons with tangent
hyperbolic activation. This PINN takes as output the reduced variables mentioned above
and uses the data available from the offline snapshots together with the knowledge given
by the system in (43) to approximate the unknown coefficient al (or the velocity at the
inlet). This is done by training the PINN with a loss function that takes into considera-
tion the data given by the coefficients of the L2 projections and also by constraining the
output to follow the POD-Galerkin reduced equations. The output data is obtained by
performing the projections in equations (22), (23) and (24). We would like to remark that
both input and output values have been standardized to range of [0, 1] in order to make
the neural networks learning task easier. The PINN loss function is written as

E(w) = Edata(w) + α1E1(w) + α2E2(w), (44)

where

Edata(w) =
Ns∑

n=1

1
No

No∑

k=1
{yk (ln,w) − rnk }2, (45)

E1(w) =
Ns∑

n=1

1
Nu

Nu∑

k=1
{Ra

k (l
n, y,w)}2, (46)

E2(w) =
Ns∑

n=1

1
Np

Np∑

k=1
{Rb

k (l
n, y,w)}2, (47)
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Table 1 The PINNs results for the data mean squared error and the mean squared errors
corresponding to the residual functions defining the POD-Galerkin ROM DAE

Initial al Edata(w) E1(w) E2(w) PINN al

0 9.152303 ∗ 10−6 0.00045994046 3.0014705 ∗ 10−6 2.7291148

5 9.2302425 ∗ 10−6 0.0009832102 3.0044891 ∗ 10−6 2.7288582

10 0.00020264629 0.00036979085 2.9998373 ∗ 10−6 2.7270014

20 1.4284992 ∗ 10−5 0.0016940477 3.0059625 ∗ 10−6 2.7295387

The values of the errors are reported for different initial values of the added weight al , the PINN identified value of al is
reported in the last column. The PINNs are run for 30000 epochs with a learning rate of 1 ∗ 10−3

and

Ra = ν(B + BT )[al,aPINN] − cPINN − HbPINN ∈ R
Nu , Rb = P[al,aPINN] ∈ R

Np ,

y = [aPINN, bPINN, cPINN] ∈ R
No .

In the above formulation, theweights and biases vectorw contains all trainable parameters
which include the scalar coefficient al which is then learned during the training procedure
of the PINN. As for the coefficients of the equations losses α1 and α2, they are determined
in a heuristic fashion or they can also be trained like the other weights of the network.
The total number of trainable parameters in the PINN for the first test is 83627. The

PINN is run for 30, 000 epochs with a learning rate of 1 ∗ 10−3 and with one batch per
epoch (batch size is equal to the number of data pointsNs). The twoweighting coefficients
α1 and α2 are set to 0.01. The physical parameter al is initialized with zero value.
The first results are shown for the following number of modesNu = Np = NS = 5. This

number of modes gives a total number of PINN outputs of No = 26. The true value of al
is 2.7302, while the PINN has identified the value of al to be 2.7291. The relative error in
approximating al is about 0.0409 %. As mentioned above al has been initialized with zero
value, however, we show also the results for different initial values of al in Table 1, one
can see that the PINN is not sensitive to the initial values of the unknown parameter al .
As for the forward task in the first test, we have generated 300 samples for ν which are
equidistant samples in the range [0.05, 7]. Then another simulation campaign is launched
for these viscosity samples in order to validate the PINN model. After the training of the
PINN for the identification of al , the PINN is used for approximating the output for the
newly created set of input ν. Figure 3 show the results of the forward task, where one
can see the validation results for the first, second and third components of the reduced
variables of the velocity, pressure and convective terms versus the value of the viscosity.
We recall that the values of the physical viscosity for which the latter figure is depicted
were not used in the training procedure of the POD-Galerkin ROM or the PINN. The
error committed in approximating the reduced variables in the mean squared sense is
about 9.8921 ∗ 10−6, we remark that the latter error is computed on the standardized
variables. As for the operators errors for the test data we have Ẽ1(w) = 0.001027 and
Ẽ2(w) = 2.6525 ∗ 10−6. The last quantitative values of the errors show that the PINN was
able to generalize for unseen values of the parameter and at the same time constraining
the results to satisfy the algebraic system. As for the training time of the PINNs, it ranges
from 6 to 7.402 min using “Intel(R) Core(TM) i7-10610U CPU @ 1.80GHz”.
As a final result for the first case, we report an assessment of the approximation accuracy

of the POD-Galerkin PINN ROM. Namely, we compute the relative L2 error for velocity
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a

b

c

Fig. 3 The results of the POD-Galerkin PINN predictions for the 1st, 2nd and 3rd components of the velocity,
pressure and convective reduced coefficients for the first numerical test. The plots compare the reduced
coefficients with the L2 projection coefficients of the test velocity and pressure fields onto the corresponding
POD modes. The red-dashed lines refers to the L2 projection coefficients, while the blue-dots correspond to the
reduced coefficients obtained by the PINNs. The coefficients are plotted versus the physical viscosity values at
which the test data was generated. (a) The first reduced coefficients for velocity, pressure and convective terms
compared to the ones obtained by the L2 projection. (b) The second reduced coefficients for velocity, pressure
and convective terms compared to the ones obtained by the L2 projection. (c) The third reduced coefficients for
velocity, pressure and convective terms compared to the ones obtained by the L2 projection

and pressure which, respectively, read as:

εu = ‖u − ur‖L2(�)
‖u‖L2(�)

× 100%, εp = ‖p − pr‖L2(�)
‖p‖L2(�)

× 100%, (48)

where ur and pr are the reduced order velocity and pressure fields, respectively. The
values of the relative errors for the velocity and the pressure are computed for the 300 test
parameter values. The mean value of the εu reduced velocity error is 0.3081 %, while the
one of the pressure is 0.3459 %.
In the second test, we assume that the input values for the test data in the latter test

are unknown. We aim at solving the inverse problems involved with the test data. To this
end, we put forward a PINN based on the POD-Galerkin ROM with the following loss
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function:
E(w) = Edata(w) + α1E1(w) + α2E2(w) + α3Ẽ1(w), (49)

where

Ẽ1 =
300∑

n=1

1
Nu

Nu∑

k=1
{R̃a

k (l̃n, y,w)}2, (50)

and
R̃a = l̃n(B + BT )[al, ã] − c̃ − Hb̃ ∈ R

Nu , (51)
where l̃n is the n-th value of the unknown input physical viscosity. The PINN used in
this second test has the same structure as the one utilized in the first test. The training
parameters are also the same, where the PINN is run for 30000 epochs with learning rate
of 1 ∗ 10−3. The vector of unknown viscosity values l̃ is considered as additional trainable
weight of the PINN and is embedded intow. The identified values of the physical viscosity
match to high degree of accuracy the true values. Themean squared error of the difference
of the true input vector and the PINN-identified one is 0.00055.
In a last numerical example, we would like to examine the advantage of having the

reduced residual terms in the PINN formulation compared to the POD-NN approach
which relies only on the reduced data. We consider the current test case with param-
eterized physical viscosity. Snapshots are obtained for parameter samples in the range
[0.01, 2.1], we assume the presence of 100 snapshots for the velocity and the pressure for
equally distributed values of ν in the aforementioned range. We assume the availability of
test data for the fluid fields in the range [0.025, 2] which is contained in the training snap-
shots window.We construct the POD-NN and POD-Galerkin PINNmodels for the same
test case. After the computation of the reduced velocity and pressure using both models,
we reconstruct the reduced approximation of the full fields using the stored PODmodes.
Finally we have computed the L2 relative error committed by the reduced approximation
of both the POD-NN and POD-Galerkin PINN. The errors are computed as function of
the parameter ν. The errors in (48) are computed for 320 test samples equally distributed
in the range [0.025, 2]. We note that the effects of the parametric variation on the velocity
and pressure fields could be noticed more apparently for lower values of ν in the consid-
ered sampling range. Therefore, we expect that the results of ROMs generalization for
lower values of the parameter to be less accurate than for higher values given the uniform
sampling. The PINN is trained by minimizing the data loss given by the reduced data
obtained from the 100 snapshots and the reduced equations loss which is computed at
random points in the parameter range. We consider the reduced setting of Nu = NS = 8,
Fig. 4 shows the results of this test for both the velocity and the pressure fields. The results
as expected shows that both ROMs (the POD-NN ROM and the POD-Galerkin PINN
ROM) have given less accurate results for small values of ν. However, it could be clearly
seen that the POD-Galerkin PINN ROM has contained the error values especially for the
pressure field in the range of ν < 0.3. Here, we mention that the maximum value of εp for
the POD-Galerkin PINN ROM is about 6.1709 % while the corresponding value obtained
by the POD-NN ROM is 32.4325 %. The POD-NN ROM has in total 8 test samples for
which the reduced pressure error exceeded 10 %.
The reason for having more accurate results by the PINN-based ROM could be

attributed to the regularization effect that is brought to the ROM by taking into con-
sideration the physics at the reduced level. The POD-NN has given better results only in
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Fig. 4 The L2 relative error for the POD-NN and POD-Galerkin PINN ROMs for both the velocity field (on the left)
and the pressure field (on the right). The curves are already in percentages, the values of the errors are depicted
versus the test values of the physical viscosity

Fig. 5 The computational grid of the problem of the flow around a circular cylinder

the region where the density of the samples was high enough and in which the parametric
variation is least observed. We conclude that in general the POD-Galerkin PINN ROM is
more useful than the POD-NN in case of limited data since the physical equations provide
additional information.

The flow around a circular cylinder

In this subsectionwe address the case of having incomplete data for different input config-
urations/settings. The computational problem considered is the one of the flow around a
circular cylinder. The problem is 2D turbulent one, where turbulence ismodeled using the
RANS approach. The domain of the problem is � := [−4D, 30D] × [−6D, 6D]\BD(0, 0),
where D = 1m is the diameter of the cylinder. fig. 5 shows the grid used for simulating
the problem using OpenFOAM, it also reports the boundary conditions for the velocity
and pressure fields. The grid has around 18000 cells, the physical viscosity is 2.5 × 10−4

m2/s.
We assume in this test that we are presented with an incomplete set of data for the

fluid dynamics fields. This set of data contains full information about the fluid dynamics
fields for some parameter values and contains a set of partial output data for an unknown
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Table 2 Offline parameter samples and the corresponding vortex shedding frequency and
snapshots time window

Parameter sample : Uin in m/s Time period Tp in s Snapshot time window in s

1 4.255 [0, 11]

1.5 2.830 [0, 7.5]

2 2.1127 [0, 5.5]

input/parameter. In particular, we consider the parameter in this test to be the velocity
at the inlet Uin. The fluid dynamics fields for velocity, pressure and the eddy viscosity are
available for three different known values of the parameter Uin which are {1, 1.5, 2}m/s.
Another set of fluid data for unknown parameter value is presented, the latter set contains
partial information as it lacks the pressure fields. The inference tasks in this example are (i)
to approximate the unknown velocity at the inlet U


in, (ii) to recover the missing pressure
field history and finally (iii) to compute the lift and drag forces acting on the surface of the
cylinder which are dependent on both U


in and the missing pressure data.
The snapshots coming from thefluid simulations are covering at least 2 periodic cycles of

the developed regime. For eachparameter value, the regime frequency knownas the vortex
shedding frequency is different, resulting in various snapshots time windows for the three
parameter data samples. Table 2 shows the snapshots time windows for each parameter
sample and the corresponding time period. The number of snapshots per parameter
sample is 201 giving a total of 603 snapshots. The POD is done on the velocity and
pressure snapshots which yields the velocity and pressure POD basis, then an enrichment
procedure is carried out by solving the supremizer problems. The ROM is then obtained
via a Galerkin projection, in this example the penalty method is used for the enforcement
of the inlet velocity at the reduced level.
At this stage, one may compute the input and output data matrices which will be

used to train the PINN. The input of the PINN is the combination of time and the
parameter. However, a non-dimensionalization conversion for time is needed in order to
give meaningful information for the PINN. To this end, the non-dimensionalized time t


is defined as t
 = tUin
D = tUin. As for the output data, it consist in the following reduced

coefficients:

• The L2 projection coefficients of the velocity snapshots onto the velocity PODmodes,
see (22).

• The L2 projection coefficients of the pressure snapshots onto the pressure POD
modes, see (23).

• The L2 projection coefficients of the convective terms snapshots onto the velocity
POD modes, see (24).

• The L2 projection coefficients of the turbulent terms snapshots onto the velocity POD
modes, see (25).

The output of the PINN is the stacked vector of [a, b,h, c]. The POD-Galerkin DAE that
models this problem is the one reported in (35). Thematrices and vectors which appear in
the latter DAE are computed during the offline stage. The partially known output fields for
the unknown parameter are also projected onto the velocity POD space and the resulting
L2 coefficients are also used for training the PINN.
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Fig. 6 The PINN approximation of the U

in

The set of original weights and biases of the PINN denoted by w is then enlarged.
This is done by introducing an additional set of weights denoted by w
 which contains
trainable weights that correspond to the unknown quantities to be approximated. Inmore
details, w
 contains the scalar weight wU


in
which is introduced for the approximation of

the unknown velocity at the inlet. Also w
 encapsulates a matrix of weights denoted by
wb
 whose i-th column wb


i is the reduced pressure vector for the unknown pressure
output data corresponding toU


in at a fixed time instant. Hence, the number of additional
weights is 201 ∗Np + 1 (we assume that the number of data points for the unknown input
is N 


T = 201).
The PINN loss function E(w,w
) is defined as follows:

E(w,w
) = Edata(w,w
) +
3∑

i=1
Ei(w) +

3∑

i=1
E

i (w,w


) + E

b(w,w


), (52)

as one can notice, the loss function incorporates four different types of loss, the first one
Edata(w,w
) is the fitting data loss for both the fully known input–output data and the
unknown input and partially known output data. The second loss

∑3
i=1 Ei(w) corresponds

to the reduced equation losses evaluated only at the known input samples. The third loss
is the same as the second one but computed at the unknown input data points. The final
loss is defined as E


b(w,w

) = 1

Np

∑N 

T

i=1‖wb


i − bPINN(t
i , wU

in
)‖2

R
Np , which penalizes the

difference between the reduced pressure output of the PINN computed at the unknown
input data points and theweightswb
 . The last loss componentwill ensure that the reduced
missing pressure will be recovered through the additional weights. It is worth mentioning
that initial values of wU


in
is set to be the media of Uin of the known data, while a full zero

matrix is used as a starting point for wb
 .
The PINN used in this numerical test has 5 layers and 64 neurons per layer with mixed

activations (tanh and SIREN). The Adam optimizer is used for solving the optimization
problem. The PINN is run for 3 × 105 epochs, we show in Fig. 6 the evolution history of
the inlet velocity weight during training. One can see that the PINN approximated inlet
velocity has converged to a value which is close to the true value of 1.25m/s. In fact the
weight wU


in
at the end of the training was 1.25029 which implies that the approximated

Reynolds number is 5001.178 while the real one is 5000. The reduced order settings for
the last result are Nu = Np = NS = 15.
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Fig. 7 The first four pressure reduced coefficients for the unknown input data

As for the reconstruction of the pressure fields, the additional matrix of weights wb


which correspond to the reduced pressure of the unknown input data has been optimized
in the PINN training process. Figure 7 depicts the time history of the first four reduced
coefficients in the ROMapproximation of themissing pressure fields and it shows also the
corresponding four coefficients obtained by the L2 projection of the pressure data onto
the pressure POD modes.
To assess the accuracy of the approximation of the missing pressure fields, we compute

the error εp in (48) between the inferred PINN pressure fields and the FOM ones for the
201 different snapshots. For the reduced model with Nu = Np = NS = 15, the values of
the maximum and mean relative pressure error are 3.1396 % and 1.4457 %, respectively.
Besides solving the inverse problem, we are interested in having an accurate reconstruc-

tion of the time-history of the cylinder drag and lift coefficients. These coefficients come
from the fluid dynamics forces F acting on the surface of the cylinderwhich depend locally
on the pressure and velocity fields as follows:

F =
∫

∂�cy
(2μ∇u − pI )nds. (53)

If Fl and Fd are the forces components acting on the surface of the cylinder in the lift
and drag direction (the lift direction is the one perpendicular to the flow, while the drag
direction is horizontal to the flow), respectively, then the non-dimensionalized drag and
lift forces coefficients denoted by Cd and Cl , respectively, are given by:

Cd = Fd
1
2ρU

2
inAref

, Cl = Fl
1
2ρU

2
inAref

, (54)

where ρ is the fluid density and Aref is the reference area. The evaluation of the forces
at the reduced level is done in a way that respects the full decoupling of the offline and
the online stages, for more details we refer the reader to section 2.8 in [90]. The PINN
is used to recover the lift and drag coefficients by performing forward test for all time
values at which we had recorded the forces during the FOM simulation. Then the PINN
forces approximation is used together with the PINN-inferred inlet velocity to obtain the
reduced lift and drag coefficients signals. The results of this test are shown in Fig. 8.
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Fig. 8 The lift and drag coefficients curve for the unknown input data (Nu = Np = NS = 15)

In order to have a quantitative evaluation of the accuracy of the lift and drag coefficients
approximation, we compute the following L2 relative errors

εCl =
∥
∥Cl(t) − Cl

r(t)
∥
∥
L2(T1 ,T2)∥

∥Cl(t)
∥
∥
L2(T1 ,T2)

× 100%, εCd =
∥
∥Cd(t) − Cd

r(t)
∥
∥
L2(T1,T2)∥

∥Cd(t)
∥
∥
L2(T1 ,T2)

× 100%,

(55)

where Cl(t) and Cd(t) are the signal functions corresponding to the FOM lift and drag
coefficients, respectively. As forCl

r(t) andCd
r(t) they are the correspondingROMsignals,

and [T1, T2] is the time interval in which the error is sought. The error values for the
reduced model with Nu = Np = NS = 15 are 0.8551 % and 0.5699 % for lift and drag,
respectively. This shows that the POD-Galerkin PINN ROM has been able to reconstruct
important CFD performance indicators such as the lift and drag coefficients despite the
uncertainty in presence.
In the last results, we have considered the presence of incomplete output data, never-

theless the set of output data was known on the whole internal domain. Now we assume
that we have only local data points given by the vector forces acting on the cylinder in (53).
This makes the inference problem more difficult to solve because of the locality of the
data presented. In spite of that, the POD-Galerkin PINN ROM could be used to solve the
inference problem using the data points of the forces. This can be carried out thanks to the
physical (reduced) equations which correspond to (53) and which are then incorporated
in the PINN loss function. We show the evolution of the PINN approximation of the Uin
in Fig. 9 for this ultimate test.

The flow around a surface mounted cube

The case considered in this subsection is the one of a flow past a cubic obstacle. The
problem is considered in a turbulent setting in three dimensions. Turbulence is modeled
using the LES strategy, in particular, the SGS turbulence model used is the one-equation
eddy viscosity model named “dynamicKEqn” in OpenFOAM. This model is proposed
in [75] as a continuation of the SGS model presented in [74]. The fluid domain is � :=
[0, 14.5 L]× [0, 9 L]× [0, 2 L], where L = 1m is the length of the cube. The boundary of the
domain � is formed by the three parts which are the inlet �inlet = {0} × [0, 9 L]× [0, 2 L],
the walls (the sides and the cube) �0, and the outlet �outlet := {14.5 L} × [0, 9 L]× [0, 2 L].
The computational grid used in the simulations is depicted in Fig. 10, where one can see
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Fig. 9 The PINN approximation of the U

in in the case of forces data

in image 10a a cross-sectional view of the domain at x3 = L. The cube is mounted on
the ground surface with a distance of 3.5L from the inlet, where the velocity of the flow is
horizontal withmagnitudeUin. In Fig. 10b, a similar image is shown for the cross-sectional
view at x2 = 4.5L and a zoomed picture of the cube is viewed in Fig. 10c. The boundary
conditions for the velocity and pressure at each part of the boundary are reported in the
latter figures. The finite volume mesh features around 1.2 millions cells. The physical
viscosity ν is equal to 2.5 × 10−5 m2/s. The velocity at the inlet Uin is 1 m/s. This gives a
Reynolds number (based on the cube length) of 40, 000.
In this numerical test, the physical viscosity ν is assumed to be unknown, the goal

is to identify its value with a high degree of accuracy and to approximate the non-
dimensionalized forces coefficients coming from the lift and drag forces acting on the
surface of the cubic obstacle.
The fluid problem is simulated for a timespan which is long enough to observe stable

values of the time-average of certain output quantities. These quantities include themean
and the Root Mean Squared (RMS) values of the non-dimensionalized forces coefficients
coming from the lift and drag forces acting on the surface of the cubic obstacle [see (53)
and (54].
This problem has been studied for the same value of the Reynolds number mentioned

above in [93–95]. In the latter studies, RANS and LES simulation were carried of for the
approximation of the values of the lift and drag coefficients of the cubic box. The nature
of this problem is characterized by having chaotic turbulent response for the velocity and
pressure field profiles. Thus, in order to have an accurate approximation of the mean
drag and lift coefficients, at least 100 non-dimensionalized time units t
 were simulated,
where t
 = tUin

L . Hence, the NSE are simulated for 100 s. The resulted graph for the drag
coefficient time-history in the build-up phase is shown in Fig. 11a. The mean value of
the drag coefficient across the build-up phase is 1.4829. The RMS values of the mean
subtracted drag coefficients signal is 0.0648.
After completing the build-up phase, snapshots are taken for the construction of the

reduced order model, where the simulation is resumed for another 50 s. Snapshots are
acquired each 0.25 s which results in a total of 201 snapshots. The time-history of the drag
coefficient during the offline snapshots time-window is depicted in Fig. 11b.
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a
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Fig. 10 The OpenFOAMmesh used in the simulations for the case of the flow around a surface mounted cube.
(a) A cross-sectional view of the grid at x3 = L, the boundary conditions for the velocity and pressure are reported
for the inlet, outlet and the sides. (b) A cross-sectional view of the grid at x3 = 4.5L. (c) A zoomed picture near the
box with boundary conditions imposed on it

The POD method is then applied on the snapshots matrices of velocity and pressure.
Figure 12 shows the first two POD modes of the velocity and the pressure. After the
computation of the PODmodes of the velocity and pressure, onemay solve the supremizer
problems in order to obtain the supremizer modes which are then added to the original
velocity POD basis.
At this point, the computation of the output data of the PINNs is carried out. The

penalty method is used for the enforcement of the inhomogeneous Dirichlet boundary
condition at the inlet, therefore, the POD-Galerkin DAE that models this problem is
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a

b

Fig. 11 The drag coefficient of the cubic obstacle for the build-up phase and the offline snapshots
time-window. (a) The time-history of the drag coefficient Cd during the build-up phase in the time interval [20,
100]. (b) The time-history of the drag coefficient Cd in the snapshots time-window [100, 150]

the one reported in (35). The matrices and vectors which appear in the latter DAE are
computed during the offline stage.
In order to approximate the value of the unknown physical viscosity, we put forth deep

neural networks which have time as the input and the stacked vector of [a, b,h, c] as their
output. The neural networks used in this test have 7 layers with each layer containing 200
neurons. The activation function used at each neuron is the tangent hyperbolic function.
The Adam optimizer is used for training the neural networks with a decaying learning
rate of initial value of 1 × 10−4, the optimization is run for 5 × 105 training epochs. The
loss function which has to be minimized during the training procedure of the PINNs is
the following:

E(w) = Edata(w) + E1(w) + E2(w) + E3(w), (56)

where Edata(w), E1(w), E2(w) and E3(w) are defined as in (29), (30), (31) and (38), respec-
tively. An additional trainable variable which corresponds to the physical viscosity and
denoted by νPINN is added to the set of the PINNs tunable weights w. This additional
trainable parameter of the neural network is present in the loss function through E1(w).
Therefore, the Adam optimizer will be able to compute the gradient of the total loss func-
tion E(w) with respect to νPINN and as a result optimize its value. The initial value of νPINN
is assumed to be 10−4.
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Fig. 12 The first two POD modes of the velocity and pressure, a 2D cross-sectional view of the domain at x3 = L
is shown. (a) The first velocity POD mode. (b) The second velocity POD mode. (c) The first pressure POD mode. (d)
The second pressure POD mode

a b

c d

Fig. 13 The approximation of the physical viscosity by the PINN at each training epoch for different reduced
number of modes. (a) Reduced setting : Nu = Np = NS = 10. (b) Reduced setting : Nu = Np = NS = 30. (c)
Reduced setting : Nu = Np = NS = 40. (d) Reduced setting : Nu = Np = NS = 80
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a b

Fig. 14 The approximation of the physical viscosity by the PINN at each training epoch for the reduced setting
Nu = Np = NS = 60, Fig. 14a refers to the PINN based on the quadratic approximation of the convective term
using a third order tensor and Fig. 14b corresponds to the PINN with the convective term being approximated as
an output of the neural network (the approach adopted in this work). (a) The PINN with the convective term
approximated as a quadratic product at the reduced level. (b) The PINN with the convective term approximated
as an additional reduced output of the neural network

The PINN proposed in this work relies on approximating the nonlinear convective term
as an additional auxiliary variable in the neural network structure. Another approach is
based on transforming the nonlinear term into a quadratic form as done in [51]. The
last approach implies that one needs to compute a third order tensor C [see (10)] whose
dimension is Nu +NS . The number of terms which has to be computed for each reduced
setting will be (Nu + NS)3. Consequently, the cost of computing this tensor for large
number of reduced modes is considered significant even if such cost is an offline one.
For example, for the case of Nu = NS = 60, the computation time is around 7.97 hours
when using 24 CPUs and it increases even to 37.27 hours in the case of Nu = NS = 100.
We would like to compare the accuracy of the PINN based on the latter approach in
approximating the physical viscosity in the current test case with the one proposed here
(the PINN based on incorporating the reduced convective term as part of the neural
network outputs).
The results of the approximation conducted by the PINN proposed in this work for

different number of reduced modes are shown in Fig. 13. Figure 14 presents the com-
parison of the results obtained by the two PINNs which differ in the way the nonlinear
term is approximated. The last figure shows that the PINN based on the approximation of
the nonlinear term as an additional reduced output has obtained accurate approximation
when 60 modes were used in the construction of the ROM for each reduced variable,
where the relative error in approximating ν is as low as 1 %. On the other hand the PINN
based on the quadratic approximation assumption of the nonlinear term has not yielded
an accurate approximationwhere it converged to a value of 7.0213×10−5. The inaccuracy
of the last result could be attributed to the effect of linear-based reduction given by the
POD on the approximation of nonlinear quantities at the reduced level. In the presented
approach such an effect is excluded since the reduced nonlinear term is considered an
additional output of the neural network with labeled data available for the training.
The POD-Galerkin PINN ROM is also used for the approximation of the lift and drag

coefficients of the cubic obstacle. The reduced forces coefficients are then compared to
the FOM ones which are recorded during the full order simulation. In order to obtain
the reduced forces, we perform a set of forward computations using the trained PINNs
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for the time values at which the FOM has recorded the forces. The number of time
steps performed by the FOM solver during the acquisition of the offline snapshots is
28370. The results of the PINNs forward computations are the reduced velocity and
reduced pressure vectors at the aforementioned 28370 time instants. We remark that
these computations are carried out in a computational time which is significantly low,
yielding high speed-up factors. The results of the forward application of the PINNs are
shown in Fig. 15, where the first and second coefficients of each reduced variable are
plotted, the figure depicts both the L2 projection coefficients and the ROM coefficients.
The last figure shows that the PINNs forward predictions are matching the original L2

projection coefficients curves to a high degree despite the presence of uncertain parameter
in the ROM formulation. The reduced velocity and pressure outputs will be used together
with the reduced forces matrices which were computed during the offline stage to yield
the reduced three dimensional forces acting on the surface of the box. Then, the reduced
lift and drag coefficients are computed.
The results of this test for different values of the reducedmodes are shown in Figs. 16 and

17. The latter figures depict the time history of the FOM and the ROM forces coefficients
for different reduced spaces dimensions. It is clear from the previous results that the ROM
results are notmatching their FOMcounterparts when only 10−20modes for each ofNu,
Np and NS are used for the ROM construction. However, Figs. 16d and 17d demonstrate
that the level of qualitative reproduction of the FOM Cd and Cl curves by the surrogate
model becomes substantially better when at least 60 modes are used for each reduced
variable.
In order to have a quantitative evaluation of the accuracy of the lift and drag coefficients

approximation, we compute the L2 relative errors [see (55)]. The errors are computed for
different number of reduced modes, Fig. 18 plots the error values versus the number of
modes used for theROMconstruction. The last plot shows that the error in approximating
the drag coefficients reaches 0.3531 % when Nu = Np = NS = 100 modes, while the lift
coefficients error is 0.1523 % for the same setting.
We report a study of the computational time needed for the completion of each task or

step involved in the POD-Galerkin PINN ROM. This study is conducted in Table 3 for
different numbers of the reducedmodes. Firstly,wemention the computational time taken
by the FOM solver for running the problem on 24 CPUs (CPU model “AMD EPYC 7302
16-Core Processor @ 1498MHz”) that is TOff = 11, 460 s or approximately 3.1 hours. In
the second columnof Table 3, we reportTproj,DAE which is the time required for projecting
the equations and computing the DAE reduced vectors and matrices. The third column
lists the time taken for the computation of the PINNs outputs data, this time is denoted
by Tproj,data. We remark that the computational cost corresponding to Tproj,DAE is present
also in the case of the intrusive POD-Galerkin ROM, while the cost that corresponds to
Tproj,data is only present in non-intrusive or hybrid ROMs such as the POD-Galerkin PINN
ROM. The most significant cost is the one reported in the fourth column, where one can
see the time taken for training the PINNs for 5 × 105 epochs on the Graphics Processing
Unit (GPU). Table 3 also details in the fifth column the cost for the forward computations
carried out by the PINNs for the approximation of the forces denoted by TPINN,F (GPU
cost). Finally the speed-up SU is recorded in the last column, where this value is calculated
as follows SU = TOff

TPINN,F+TOnl,Forces
, with TOnl,Forces being the time required for assembling
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Fig. 15 The results of the PINNs predictions for all reduced variables, the reduced order spaces are constructed
with Nu = Np = NS = 60. The plots compare the reduced coefficients with the L2 projection coefficients. The
red-dashed lines refers to the L2 projection coefficients, while the blue-dots correspond to the reduced
coefficients obtained by the PINNs. (a) The first reduced coefficients for velocity, pressure, turbulent and
convective terms compared to the ones obtained by the L2 projection. (b) The second reduced coefficients for
velocity, pressure, turbulent and convective terms compared to the ones obtained by the L2 projection
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Fig. 16 The drag coefficients curve over the time range [100, 150] s. The figures show the one obtained by the
FOM solver and the ones approximated by the ROM for different values of and Nu , Np and NS . (a) The drag
coefficients curve reconstructed by the ROM using Nu = Np = NS = 10 compared to the FOM one. (b) The drag
coefficients curve reconstructed by the ROM using Nu = Np = NS = 20 compared to the FOM one. (c) The drag
coefficients curve reconstructed by the ROM using Nu = Np = NS = 30 compared to the FOM one. (d) The drag
coefficients curve reconstructed by the ROM using Nu = Np = NS = 60 compared to the FOM one

a b

c d

Fig. 17 The Lift coefficients curve over the time range [100, 150] s. The figures show the one obtained by the
FOM solver and the ones approximated by the ROM for different values of and Nu , Np and NS . (a) The Lift
coefficients curve reconstructed by the ROM using Nu = Np = NS = 10 compared to the FOM one. (b) The Lift
coefficients curve reconstructed by the ROM using Nu = Np = NS = 20 compared to the FOM one. (c) The Lift
coefficients curve reconstructed by the ROM using Nu = Np = NS = 30 compared to the FOM one. (d) The Lift
coefficients curve reconstructed by the ROM using Nu = Np = NS = 60 compared to the FOM one.
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Fig. 18 The L2 relative errors for the approximation of the drag and lift coefficients in the time span [100, 150] as
function of the number of modes. A base-10 logarithmic scale on the y-axis is used in both plots, the error values
are already in percentages. (a) The L2 relative error in approximating the drag coefficient Cd over the time span
[100,150] as function of the number of modes. (b) The L2 relative error in approximating the lift coefficient Cl over
the time span [100,150] as function of the number of modes

the reduced forces in the online stage and whose value is about 7 − 10 ∗ 10−5 s. As it can
be seen from the latter study, the use of deep neural networks in reduced order modeling
results in a substantial increase in the offline cost given by the time needed for the PINNs
training in this setting TPINNs,T. However, the nature of the inverse problem at hand
requires this training procedure for the approximation of the unknown parameter. In
addition, the POD-Galerkin PINN ROM compensates the high offline-cost by giving in
return high speed-up (SU) value which reaches as high as 106. These speed-up factors are
not easily attainable in fully intrusive POD-Galerkin ROMs.
To conclude, it is evident that the POD-Galerkin PINN ROM has provided accurate

approximation for parameter estimation problems. At the same time, the presence of
unknown parameter has not affected the quality of the approximation of important out-
puts such as the lift and drag forces acting on the surface of the box. However, the results
for the study of the quality of the PINNs approximation for the forward and inverse cases
illustrate that the quality of the inverse approximation is not so much damaged when
only 10–20 modes are used for each reduced variable. Unlike the inverse case, the for-
ward approximation of the lift and drag coefficients needs substantially larger number of
reduced modes.
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Table 3 The computational time taken by different tasks needed for the implementation of the
POD-Galerkin PINN ROM (i) the second column reports the time taken for performing the projection
of the equations (computing the reduced quantities in the reduced DAE system) in parallel setting
using 24 processors, (ii) the third column details the CPU time (also using 24 processors in parallel)
consumed for the computation of the PINNs output data represented by the L2 projection
coefficients of the different variables

Nu = Np = NS Tproj,DAE in s Tproj,data in s TPINNs,T in min TPINN,F in s Speedup
10 8.269 37.6084 58.01 0.004612 2.4438 ∗ 106

20 25.219 59.5178 59.94 0.004715 2.3711 ∗ 106

30 55.0379 77.1995 61.78 0.004778 2.3557 ∗ 106

40 96.2729 100.27687 58.01 0.004873 2.2907 ∗ 106

50 145.838 126.1021 71.7 0.006929 1.6261 ∗ 106

60 207.629 159.0223 70.63 0.006481 1.7393 ∗ 106

70 289.609 187.9712 59.91 0.006036 1.8584 ∗ 106

80 387.812 233.1214 72.06 0.005258 2.1340 ∗ 106

90 462.827 270.7364 65.49 0.005462 2.0480 ∗ 106

100 649.555 322.3108 89.91 0.005543 2.0314 ∗ 106

120 850.28 428.9114 101.0 0.005463 2.0368 ∗ 106

150 1289.12 625.9247 136.8 0.006089 1.8480 ∗ 106

(iii) The fourth column shows the time required for running the PINNs on the Graphics Processing Unit (GPU), (iii) the fifth
column indicates the time taken for carrying out the forward online computations of the PINNs for the approximation of the
reduced variables. (iv) The last column reports the speedup achieved by the reduced order model. The speedup is calculated
as follows Speedup = TOff

TPINN,F+TOnl,Forces
, where TOff = 11, 460 s is the CPU time needed for simulating the FOM for the

snapshots time window using 24 processors in parallel, and TOnl,Forces is the time consumed for assembling the reduced
forces in the online stage which has taken around 7 − 10 ∗ 10−5 s in the current experiments. The table shows the
computational costs for different sizes of reduced modes

Conclusions
We have presented a reduced order model which is designed to learn unknown input
parameters or physical quantities for fluid problems governed by theNavier–Stokes equa-
tions.
The proposed model employs the POD for the generation of the reduced order space

and then utilizes Galerkin projection for the construction of the reduced order system.
The solution of the reduced order system is obtained by the use of physics-informedneural
networks (PINNs). The PINNs have as input time and/or parameters, while their output
is the combined vector of the reduced velocity, pressure, turbulent and convective terms.
The training procedure of the PINNs is carried out by minimizing a loss function which
is a combination of the data loss and the reduced equations losses. Unknown physical
parameters which appear in the POD-Galerkin DAE could be approximated using the
PINNs by exploiting their feature of introducing additional trainable weights. The PINNs
optimizer was then used to compute the gradient of the loss function with respect to the
additional trainable weight and consequently optimize its value.
The proposed POD-Galerkin PINN ROM has proven being accurate in solving inverse

problems involving unknown physical quantities such as the physical viscosity. At the
same time, this ROM is able to reconstruct fluid dynamics outputs with high degree
of accuracy despite having input uncertainty. Three test cases have been used for the
validation of the proposed model. The first case is the steady flow past a backward step,
the second case is the one of a circular cylinder immersed in horizontal flow, while the
last one is the unsteady flow past a surface mounted cube. The steady case was considered
in laminar setting while the unsteady cases are turbulent ones with Reynolds number up
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to Re = 40, 000. The POD-Galerkin PINN ROM has given very promising results when
it comes to the approximation of the unknown parameters and also for the prediction of
the fluid dynamics outputs, both for the non-turbulent and the turbulent case.
The approach presented in this work is useful in several different circumstances such

as a situation in which parameterized data is presented with the data being incomplete
or only partially known. The approach also can be used for the inference of unknown
constant quantities such as the PDE identification tasks where physical constants (that
define the PDEoperator) are not known. The approachmay become limitedwhen the data
is presented for only one setting/configuration (non-parameterized case) and/or when the
unknown variable is a spatial field for which no data is available.We also highlight that the
approach requires the computation of turbulent and nonlinear terms from each collection
of fluid fields snapshots.Weunderstand that the last requirement could be difficult tomeet
in certain settings.
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34. Noack BR, Afanasiev K, Morzyński M, Tadmor G, Thiele F. A hierarchy of low-dimensional models for the transient and
post-transient cylinder wake. J Fluid Mech. 2003;497:335–63. https://doi.org/10.1017/s0022112003006694.

35. Guo M, Hesthaven JS. Data-driven reduced order modeling for time-dependent problems. Computer Methods Appl
Mech Eng. 2019;345:75–99. https://doi.org/10.1016/j.cma.2018.10.029.

36. Galletti B, Bruneau CH, Zannetti L, Iollo A. Low-order modelling of laminar flow regimes past a confined square
cylinder. J Fluid Mech. 2004;503:161–70. https://doi.org/10.1017/s0022112004007906.

37. Couplet M, Basdevant C, Sagaut P. Calibrated reduced-order POD-Galerkin system for fluid flowmodelling. J Comput
Phys. 2005;207(1):192–220. https://doi.org/10.1016/j.jcp.2005.01.008.

38. Noack BR, Papas P, Monkewitz PA. The need for a pressure-term representation in empirical Galerkin models of
incompressible shear flows. J Fluid Mech. 2005;523:339–65. https://doi.org/10.1017/S0022112004002149.

39. Hijazi S, Ali S, Stabile G, Ballarin F, Rozza G. The Effort of Increasing Reynolds Number in Projection-Based Reduced
Order Methods: From Laminar to Turbulent Flows. In: Lecture Notes in Computational Science and Engineering, pp.
245–264. Cham: Springer; 2020. https://doi.org/10.1007/978-3-030-30705-9_22

40. Hijazi S, Stabile G, Mola A, Rozza G. Data-driven POD-Galerkin reduced order model for turbulent flows. J Comput
Phys. 2020;416: 109513. https://doi.org/10.1016/j.jcp.2020.109513.

41. Mou C, Koc B, San O, Rebholz LG, Iliescu T. Data-driven variational multiscale reduced order models. Computer
Methods Appl Mech Eng. 2021;373: 113470. https://doi.org/10.1016/j.cma.2020.113470.

42. Fresca S,Dede’ L,Manzoni A. A comprehensivedeep learning-basedapproach to reducedordermodelingof nonlinear
time-dependent parametrized PDEs. J Sci Comput. 2021. https://doi.org/10.1007/s10915-021-01462-7.

https://doi.org/10.1016/j.jcp.2008.09.024
https://doi.org/10.1016/j.jcp.2008.09.024
https://doi.org/10.1007/978-3-319-06136-8_9
https://doi.org/10.1007/978-3-319-06136-8_9
https://doi.org/10.1016/j.cma.2006.04.004
https://doi.org/10.1002/fld.4252
https://doi.org/10.1063/1.868433
https://doi.org/10.1007/s00162-009-0112-y
https://doi.org/10.1137/S0036142900382612
https://doi.org/10.1007/b137536
https://doi.org/10.1016/j.cma.2016.08.006
https://doi.org/10.1515/caim-2017-0011
https://doi.org/10.1515/caim-2017-0011
https://doi.org/10.1016/j.compfluid.2018.01.035
https://doi.org/10.1137/17m1145136
https://doi.org/10.1016/j.jcp.2014.01.011
https://doi.org/10.1016/j.crma.2004.08.006
https://doi.org/10.1016/j.crma.2004.08.006
https://doi.org/10.1016/j.cma.2017.06.011
https://doi.org/10.1016/j.cma.2017.06.011
https://doi.org/10.1016/j.jcp.2013.02.028
https://doi.org/10.1016/j.jcp.2013.02.028
https://doi.org/10.1137/130914619
https://doi.org/10.1016/j.cma.2015.03.018
https://doi.org/10.1017/jfm.2014.355
https://doi.org/10.1016/j.cma.2018.07.017
https://doi.org/10.1016/j.jcp.2018.02.037
https://doi.org/10.1017/s0022112003006694
https://doi.org/10.1016/j.cma.2018.10.029
https://doi.org/10.1017/s0022112004007906
https://doi.org/10.1016/j.jcp.2005.01.008
https://doi.org/10.1017/S0022112004002149
https://doi.org/10.1007/978-3-030-30705-9_22
https://doi.org/10.1016/j.jcp.2020.109513
https://doi.org/10.1016/j.cma.2020.113470
https://doi.org/10.1007/s10915-021-01462-7


Hijazi et al. AdvancedModeling and Simulation in Engineering Sciences           (2023) 10:5 Page 37 of 38

43. Fresca S,Manzoni A. POD-DL-ROM: Enhancing deep learning-based reduced ordermodels for nonlinear parametrized
PDEs by proper orthogonal decomposition. Computer Methods Appl Mech Eng. 2022;388: 114181. https://doi.org/
10.1016/j.cma.2021.114181.

44. Romor F, Stabile G, Rozza G. Non-linear manifold ROM with Convolutional Autoencoders and Reduced Over-
Collocation method. 2022. https://doi.org/10.48550/ARXIV.2203.00360

45. Lee H, Kang IS. Neural algorithm for solving differential equations. J Comput Phys. 1990;91(1):110–31. https://doi.org/
10.1016/0021-9991(90)90007-n.

46. Lagaris IE, Likas A, Fotiadis DI. Artificial neural networks for solving ordinary and partial differential equations. IEEE
Trans Neural Netw. 1998;9(5):987–1000. https://doi.org/10.1109/72.712178.

47. RaissiM, Perdikaris P, Karniadakis GE. Physics-informedneural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations. J Comput Phys. 2019;378:686–707. https://
doi.org/10.1016/j.jcp.2018.10.045.

48. Raissi M, Wang Z, Triantafyllou MS, Karniadakis GE. Deep learning of vortex-induced vibrations. J Fluid Mech.
2018;861:119–37. https://doi.org/10.1017/jfm.2018.872.

49. Sirignano J, Spiliopoulos K. DGM: A deep learning algorithm for solving partial differential equations. J Comput Phys.
2018;375:1339–64. https://doi.org/10.1016/j.jcp.2018.08.029.

50. Eivazi H, Tahani M, Schlatter P, Vinuesa R. Physics-informed neural networks for solving reynolds-averaged navier-
stokes equations. Phys Fluids. 2022;34(7): 075117. https://doi.org/10.1063/5.0095270.

51. ChenW,WangQ,Hesthaven JS, ZhangC. Physics-informedmachine learning for reduced-ordermodelingof nonlinear
problems. J Comput Phys. 2021;446: 110666. https://doi.org/10.1016/j.jcp.2021.110666.

52. Banks HT, Kunisch K. Estimation Techniques for Distributed Parameter Systems. Boston: Birkhäuser; 1989. https://doi.
org/10.1007/978-1-4612-3700-6.

53. Kirsch A. An Introduction to the Mathematical Theory of Inverse Problems. New York: Springer; 2011. https://doi.org/
10.1007/978-1-4419-8474-6.

54. Stuart AM. Inverse problems: A Bayesian perspective. Acta Numerica. 2010;19:451–559. https://doi.org/10.1017/
s0962492910000061.

55. Kaipio J, Somersalo E. Statistical and Computational Inverse Problems. New York: Springer; 2005. https://doi.org/10.
1007/b138659.
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